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Reviewer 1

Comments to the Author

This paper reports the results obtained by simulating a biologically plausible hardware
neuron with the injection of noisy stimuli. The paper is a major revision of a
previously submitted paper: in this new version the authors have reduced - albeit not
completely removed - the confusion between channel and synaptic noise. I still think
that comparing the effects of channel and synaptic noise — as the authors do, for
example, in Fig. 2 - is, at best, misleading for the reader. Moreover, the "explanation"
provided with Eqgs. (4) and (5) is not very satisfactory.

RE: Thanks very much for the valuable feedback. To minimise confusion and to
comply with the reviewer’s suggestion, we decide to remove Fig.2, avoiding the
comparison on the effect of the two types of noise. In addition, Eq.(4) and Eq.(5) are
kept to clarify the differences between the two types of noise. The changes made in
the manuscript are

Fig.2 is removed.
The 2™ para. of Sec.IIL.B is removed

Notwithstanding this remark, I believe that the presented results can be of interest,
especially for researchers in the field of the hardware implementation of neuronal
(possibly hybrid) networks. Therefore, I think this paper is suitable for publications on
the IEEE Transactions on Neural Networks. I also noticed some minor mistakes that
should be corrected:

1) After Eq. (1), the authors say that x and y model the fraction of activated (open)
and inactivated (closed) channels respectively. In reality, X and y are both variables in
the range [0,1] and they both represent the fraction of channels in the open state, be
they an activation variable (x) or an inactivation variable (y).

RE: Thanks very much for pointing out the imprecise description. The “(open)” and
the “(close)” in the sentence have been removed to make it clear.

In Sec. II, line 9 of the 1* para., the sentence is modified as “...x is the gating variable
modeling the fraction of ion channels that are activated, while y the gating variable
modeling the fraction of ion channels that are inactivated.”

2) In paragraph IV.B, the authors claim, referring to Fig. 5, that "software tools such
as NEURON would require non-negligible time to complete the same simulations,
and the required time would increase dramatically as the number of stochastic neurons
grows". I do not agree on the first part of the sentence: the simulation of a single
compartment neuron model for 1.5s that reproduces the behaviour shown in Fig. 5.a
takes a negligible time on a modern machine.

RE: Thanks very much for the valuable feedback. We agree with that the NEURON
could also complete the single-neuron simulation within negligible time. Therefore,
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the text has been modified as

In Sec.IV.B, line 4 of the 2™ para. “.... Although software tools such as NEURON
can also complete the simulation in Fig.4a within negligible time, the time required
would increase dramatically as the number of neurons grows.”

3) In paragraph IV.C, starting from the second line onward, the authors should replace
"polarizing" with "hyperpolarizing" when referring to the stimulus required to evoke a
post-inhibitory rebound in the model. The same applies to the caption of Fig. 6.

RE: Thanks very much for the valuable feedback. "polarizing" has been replaced with
"hyperpolarizing" in Sec.IV.C, and the captions of Fig.5 and Fig.6.

4) It would be nice if the authors could present the same histograms as in Fig. 10 for
the deterministic stimulus, i.e. for the traces shown in Fig. 8, to better motivate the
sentence "the post-synaptic neuron could only detect the frequency but not the
waveform of the stimuli".

RE: Thanks very much for the valuable feedback. The histograms for deterministic
stimuli have been added as Fig.8, with corresponding description in line 13 of the 1%
para. in Sec.IV.D. “....Let the timing of each spike be calculated as.....”

5) I think reference 16 appeared on Nature: I don't know what "Neurosilicon
Interface" is.

RE: Thanks very much for the valuable feedback. The reference list has been checked
and revised thoroughly.

6) There are various typos and language mistakes throughout the paper.
RE: Thanks very much for the valuable feedback. The final manuscript has been
thoroughly checked again to avoid typos and language mistakes.

Editor’s comments

1. Please add your author names under the paper title and affiliation information to the
footnote on the lower left corner of the first page. See any IEEE Transactions papers
for style.

RE: The author names and the affiliation have been added in accordance with the
IEEE format.

2. Please see if you can do something about Figure 2 since when it is printed black
and white, the lines are not distinguishable. Please solve this problem now.

RE: To comply with the reviewer’s comment, we decide to remove Fig.2, avoiding
the comparison on the effect of the two types of noise.

