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Reviewer 1 

Comments to the Author 

This paper reports the results obtained by simulating a biologically plausible hardware 

neuron with the injection of noisy stimuli. The paper is a major revision of a 

previously submitted paper: in this new version the authors have reduced - albeit not 

completely removed - the confusion between channel and synaptic noise. I still think 

that comparing the effects of channel and synaptic noise – as the authors do, for 

example, in Fig. 2 - is, at best, misleading for the reader. Moreover, the "explanation" 

provided with Eqs. (4) and (5) is not very satisfactory. 

RE: Thanks very much for the valuable feedback. To minimise confusion and to 

comply with the reviewer’s suggestion, we decide to remove Fig.2, avoiding the 

comparison on the effect of the two types of noise. In addition, Eq.(4) and Eq.(5) are 

kept to clarify the differences between the two types of noise. The changes made in 

the manuscript are 

 

Fig.2 is removed. 

The 2
nd

 para. of Sec.III.B is removed 

 

Notwithstanding this remark, I believe that the presented results can be of interest, 

especially for researchers in the field of the hardware implementation of neuronal 

(possibly hybrid) networks. Therefore, I think this paper is suitable for publications on 

the IEEE Transactions on Neural Networks. I also noticed some minor mistakes that 

should be corrected: 

1) After Eq. (1), the authors say that x and y model the fraction of activated (open) 

and inactivated (closed) channels respectively. In reality, x and y are both variables in 

the range [0,1] and they both represent the fraction of channels in the open state, be 

they an activation variable (x) or an inactivation variable (y). 

RE: Thanks very much for pointing out the imprecise description. The “(open)” and 

the “(close)” in the sentence have been removed to make it clear.  

 

In Sec. II, line 9 of the 1
st
 para., the sentence is modified as “…x is the gating variable 

modeling the fraction of ion channels that are activated, while y the gating variable 

modeling the fraction of ion channels that are inactivated.” 

 

 

 

2) In paragraph IV.B, the authors claim, referring to Fig. 5, that "software tools such 

as NEURON would require non-negligible time to complete the same simulations, 

and the required time would increase dramatically as the number of stochastic neurons 

grows". I do not agree on the first part of the sentence: the simulation of a single 

compartment neuron model for 1.5s that reproduces the behaviour shown in Fig. 5.a 

takes a negligible time on a modern machine. 

RE: Thanks very much for the valuable feedback. We agree with that the NEURON 

could also complete the single-neuron simulation within negligible time. Therefore, 
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the text has been modified as 

 

In Sec.IV.B , line 4 of the 2
nd

 para.  “…. Although software tools such as NEURON 

can also complete the simulation in Fig.4a within negligible time, the time required 

would increase dramatically as the number of neurons grows.” 

 

3) In paragraph IV.C, starting from the second line onward, the authors should replace 

"polarizing" with "hyperpolarizing" when referring to the stimulus required to evoke a 

post-inhibitory rebound in the model. The same applies to the caption of Fig. 6. 

RE: Thanks very much for the valuable feedback. "polarizing" has been replaced with 

"hyperpolarizing" in Sec.IV.C, and the captions of Fig.5 and Fig.6. 

 

4) It would be nice if the authors could present the same histograms as in Fig. 10 for 

the deterministic stimulus, i.e. for the traces shown in Fig. 8, to better motivate the 

sentence "the post-synaptic neuron could only detect the frequency but not the 

waveform of the stimuli". 

RE: Thanks very much for the valuable feedback. The histograms for deterministic 

stimuli have been added as Fig.8, with corresponding description in line 13 of the 1
st
 

para. in Sec.IV.D. “….Let the timing of each spike be calculated as…..” 

 

5) I think reference 16 appeared on Nature: I don't know what "Neurosilicon 

Interface" is. 

RE: Thanks very much for the valuable feedback. The reference list has been checked 

and revised thoroughly. 

 

6) There are various typos and language mistakes throughout the paper. 

RE: Thanks very much for the valuable feedback. The final manuscript has been 

thoroughly checked again to avoid typos and language mistakes. 

 

Editor’s comments 

1. Please add your author names under the paper title and affiliation information to the 

footnote on the lower left corner of the first page. See any IEEE Transactions papers 

for style. 

RE: The author names and the affiliation have been added in accordance with the 

IEEE format. 

2. Please see if you can do something about Figure 2 since when it is printed black 

and white, the lines are not distinguishable. Please solve this problem now. 

RE: To comply with the reviewer’s comment, we decide to remove Fig.2, avoiding 

the comparison on the effect of the two types of noise. 

3. Please reorganize your reference list so that all your references are listed 

alphabetically according to the first author’s last name. 

RE: The reference list is reorganized according to the first author’s name. 

4. I have attached a note prepared for IEEE style of references. Please take a careful 

look at the note and correct your reference list as needed. 
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RE: The reference list is thoroughly checked and refined to comply with the IEEE 

style. 

 

5. Please double check your manuscript after your revision so that all your references 

are cited correctly in your revised paper. 

RE: The reference list is compiled by the Bibtex with IEEEtranS.bst, and is doubled 

checked after the final manuscript is compiled. 

 

 

Page 4 of 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

IEEE TRANSACTIONS ON NEURAL NETWORKS 1

Real-time Simulation of Biologically-realistic
Stochastic Neurons in VLSI

Hsin Chen,Member, IEEE, Sylvain Saı̈ghi,Member, IEEE, Laure Buhry, and Sylvie Renaud,Member, IEEE

Abstract—Neuronal variability has been thought to play an
important role in the brain. As the variability mainly comes from
the uncertainty in biophysical mechanisms, stochastic neuron
models have been proposed for studying how neurons compute
with noise. However, most studies are limited to simulating
stochastic neurons in a digital computer. The speed and the
efficiency are thus limited especially when a large neuronal
network is of concern. This study explores the feasibility of
simulating the stochastic behavior of biological neurons in a
Very Large Scale Integrated (VLSI) system which implements
a programmable and configurable Hodgkin-Huxley model. By
simply injecting noise to the VLSI neuron, various stochastic
behaviors observed in biological neurons are reproduced realisti-
cally in VLSI. The noise-induced variability is further shown to
enhance the signal modulation of a neuron. These results point
towards the development of analog VLSI systems for exploring
the stochastic behaviors of biological neuronal networks in large
scale.

Index Terms—Stochastic behavior, Noise, Hodgkin-Huxley for-
malism, analog VLSI, stochastic neurons, neuromorphic VLSI

I. I NTRODUCTION

B IOLOGICAL neurons have been found noisy both in the
generation of spikes and in the transmission of synaptic

signals. The noise comes from the random openings of ion
channels, the quantal releases of neural transmitters, thecou-
pling of background neural activity, etc. [25] [19]. As the noise
affects neural computation directly, it has been of great inter-
ests to study how neurons compute with noise reliably [24].
Interestingly, many studies have indicated that noise plays a
beneficial role at least by (a) inducing neuronal variability
[7], (b) enhancing the sensitivity of neurons to environmental
stimuli [26], (c) inducing synchronization between neurons
[1], and (d) facilitating probabilistic inference according to the
Bayes’ rule in the brain [16]. The effect on synchrony could
further relate to neural disorders such as Parkinson’s disease
[11] and hearing loss [4]. Understanding the effect of noise
is thus crucial both for computational neuroscience and for
improving the treatments to these neural diseases.

One major approach of theoretical studies is adding white
noise to the biologically-plausible, deterministic Hodgkin-
Huxley (HH) model [12], either to the dynamics of gating
variables of different ion channels, or to the dynamics of
the membrane potential [9], [20]. As a result, the neuronal
dynamics are modeled by stochastic differential equations

H. Chen is with the Department of Electrical Engineering, National Tsing
Hua University, No.101, Sec.2, Kuang-Fu Rd., HsinChu, 30013, TAIWAN,
e-mail: hchen@ee.nthu.edu.tw .