3. Please reorganize your reference list so that all your references are listed
alphabetically according to the first author’s last name.

RE: The reference list is reorganized according to the first author’s name.

4. I have attached a note prepared for IEEE style of references. Please take a careful
look at the note and correct your reference list as needed.

Page 3 of 10



Page 4 of 10

RE: The reference list is thoroughly checked and refined to comply with the IEEE
style.

©CoO~NOUTA,WNPE

5. Please double check your manuscript after your revision so that all your references
10 are cited correctly in your revised paper.

11 RE: The reference list is compiled by the Bibtex with IEEEtranS.bst, and is doubled
12 checked after the final manuscript is compiled.
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Real-time Simulation of Biologically-realistic
Stochastic Neurons in VLSI

Hsin Chen,Member, IEEE, Sylvain SaighiMember, IEEE, Laure Buhry, and Sylvie Renaut¥ember, IEEE

Abstract—Neuronal variability has been thought to play an (SDES). This leads to at least two challenges for computer-
important role in the brain. As the variability mainly comes from  pased studies. First, the maximum number of neurons or
the uncertainty in biophysical mechanisms, stochastic nean SDEs a computer simulation can consider is limited. Many
models have been proposed for studying how neurons compute _. o
with noise. However, most studies are limited to simulating SIMPlified models have thus been proposed [10], [13], How-
stochastic neurons in a digital computer. The speed and the €Ver, the parameters of the these models no longer relate to
efficiency are thus limited especially when a large neuronal real biophysical properties directly, making it more diffic
network is of concern. This study explores the feasibility & to extract parameter values, or to understand how different
simulating the stochastic behavior of biological neuronsn a parameters affect neuronal behaviors. The second challeng

Very Large Scale Integrated (VLSI) system which implements . . . .
a programmable and configurable Hodgkin-Huxley model. By 'S that the suggestions drawn from theoretical studies ate n

simply injecting noise to the VLSI neuron, various stochast €asy to verify with biological neurons, owing to the diffigul

behaviors observed in biological neurons are reproduced adisti- in manipulating a specific property of biological neurons

cally in VLSI. The noise-induced variability is further shown to  jndependently.

enhance the signal modulation of a neuron. These results pti Contrary to computer simulation, analog circuits are in-

towards the development of analog VLSI systems for explorig . . . e . . .
herently suitable for simulating differential equatiomsreal-

the stochastic behaviors of biological neuronal networksni large ' g - i
scale. time and in parallel [3]. By the merit of the natural, diffare

I ndex Terms—Stochastic behavior, Noise, Hodgkin-Huxley for- tial current-voltage relationship of a capacitor, noisdticed

malism, analog VLSI, stochastic neurons, neuromorphic VL8 Stochastic dynamics can be simulated by simply applying a
noise current to the capacitor and measuring its correspgnd

voltage dynamics. The hardware simulation further faat#is
|. INTRODUCTION the building of a hybrid network incorporating both VLSI

IOLOGICAL neurons have been found noisy both in thand biological neurons, allowing the network behavior to be
B generation of spikes and in the transmission of synapgtudied efficiently by tuning the properties of VLSI neurons
signals. The noise comes from the random openings of ibkp]- Therefore, this study explores the feasibility of siat-
channels, the quantal releases of neural transmitters;ahe ing different types of stochastic neurons in an analog VLSI
pling of background neural activity, etc. [25] [19]. As theige ~System called thd?amina, which realizes the conductance-
affects neural computation directly, it has been of gretrin based HH model and runs in biologically-realistic time [21]
ests to study how neurons compute with noise reliably [24].
Interestingly, many studies have indicated that noise phay Il. THE HODGKIN-HUXLEY MODEL IN VLSI
beneficial role at least by (a) inducing neuronal variapilit
[7], (b) enhancing the sensitivity of neurons to environtaén  Fig.1a shows th€mina chip [21] containing two HH-type
stimuli [26], (c) inducing synchronization between newonneurons. Let’y; represent the membrane capacitance, l&nd
[1], and (d) facilitating probabilistic inference accandito the the membrane voltage. Each neuron implements the formalism
Bayes’ rule in the brain [16]. The effect on synchrony couls (dVar/dt) = =32, Lion,i+ > ; Lsyn.j + Lstim, Wherelio, ;
further relate to neural disorders such as Parkinson'sadése 'epresents an ionic currett,, ; a synaptic current, ankl;;,
[11] and hearing loss [4]. Understanding the effect of noidfe stimulating input. The general form &f,, ; is given as
is thus crucial both for computational neuroscience and for
improving the treatments to these neural diseases. Lioni = gi-a” y" - (Vi — Ei) @