S. Saı̈ghi, L. Buhry, and S. Renaud are with IMS Lab (CNRS UMR 5218),
University of Bordeaux, F-33400 Talence, FRANCE.

(SDEs). This leads to at least two challenges for computer-
based studies. First, the maximum number of neurons or
SDEs a computer simulation can consider is limited. Many
simplified models have thus been proposed [10], [13], How-
ever, the parameters of the these models no longer relate to
real biophysical properties directly, making it more difficult
to extract parameter values, or to understand how different
parameters affect neuronal behaviors. The second challenge
is that the suggestions drawn from theoretical studies are not
easy to verify with biological neurons, owing to the difficulty
in manipulating a specific property of biological neurons
independently.

Contrary to computer simulation, analog circuits are in-
herently suitable for simulating differential equations in real-
time and in parallel [3]. By the merit of the natural, differen-
tial current-voltage relationship of a capacitor, noise-induced
stochastic dynamics can be simulated by simply applying a
noise current to the capacitor and measuring its corresponding
voltage dynamics. The hardware simulation further facilitates
the building of a hybrid network incorporating both VLSI
and biological neurons, allowing the network behavior to be
studied efficiently by tuning the properties of VLSI neurons
[15]. Therefore, this study explores the feasibility of simulat-
ing different types of stochastic neurons in an analog VLSI
system called thePamina, which realizes the conductance-
based HH model and runs in biologically-realistic time [21].

II. T HE HODGKIN-HUXLEY MODEL IN VLSI

Fig.1a shows thePamina chip [21] containing two HH-type
neurons. LetCM represent the membrane capacitance, andVM

the membrane voltage. Each neuron implements the formalism
CM (dVM/dt) = −

∑
i Iion,i+

∑
j Isyn,j +Istim, whereIion,i

represents an ionic current,Isyn,j a synaptic current, andIstim

the stimulating input. The general form ofIion,i is given as

Iion,i = gi · x
p
· yq

· (VM − Ei) (1)

where gi and Ei are the maximum conductance and the
reversal potential of the ionic current, respectively.x is the
gating variable modeling the fraction of ion channels that are
activated, whiley the gating variable modeling the fraction of
ion channels that are inactivated. Letλ represent eitherx or
y. The dynamics ofλ are guided by

τλ ·
dλ

dt
= λ∞(VM ) − λ (2)

λ∞(VM ) =
1

1 + exp(−(VM − Voff,λ)/Vslope,λ)
(3)
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The minus sign in front of(VM − Voff,λ) is omitted for the
inactivation variabley. τλ is the time constant for approaching
λ∞(VM ). Althoughτλ is a function ofVM in the original HH
model, it is a constant value in thePamina chip to simplify
circuit design.Voff,λ and Vslope,λ control the offset and the
slope of the sigmoid function, respectively.

As shown by Fig.1b, eachPamina neuron contains five
ionic currents, eight synaptic inputs and one stimulating input.
The five ionic conductances include the sodium current (INa),
the potassium current (IK), the leakage current (Ileak), the
calcium current (ICa), and the calcium-dependent potassium
current (IK(Ca)). (p,q) for ICa allows users to select between
(2, 1) and(1, 0), and the functionm(VM , [Ca2+]) is realized
in accordance with [14]. For the synaptic current, the dynamics
of r(Vpre,j) also obey Eq.(2) and (3) withVM replaced by the
pre-synaptic potentialVpre,j [6]. As Isyn,j andIstim have the
same form asIion,i, all the conductances are implemented
with a library of the analog operators detailed in [21]. Finally,
Vstim andVpre,j are externally applied voltage.

The parameters of all the conductances are stored in the ana-
log parameter memory (Fig.1a), and the types of conductances
or synapses connected to each neuron are controlled by the
digital data stored in thetopology memory. By integrating the
Pamina chip with a Field-Programmable-Gate-Array (FPGA)
and data converters on a customized Peripheral-Component-
Interconnect (PCI) card, the neurons can be configured and
recorded easily through C programming in a computer. Com-
pared to other conductance-based neurons in VLSI [8], [22],
the Pamina chip has the advantages that all neuronal parame-
ters are dynamically-tunable over a wide range, together with
a flexible topology. These features make the chip particular
suitable for exploring the stochastic behaviors observed in
different biological neurons.