One major approach of theoretical studies is adding whijghere ¢, and E; are the maximum conductance and the
noise to the biologically-plausible, deterministic Hotgk reversal potential of the ionic current, respectivelyis the
Huxley (HH) model [12], either to the dynamics of gatingyating variable modeling the fraction of ion channels that a
variables of different ion channels, or to the dynamics Qfctivated, whiley the gating variable modeling the fraction of

the membrane potential [9], [20]. As a result, the neurongly channels that are inactivated. Letrepresent eithex: or
dynamics are modeled by stochastic differential equatiopsThe dynamics of\ are guided by

H. Chen is with the Department of Electrical Engineeringtitzal Tsing d\
Hua University, No.101, Sec.2, Kuang-Fu Rd., HsinChu, 3000AIWAN, TX - E = )\oo(VM) —-A (2)
e-mail: hchen@ee.nthu.edu.tw . 1

S. Saighi, L. Buhry, and S. Renaud are with IMS Lab (CNRS UNRS), )\oo(VM) _ (3)

University of Bordeaux, F-33400 Talence, FRANCE. 1+ eggp(_(VM — Voff,/\)/Vslope,A)
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2 The minus sign in front of Vay — Vi,¢5.1) is omitted for the r\\\ ‘.“ Tl FIHL«’_]._N_;N
3 inactivation variabley. 7 is the time constant for approaching &
4 Ao (Vr). Althoughy is a function ofVy, in the original HH t I ] Ers vt
5 model, it is a constant value in tHeamina chip to simplify i I I I ‘mm’ S
6 circuit design.V,z ¢ x and Vgepe,» control the offset and the By = i
7 slope of the sigmoid function, respectively. =i oL Gl g L et <
8 As shown by Fig.1b, eaclPamina neuron contains five £ Privs AT T J
9 ionic currents, eight synaptic inputs and one stimulatimmyi. 7 > 7 ) [
10 The five ionic conductances include the sodium currégt,], AN IR L "’m;"‘ﬁ ! lt.
11 the potassium current’f), the leakage current,;), the L/ e e o | S em e R |
12 calcium current {¢,), and the calcium-dependent potassium 'Ii_ = . i)
13 current (x (caq))- (.9) for I, allows users to select between g L AL 2L LA ANNNAN,
14 (2,1) and(1,0), and the functionn(Va, [Ca**)) is realized (a)
15 in accordance with [14]. For the synaptic current, the dyicam Analog parameter Digital topology
i? of r(V,re,;) also obey Eq.(2) and (3) withy; replaced by the memories memories

pre-synaptic potentidly,,. ; [6]. AS Iy, ; andlg, have the Vstim
18 same form asl;,, i, aZI)I t?1e conducyiar]lces are implemented 5’D# Lstim T Gotim - (Vstim = Vrer) }—/+
19 with a library of the analog operators detailed in [21]. Fiypa Vprel
;2 Vistim and V.. ; are externally applied voltage. S P T S [ | !+

The parameters of all the conductances are stored in the ana’" T ]

22 Vpre8
23 log parameter memory (Fig.1a), and the types of conductances = A

or synapses connected to each neuron are controlled by the ﬁ Ina =igNa - m*h - (Vi = Ena) }—/+
24 o ; . )
o5 d|g|t§1I datr_:t stqred in _tha)pology memory. By integrating the -
26 Pamina chip with a Fleld—Programmable-the-Array (FPGA) *‘ Ik = gx -0 - (Var — Eg) }J+
27 and data converters on a customized Peripheral-Component-
28 Interconnect (PCI) card, the neurons can be configured and ﬂ Ticar = iear - (Var — Eiear) ‘J+
29 recorded easily through C programming in a computer. Com-
30 pared to other conductance-based neurons in VLSI [8], [22], { Ica = gch - 87 - u? - (Viy — Eca) }—/+
31 the Pamina chip has the advantages that all neuronal parame-
32 ters are dynamically-tunable over a wide range, togethtr wi % I :_q,w.,,M,A[gau]).(‘,,;W,,E,{(C(,)k_/ﬁg

a flexible topology. These features make the chip particular ~ Buffered
33 ) ) . . . Vm Vm
34 suitable for exploring the stochastic behaviors observed i < <} T
35 different biological neurons. T Cw
36 =
37 I1l. M APPING BIOLOGICAL MODELS INTOVLSI (b)
38 A. Parameter extraction Fig. 1: (a)The microphotograph of tiamina chip fabricated
39 . . . . with the 0.35%:m BICMOS technology by the Austriamicrosys-
40 . The m|n|mall HH model proposed n [18] is of our part'CUIaEems. The chip area is170 x 3480um?2. (b)The block diagram
41 interests, as different classes of cortical and thalamizores of a neuron
42 have been modeled satisfactorily with a minimal number off '
43 ionic conductances. In addition, the conductance models in
44 [18] are similar to those implemented in thRamina chip,
45 allowing most parameters to be adopted directly for vVLSnodeled asiA/dt = ax(Var) - (1 — A) — Ba(Var) - A instead
46 simulation according to the mappings described below. ~ 0of Eq.(2). The parameters,, Vosf ., and Viope x are thus
47 All voltage levels in the VLSI neuron are designed to béxtracted by (a) calculatingx(Vas) and 3x(Va) over the
48 five times greater than their corresponding values in bioklg rangeVy; = [—100, 100]mV, (b) derivingA (Vi) according
49 neurons, i.eVirrsr = 5 * Vgro, while the time scale is 10 Ao = ax/(ax + Bx), (C) setting theVy, corresponding
50 identical for both VLSI and biological neurons. Létyg; 10 A = 0.5 a@s Vorpa, (d) and then extractind/siope,
51 andCpro represent the membrane capacitances of VLS| aAtl @ specificA... In addition, 7, is simply calculated from
52 biological neurons, respectively. The conductance mappim(Var) = [aa(Var) + Bx(Var)] ™" at Vay = —70mV.
53 is proportional to the capacitance ratio @s;s;/g9r0 = Three types of neurons, theast-Spiking (FS) neurons, the
54 Cvrsi/Cgro- The current mapping then equals the produ&egular-Spiking (RS) neurons, and theow-Threshold-Spiking
35 of the voltage and conductance mappings,ive,s:/Ipro = (LTS) neurons were simulated in our experiments. Table.l
56 5% Cyrsi/Cgro. In the Pamina chip, Cvsr = 5nF and summarized the parameter values extracted from [18]. For th
57 the biological neurons hav@g ;o = Cyy - Area with C; and RS neuron, the calcium conductande () was programmed
58 Area given in Table.l. to realize the slow potassium currei/) with (p, q) = (1,0).
2(9) The only difference between the VLSI and biological neuor the LTS neuron(p,q) = (2,1) and 75 = 0.65ms were

rons is that the dynamics of gating variables in [18] arget to realize the low-threshold calcium curreft)(in [18].
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TABLE I: The parameters of different neurons simulated in

VLSI < ZT P P F r Vs=2.33V
s 2.
FSneuron | RSneuron | LT Sneuron > 2 ‘ ‘ ‘ ‘ ‘ ‘
Char(uF/em?) 1 1 1 Vs=2.34V
Area(cm?) 14x107°% | 29 x107° | 29x1075 s 26
Gstim (mS/cm?) 1.08 1.08 1.08 =2
gna(mS/em?) 44 44 44 22 : : : : : :
Eng(mV) 50 50 50 _ 2.6 srinig
T (m5) 0.07 0.07 0.07 322.
Vot f.m(mV) —34.42 —34.42 —34.42 > 2_2 ‘ | ‘ ‘ !
Vitope,m (mV) 6.47 6.47 6.47 0 0.05 01 018, 02 0.25 03
71 (ms) 0.36 0.36 0.36
Vospn(mV) —39.07 ~39.07 —~39.07 Fig. 2: The responses of a stochastic FS neuron in VLSI with
Vatope,n(mV) 3.932 3.932 3.932 Vi, = 800mV,, and (top)s = 2.33V (middle)Vs = 2.34V
g (mS/cm?) 10 10 5-10 (bottom)s = 2.37V".
Ex(mV) —90 —90 —90
Tn (Ms) 1 1 1 2.8 w w
Vot fn(mV) —29.08 —29.08 —29.08 ,d \ \
Velope.n(mV) 7.854 7.854 7.854 - L \‘
Gieak (mS/cm?) 0.1 0.1 0.1 < 24 [M ’ |’
Eiear(mV) ~70 ~70 ~70 > g o
gca(mS/em?) - 0.35 2 '
Eca(mV) - —90 120 % 0.01 0.02 0.03 0.04 0.05 0.06
Ts(ms) - 200 0.65 Time ()
Vogf,s(mV) - —35 —115 Fig. 3: The superimpose of 37 spikes generated by a stochasti
Vistope,s(mV) - 10 6.2 FS neuron in VLSI withVs = 2.34V andV,, = 800mV,,
Tu(ms) — — 100
Vo fu(mV) - - —120
Vstope,u(mV) - - 16 Vstim = Vs + V,, (Fig.1b). Vi, Was then converted into the