III. M APPING BIOLOGICAL MODELS INTOVLSI

A. Parameter extraction

The minimal HH model proposed in [18] is of our particular
interests, as different classes of cortical and thalamic neurons
have been modeled satisfactorily with a minimal number of
ionic conductances. In addition, the conductance models in
[18] are similar to those implemented in thePamina chip,
allowing most parameters to be adopted directly for VLSI
simulation according to the mappings described below.

All voltage levels in the VLSI neuron are designed to be
five times greater than their corresponding values in biological
neurons, i.e.VV LSI = 5 ∗ VBIO, while the time scale is
identical for both VLSI and biological neurons. LetCV LSI

andCBIO represent the membrane capacitances of VLSI and
biological neurons, respectively. The conductance mapping
is proportional to the capacitance ratio asgV LSI/gBIO =
CV LSI/CBIO. The current mapping then equals the product
of the voltage and conductance mappings, i.e.IV LSI/IBIO =
5 ∗ CV LSI/CBIO. In the Pamina chip, CV LSI = 5nF and
the biological neurons haveCBIO = CM ·Area with CM and
Area given in Table.I.

The only difference between the VLSI and biological neu-
rons is that the dynamics of gating variables in [18] are

(a)

Buffered

V
M


V
stim


Vpre8


C
M


Analog parameter

memories


Digital  topology

memories


Vpre1


V
M


V
s


Vn


INa = gNa · m3h · (VM − ENa)

IK = gK · n4 · (VM − EK)

Ileak = gleak · (VM − Eleak)

ICa = gCa · sp · uq · (VM − ECa)

IK(Ca) = gK(Ca) · m(VM , [Ca2+]) · (VM − EK(Ca))

Istim = gstim · (Vstim − Vref )

Isyn,j = gsyn,j · r(Vpre,j) · (VM − Esyn,j)

(b)

Fig. 1: (a)The microphotograph of thePamina chip fabricated
with the 0.35µm BiCMOS technology by the Austriamicrosys-
tems. The chip area is4170×3480µm2. (b)The block diagram
of a neuron.

modeled asdλ/dt = αλ(VM ) · (1 − λ) − βλ(VM ) · λ instead
of Eq.(2). The parametersτλ, Voff,λ, and Vslope,λ are thus
extracted by (a) calculatingαλ(VM ) and βλ(VM ) over the
rangeVM = [−100, 100]mV , (b) derivingλ∞(VM ) according
to λ∞ = αλ/(αλ + βλ), (c) setting theVM corresponding
to λ∞ = 0.5 as Voff,λ, (d) and then extractingVslope,λ

at a specificλ∞. In addition, τλ is simply calculated from
τλ(VM ) = [αλ(VM ) + βλ(VM )]−1 at VM = −70mV .

Three types of neurons, theFast-Spiking (FS) neurons, the
Regular-Spiking (RS) neurons, and theLow-Threshold-Spiking
(LTS) neurons were simulated in our experiments. Table.I
summarized the parameter values extracted from [18]. For the
RS neuron, the calcium conductance (ICa) was programmed
to realize the slow potassium current (IM ) with (p, q) = (1, 0).
For the LTS neuron,(p, q) = (2, 1) and τs = 0.65ms were
set to realize the low-threshold calcium current (IT ) in [18].
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TABLE I: The parameters of different neurons simulated in
VLSI