current Lssim = gstim (Vstim — Vrer), Wherein the stochastic
component ofl;,,, corresponded to - W (¢) in Eq.(4). The
B. Noise injection effect of the noise on different types of neurons was then

While the stochastic behaviors of biological neurons Wereexplored Kol discussed as follows.

reproduced with remarkable precision in [20] by adding @hit

noise ¢ - W(t)) to the kinetics of gating variables, the V. SIMULATING STOCHASTIC NEURONS INVLSI

Pamina chip originally designed for simulating deterntinis A. Fast-Spiking neurons

HH models only allowed the noise to be added to the klnetlcs-l-he FS neuron is a major class of neurons in the cerebral

of the membrane voltage as Eq.(4). cortex, involving onlyIya, Ix, and I,... In the absence of

A% noise injection, the FS neuron simulated in tPamina chip
CMT - Z Tion.i + Z Lsyn.j + Lstim +0 - W(2) (4) generates spikes only whéfy > 2.34V. With V,, = 800mV,,
’ ’ superimposed ols, the measured responses of the FS neuron
Let Vi = Vaga + Vs, With Vg and Vi, representing the to (a)subthresholdi(s = 2.33V) (b)suprathreshold(Vs =
deterministic and the stochastic components, respegtiBgl 2.341), and (c)above-threshold/§ = 2.37V) stimulation
Taylor expansiond.. (Vasa + Vars) can be expressed as  are shown in Fig.2. Under subthreshold stimulation, theeoi

_ / . induced spontaneous firings. Suprathreshold stimulatien t
Aco(Vara + Virs) = Aoo(Vira) + Aoe (Vara) - Virs + O(VM('SEB) leads to increased spiking frequency and reduced frequency

where o(Vis,) represents high-order terms ®fy.. Eq.(5) variation. As Vs is well above the threshold, the spiking

indicates that, although the white noise in Eqg.(4) can tl;réequency approaches constant while the spiking amplitude

arslered 1 he dynamics of n E0.2) via Vs the <A SOH eibe due i ne presence of e 0hes
transferred noiseA.(Vasa) - Vars + o(Vis), is no longer P P 9 P

white due to the filtering effect by Eq.(4). Furthermotg,, ' o0 andin-vitro [2], [5]. .
. . : : . . As V), is polarized to around the same minimum voltage
is nonlinearly transformed by the sigmoid function. Addln% . . .

. . L S fter each spike generation, the minimum voltage can be
white noise to the kinetics df; could thus result in different o . N

. . . s thought as the initial state from which the neuron is disghdr

responses from adding white noise to the kinetics\.of

With this '?‘Ote n mln_d, we ?Upe”mpolsed the noise S'gnallThe quantitative definition for suprathreshold stimulatits that the
V,, on the stimulating signal’s in the Pamina chip to obtain probability of generating spikes under suprathresholdusition is 0.5 [25]
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—=—Vn=600 mVpp| EL”)E ©
=100 +§"i‘3‘§g mveR | . . .
% e omven Fig. 5: The (aya; and (bYr of a LTS neuron in VLSI in
5 |

o
==

response to a hyperpolarizing stimulation which was diseds
by changingVs = 2.22V to Vg = 2.3V att = 0.2s.