FSneuron RSneuron LTSneuron

CM (µF/cm2) 1 1 1

Area(cm2) 14 × 10−5 29 × 10−5 29 × 10−5

gstim(mS/cm2) 1.08 1.08 1.08

gNa(mS/cm2) 44 44 44

ENa(mV ) 50 50 50

τm(ms) 0.07 0.07 0.07

Voff,m(mV ) −34.42 −34.42 −34.42

Vslope,m(mV ) 6.47 6.47 6.47

τh(ms) 0.36 0.36 0.36

Voff,h(mV ) −39.07 −39.07 −39.07

Vslope,h(mV ) 3.932 3.932 3.932

gK(mS/cm2) 10 10 5 − 10

EK(mV ) −90 −90 −90

τn(ms) 1 1 1

Voff,n(mV ) −29.08 −29.08 −29.08

Vslope,n(mV ) 7.854 7.854 7.854

gleak(mS/cm2) 0.1 0.1 0.1

Eleak(mV ) −70 −70 −70

gCa(mS/cm2) − 0.35 2

ECa(mV ) − −90 120

τs(ms) − 200 0.65

Voff,s(mV ) − −35 −115

Vslope,s(mV ) − 10 6.2

τu(ms) − − 100

Voff,u(mV ) − − −120

Vslope,u(mV ) − − 16

B. Noise injection

While the stochastic behaviors of biological neurons were
reproduced with remarkable precision in [20] by adding white
noise (σ · W (t)) to the kinetics of gating variables, the
Pamina chip originally designed for simulating deterministic
HH models only allowed the noise to be added to the kinetics
of the membrane voltage as Eq.(4).

CM

dVM

dt
= −

∑

i

Iion,i +
∑

j

Isyn,j + Istim + σ ·W (t) (4)

Let VM = VMd + VMs, with VMd andVMs representing the
deterministic and the stochastic components, respectively. By
Taylor expansion,λ∞(VMd + VMs) can be expressed as

λ∞(VMd + VMs) = λ∞(VMd) + λ′

∞
(VMd) · VMs + o(VMs)

(5)
where o(VMs) represents high-order terms ofVMs. Eq.(5)
indicates that, although the white noise in Eq.(4) can be
transferred to the dynamics ofλ in Eq.(2) via VM , the
transferred noise,λ′

∞
(VMd) · VMs + o(VMs), is no longer

white due to the filtering effect by Eq.(4). Furthermore,VMs

is nonlinearly transformed by the sigmoid function. Adding
white noise to the kinetics ofVM could thus result in different
responses from adding white noise to the kinetics ofλ.

With this note in mind, we superimposed the noise signal
Vn on the stimulating signalVS in the Pamina chip to obtain

2.2
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2.6

V
M

 (
V

)

2.2

2.4

2.6
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 (
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)
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2.4

2.6
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V
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 (
V
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Vs=2.33 V

Vs=2.34 V

Vs=2.37 V

Fig. 2: The responses of a stochastic FS neuron in VLSI with
Vn = 800mVpp and (top)VS = 2.33V (middle)VS = 2.34V
(bottom)VS = 2.37V .
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2

2.2
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 (

V
)

Fig. 3: The superimpose of 37 spikes generated by a stochastic
FS neuron in VLSI withVS = 2.34V andVn = 800mVpp

Vstim = VS + Vn (Fig.1b).Vstim was then converted into the
currentIstim = gstim(Vstim − Vref ), wherein the stochastic
component ofIstim corresponded toσ · W (t) in Eq.(4). The
effect of the noise on different types of neurons was then
explored and discussed as follows.

IV. SIMULATING STOCHASTIC NEURONS INVLSI

A. Fast-Spiking neurons

The FS neuron is a major class of neurons in the cerebral
cortex, involving onlyINa, IK , andIleak. In the absence of
noise injection, the FS neuron simulated in thePamina chip
generates spikes only whenVS ≥ 2.34V . With Vn = 800mVpp

superimposed onVS , the measured responses of the FS neuron
to (a)subthreshold (VS = 2.33V ) (b)suprathreshold1 (VS =
2.34V ), and (c)above-threshold (VS = 2.37V ) stimulation
are shown in Fig.2. Under subthreshold stimulation, the noise
induced spontaneous firings. Suprathreshold stimulation then
leads to increased spiking frequency and reduced frequency
variation. As VS is well above the threshold, the spiking
frequency approaches constant while the spiking amplitude
remains slightly variable due to the presence of noise. These
phenomena have been reported in biological experiments both
in-vivo and in-vitro [2], [5].