=7 R, IR

OO

10 20 30 40 50 60 70 80 90
Spike number
(b)

Fig. 4: (a)The response of a stochastic RS neuron in VLSI to a 2.5
step-input stimulation rising fro’s = 1.3V to Vg = 2.4V at
t = 0.2s (b)The inverse of inter-spike-interval of a stochastic s 7
RS neuron in VLSI in response to the same depolarizing
stimulation lasting for 1600ms with various levels of noise

W)

\Y

1.5

S

025 0.3

0.1 02 03_ 0.4 05 0.6

Time (s)
by Vs to generate the next spike. Fig.3 superimposes 37 spikdg. 6: The responses of a LTS neuron in VLSI ¥ =
generated under the suprathreshold stimulation, aligtiieg 1.8V, superimposed on a hyperpolarizing stimulation which
initial states witht = 0. With a constan¥’g, the time required was dismissed abruptly by changing = 2.22V to Vs =
for discharging the membrane over the spiking thresholgtgar2.3V att = 0.2s.
from one spike to another. Such noise-induced variability h
been widely observed in biological neurons [17]. Althoulé t
variability could impede neurons from coding informatiom a This experiment demonstrates that the effect of noise can
spike timing precisely, it has been found useful for augitobe studied efficiently by VLSI simulation in real-time, and
neurons, for example, to encode distinct features effigienthe same should hold as a large network of neurons is of
[4]. Therefore, the results here demonstrate the feasilmfi concern. Although software tools such as NEURON can also
reproducing the stochastic behaviors of biologicallylistia complete the simulation in Fig.4a within negligible timbgt
neurons in VLSI by simply adding noise to the neurondime required would increase dramatically as the number of
membrane. neurons grows.

B. Regular-Spiking neurons C. Low-Threshold-Spiking neurons

The RS neuron has been the largest class of neurons in th&he major distinctive behavior of the LTS neuron is the
neocortex. The slow potassium curretf,{ is activated by generation of a burst of spikes at the “off-set” of a hyper-
the depolarization of neuronal membranes. Once activaied, polarizing current stimulus. This property has been shown
functions as an extra polarizing current, causing the spikirelated to the low-threshold calcium currerdt-). With the

frequency to adapt towards a minimum. Pamina chip programmed to simulate the LTS neuron, the
With Vg stepping from1.3V (inhibition) to 2.4V (above neuron generates post-inhibitory rebounds after the sele&
threshold) at t=0.2s and,, = 300mV,,, the measured a hyperpolarizing stimulation (at= 0.2s), as shown in Fig.5.

responses of the stochastic RS neuron in Bamina chip The correspondindr is shown to function as a depolarizing
are shown in Fig.4a. The frequency adaptation is cleartyirrent, inducing the spikes during its slow inactivation.
shown, and the noise distorts the spiking frequency duringAs V,, = 1.8V}, is superimposed on the same hyper-
adaptation. Let the inverse of the inter-spike-interv@l)l polarizing stimulation, the LTS neuron responds as shown
between consecutive spikes approximate the instantaneoud-ig.6. Before the hyperpolarization endetd & 0.2s),
spiking frequency. Fig.4b plots the spiking frequency o ththe neuron generates no spikes even if the noise amplitude
RS neuron during 1600ms of the above-threshold stimulatiptus the hyperpolarizing stimulation already exceeds ttirfi

(Vs = 2.4V). Without noise, the spiking frequency adaptthreshold (2.34V). This is because the noise has a maximum
from 137Hz to 25Hz gradually. The variability around 25Hamplitude with a very low likelihood and in a short period
is attributed to the clockfeedthroughs in the PCI systerof time. After ¢ > 0.2s, the post-inhibitory rebounds are
As the noise is increased, the adaptation process becomesked by the stimulation off-set, but the spiking frequenc
distorted. The initial firing frequency further reduces wheis distorted. The magnified window further reveals dynamics
V., is greater tharB00mV,,, owing to the serious thresholdanalogous to the afterdepolarization (ADP) and afterhyper
variations induced by the noise. On the contrary, the adiapta larization (AHP) observed in biological neurons. The ADR an
rate is nearly constant for differenf,. This is becausd,; AHP could play an important role in affecting the synaptic
with a larger, (200ms) is less affected by noise. plasticity in the hippocampus [23], and has been simulated
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(@)

13 0.1 0.2 0.4 05 0.6

0.3
Time (s)

(@)

VM ! Vstim V)

Fig. 7: The responses of a FS neuron to (a)a sinusoidal and
(b)a square inputs with an offset 8f34V and an amplitude ‘ ‘
of 30mV. The Vg, has been shifted by -0.7V. ' 01 02

04 05 06

03
Time (s)

(b)

1

Fig. 9: The responsed/{,) of a stochastic FS neuron with
Vi, = 800mV,, superimposed on (a)the sinusoidal and (b)the
square stimuliVs. The total inputVy;,, = Vs +V,, has been
shifted by -0.7V in the plots.