As VM is polarized to around the same minimum voltage
after each spike generation, the minimum voltage can be
thought as the initial state from which the neuron is discharged

1The quantitative definition for suprathreshold stimulation is that the
probability of generating spikes under suprathreshold stimulation is 0.5 [25]
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Vn=600 mVpp
Vn=450 mVpp
Vn=300 mVpp
Vn=    0 mVpp

(a)

(b)

Fig. 4: (a)The response of a stochastic RS neuron in VLSI to a
step-input stimulation rising fromVS = 1.3V to VS = 2.4V at
t = 0.2s (b)The inverse of inter-spike-interval of a stochastic
RS neuron in VLSI in response to the same depolarizing
stimulation lasting for 1600ms with various levels of noise.

by VS to generate the next spike. Fig.3 superimposes 37 spikes
generated under the suprathreshold stimulation, aligningtheir
initial states witht = 0. With a constantVS , the time required
for discharging the membrane over the spiking threshold varies
from one spike to another. Such noise-induced variability has
been widely observed in biological neurons [17]. Although the
variability could impede neurons from coding information as
spike timing precisely, it has been found useful for auditory
neurons, for example, to encode distinct features efficiently
[4]. Therefore, the results here demonstrate the feasibility of
reproducing the stochastic behaviors of biologically-realistic
neurons in VLSI by simply adding noise to the neuronal
membrane.

B. Regular-Spiking neurons

The RS neuron has been the largest class of neurons in the
neocortex. The slow potassium current (IM ) is activated by
the depolarization of neuronal membranes. Once activated,IM

functions as an extra polarizing current, causing the spiking
frequency to adapt towards a minimum.

With VS stepping from1.3V (inhibition) to 2.4V (above
threshold) at t=0.2s andVn = 300mVpp, the measured
responses of the stochastic RS neuron in thePamina chip
are shown in Fig.4a. The frequency adaptation is clearly
shown, and the noise distorts the spiking frequency during
adaptation. Let the inverse of the inter-spike-interval (ISI)
between consecutive spikes approximate the instantaneous
spiking frequency. Fig.4b plots the spiking frequency of the
RS neuron during 1600ms of the above-threshold stimulation
(VS = 2.4V ). Without noise, the spiking frequency adapts
from 137Hz to 25Hz gradually. The variability around 25Hz
is attributed to the clockfeedthroughs in the PCI system.
As the noise is increased, the adaptation process becomes
distorted. The initial firing frequency further reduces when
Vn is greater than300mVpp, owing to the serious threshold
variations induced by the noise. On the contrary, the adaptation
rate is nearly constant for differentVn. This is becauseIM

with a largeτs (200ms) is less affected by noise.
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(b)

Fig. 5: The (a)VM and (b)IT of a LTS neuron in VLSI in
response to a hyperpolarizing stimulation which was dismissed
by changingVS = 2.22V to VS = 2.3V at t = 0.2s.

0.1 0.2 0.3 0.4 0.5 0.6

1.5

2

2.5

Time (s)

V
M

 (
V

)

0.25 0.3

2.2

2.3

2.4

AHP

ADP ADP

Fig. 6: The responses of a LTS neuron in VLSI toVn =
1.8Vpp superimposed on a hyperpolarizing stimulation which
was dismissed abruptly by changingVS = 2.22V to VS =
2.3V at t = 0.2s.

This experiment demonstrates that the effect of noise can
be studied efficiently by VLSI simulation in real-time, and
the same should hold as a large network of neurons is of
concern. Although software tools such as NEURON can also
complete the simulation in Fig.4a within negligible time, the
time required would increase dramatically as the number of
neurons grows.

C. Low-Threshold-Spiking neurons

The major distinctive behavior of the LTS neuron is the
generation of a burst of spikes at the “off-set” of a hyper-
polarizing current stimulus. This property has been shown
related to the low-threshold calcium current (IT ). With the
Pamina chip programmed to simulate the LTS neuron, the
neuron generates post-inhibitory rebounds after the release of
a hyperpolarizing stimulation (att = 0.2s), as shown in Fig.5.
The correspondingIT is shown to function as a depolarizing
current, inducing the spikes during its slow inactivation.