Count

SIS W

0.05 0.1 0.15 0.2
Time (s) . I
[26]. We here demonstrate the noise-enhanced sensitigity a
the responses of a stochastic FS neuron to two weak stimuli,
one with a sinusoidal waveform and the other with a square
waveform. Both stimuli have an amplitude of 30mV, an offset
of 2.34V, and a frequency of 5Hz. The offset level introduces
suprathreshold stimulation to the neuron. Without noike, t
| ‘ neuron only fires when the stimulating waveform exceeds
0.05 Tir?{el(s) 0.15 0.2 its firing threshold, as shown in Fig.7. The firing frequency
and the separation between consecutive groups of spikes are
(b) very similar for both stimuli. Let the timing of each spike

Fig. 8: The statistical firing probability of a deterministi be calculated as its phase with respect to the stimulating

FS neuron in response to (a)the sinusoidal and (b)the squéiRyeforms. By recording the response to each stimulus for 2s
waves. the statistical distributions of the spike timing for botimauli

are obtained and shown in Fig.8. The square waveform simply
results in a wider distribution than the sinusoidal wave/e@i

with a more complex HH model with noise added to gatinﬁze two spike trains are received by a post-synaptic neuron,
variables in [20]. The feasibility of simulating sophistied € Post-synaptic neuron could only detect the frequenty bu
stochastic behaviors such as ADP and AHP in real-time fipt the waveform of the stimuli.

VLSI is thus demonstrated. Nevertheless, adding noiseeo th By contrast, withV;, = 800mV,,, added to the input, the FS

gating variables would be much more effective, as discusseguron exhibits dramatically-different responses, asvshio
in Sec.llI-B. Fig.9. Although the sinusoidal or square waveform is masked

off by the large noise, the ISIs are modulated in accordance
with the waveforms. From a prolonged recording of 20s
for each stimulus, Fig.10 plots the statistical distribos

Except for the rich stochastic behaviors explored abowvef the spike timing for the two stimulating waveforms. The
noise has been shown useful for enhancing neurons’ satysitihistograms reconstruct the waveforms of the input stimuli,
to weak signals by the mechanism calktochastic resonance indicating that the modulated ISIs allow post-synapticroes

Count
RPN H 0O

D. Noise-enhanced signal modulation
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(2]

(3]

(4]
(5]

(6]

0.1 X .
Time (s) M
(b)
Fig. 10: The statistical firing probability of a stochasti§ F

neuron in response to (a)the sinusoidal and (b)the squalrg?
waves.

(8]

[10]

(11]
to perceive the waveforms from spike timing. The advantage
and the utility of noise-induced stochastic behavior inroes
o . . _ %1.2]
is first demonstrated in VLSI. Certainly, an optimum level o
noise exists for maximizing the sensitivity, and the optimu
level is different from one case to another. [13]

[14]

V. CONCLUSION
[15]
This study demonstrates the feasibility of simulating vasi

stochastic neurons in VLSI by simply injecting noise int@i6]
the membrane capacitor of a HH model in VLSI. Various
stochastic behaviors observed in biological neurons heea b 17
reproduced in VLSI realistically. The effect of noise on
different neurons has thus been studied efficiently. The&él
promising results point towards the development of analog
VLSI systems able to simulate stochastic neuronal networiks]
in real or accelerated time. The influence of noise on syoapti
connections and network behaviors will then be explored |py;
addition, hybrid silicon-neuron networks could be built to
ease the investigation on how individual parameters aﬁﬁgﬂ]
stochastic neural computation, as well as to verify the sug-
gestions drawn from computer-based simulations. The the
understanding on how neurons compute with noise relia
would further inspire novel neuromorphic computation. For
example, as the intrinsic noise of transistors will becoroe-n
negligible in the deep-submicron era, it will be interegtio [23]
explore the possibility of using the intrinsic VLSI noiser fo
computation like biological neurons do. [24]
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