As Vn = 1.8Vpp is superimposed on the same hyper-
polarizing stimulation, the LTS neuron responds as shown
in Fig.6. Before the hyperpolarization ended (t < 0.2s),
the neuron generates no spikes even if the noise amplitude
plus the hyperpolarizing stimulation already exceeds the firing
threshold (2.34V). This is because the noise has a maximum
amplitude with a very low likelihood and in a short period
of time. After t > 0.2s, the post-inhibitory rebounds are
evoked by the stimulation off-set, but the spiking frequency
is distorted. The magnified window further reveals dynamics
analogous to the afterdepolarization (ADP) and afterhyperpo-
larization (AHP) observed in biological neurons. The ADP and
AHP could play an important role in affecting the synaptic
plasticity in the hippocampus [23], and has been simulated
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Fig. 7: The responses of a FS neuron to (a)a sinusoidal and
(b)a square inputs with an offset of2.34V and an amplitude
of 30mV . TheVstim has been shifted by -0.7V.
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Fig. 8: The statistical firing probability of a deterministic
FS neuron in response to (a)the sinusoidal and (b)the square
waves.

with a more complex HH model with noise added to gating
variables in [20]. The feasibility of simulating sophisticated
stochastic behaviors such as ADP and AHP in real-time in
VLSI is thus demonstrated. Nevertheless, adding noise to the
gating variables would be much more effective, as discussed
in Sec.III-B.

D. Noise-enhanced signal modulation

Except for the rich stochastic behaviors explored above,
noise has been shown useful for enhancing neurons’ sensitivity
to weak signals by the mechanism calledstochastic resonance
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Fig. 9: The responses (VM ) of a stochastic FS neuron with
Vn = 800mVpp superimposed on (a)the sinusoidal and (b)the
square stimuli,VS . The total inputVstim = VS +Vn has been
shifted by -0.7V in the plots.

[26]. We here demonstrate the noise-enhanced sensitivity as
the responses of a stochastic FS neuron to two weak stimuli,
one with a sinusoidal waveform and the other with a square
waveform. Both stimuli have an amplitude of 30mV, an offset
of 2.34V, and a frequency of 5Hz. The offset level introduces
suprathreshold stimulation to the neuron. Without noise, the
neuron only fires when the stimulating waveform exceeds
its firing threshold, as shown in Fig.7. The firing frequency
and the separation between consecutive groups of spikes are
very similar for both stimuli. Let the timing of each spike
be calculated as its phase with respect to the stimulating
waveforms. By recording the response to each stimulus for 2s,
the statistical distributions of the spike timing for both stimuli
are obtained and shown in Fig.8. The square waveform simply
results in a wider distribution than the sinusoidal wave. Given
the two spike trains are received by a post-synaptic neuron,
the post-synaptic neuron could only detect the frequency but
not the waveform of the stimuli.

By contrast, withVn = 800mVpp added to the input, the FS
neuron exhibits dramatically-different responses, as shown in
Fig.9. Although the sinusoidal or square waveform is masked
off by the large noise, the ISIs are modulated in accordance
with the waveforms. From a prolonged recording of 20s
for each stimulus, Fig.10 plots the statistical distributions
of the spike timing for the two stimulating waveforms. The
histograms reconstruct the waveforms of the input stimuli,
indicating that the modulated ISIs allow post-synaptic neurons
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Fig. 10: The statistical firing probability of a stochastic FS
neuron in response to (a)the sinusoidal and (b)the square
waves.

to perceive the waveforms from spike timing. The advantage
and the utility of noise-induced stochastic behavior in neurons
is first demonstrated in VLSI. Certainly, an optimum level of
noise exists for maximizing the sensitivity, and the optimum
level is different from one case to another.

V. CONCLUSION

This study demonstrates the feasibility of simulating various
stochastic neurons in VLSI by simply injecting noise into
the membrane capacitor of a HH model in VLSI. Various
stochastic behaviors observed in biological neurons have been
reproduced in VLSI realistically. The effect of noise on
different neurons has thus been studied efficiently. These
promising results point towards the development of analog
VLSI systems able to simulate stochastic neuronal networks
in real or accelerated time. The influence of noise on synaptic
connections and network behaviors will then be explored In
addition, hybrid silicon-neuron networks could be built to
ease the investigation on how individual parameters affect
stochastic neural computation, as well as to verify the sug-
gestions drawn from computer-based simulations. The the
understanding on how neurons compute with noise reliably
would further inspire novel neuromorphic computation. For
example, as the intrinsic noise of transistors will become non-
negligible in the deep-submicron era, it will be interesting to
explore the possibility of using the intrinsic VLSI noise for
computation like biological neurons do.
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