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Continuous-Valued Probabilistic Behavior
in a VLSI Generative Model

Hsin Chen, Member, IEEE, Patrice C. D. Fleury, and Alan F. Murray, Senior Member, IEEE

Abstract—This paper presents the VLSI implementation of
the continuous restricted Boltzmann machine (CRBM), a proba-
bilistic generative model that is able to model continuous-valued
data with a simple and hardware-amenable training algorithm.
The full CRBM system consists of stochastic neurons whose
continuous-valued probabilistic behavior is mediated by injected
noise. Integrating on-chip training circuits, the full CRBM system
provides a platform for exploring computation with contin-
uous-valued probabilistic behavior in VLSI. The VLSI CRBM’s
ability both to model and to regenerate continuous-valued data
distributions is examined and limitations on its performance are
highlighted and discussed.

Index Terms—Boltzmann machine, continuous-valued prob-
abilistic VLSI, noise, on-chip training, probabilistic generative
model, stochastic computation.

1. INTRODUCTION

S INTEREST in implantable instruments [1]-[4] and bio-
electrical systems [S]-[7] grows, exposing electronic cir-
cuits and sensors to noisy environments becomes unavoidable.
Although many signal-processing techniques are available for
dealing with noisy and drifting signals in a digital computer,
transmitting all measured raw data out of an implantable de-
vice is power-consuming. An optimized “intelligent” embedded
system would extract useful information from signals at sen-
sory or bioelectrical interfaces, to reduce noise and interfer-
ence and save power by transmitting only useful information.
In addition, although implantable instruments can be minia-
turised by reducing transistor sizes, intrinsic electronic noise
is expected to grow dramatically as transistor size shrinks to-
ward the deep-submicron scale [8]-[10]. In the longer term, the
ability to perform useful computation in the presence of noise
will be essential to an intelligent embedded system.
Probabilistic models use stochastic computation to represent
the natural variability of real data, and thus point toward a po-
tential approach to an intelligent embedded system. The proba-
bilistic input-output relationship embedded in each computing
node (neuron) of a probabilistic model further makes VLSI im-
plementation of probabilistic models attractive. Computing ele-
ments with probabilistic input-output relationship could amelio-
rate the effects of noise in VLSI, by effectively making use of the
noise as an essential element of computation. Signals derived
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from the real world are generally continuous-valued, so prob-
abilistic models that are able to model continuous-valued data
are of great interest. Bayesian rules [11]-[14] and Kernel Ma-
chines [15], [16] both of which rely upon probability, have been
demonstrated in VLSI. However, the VLSI implementation of
these models require precise calculations of conditional prob-
abilities or vector products. As precise calculations are vulner-
able to VLSI process variations and noise, a VLSI implementa-
tion with explicit probabilistic behavior would be preferable for
an intelligent embedded system. The probabilistic VLSI models
reported in [17]-[21] support this suggestion by exploiting the
stochastic-arithmetic algorithm [22]-[24], which encodes and
transmits continuous values as stochastic pulse streams, such
that reliable computation and long transmitting distance of con-
tinuous values are achieved. The stochastic-pulse scheme, how-
ever, is based upon a fully digital VLSI implementation, in order
to simplify circuit design and to increase immunity to noise
caused by distributed digital pulses. As fully digital implemen-
tation is power- and area-consuming, VLSI models based on the
stochastic-pulse scheme are unlikely to be best suited to an in-
telligent embedded system.

This paper presents the VLSI implementation of the contin-
uous restricted Boltzmann machine (CRBM), a probabilistic
generative model capable of modeling continuous-valued data
with a simple and hardware-amenable training algorithm [25],
[26]. The CRBM consists of continuous stochastic neurons
whose stochasticity arises from the addition of Gaussian noise
to neural input activities. Noise has been used to introduce un-
certainty in many applications [27], [28], and [29] has already
demonstrated isolated CRBM neurons in VLSI. The Boltzmann
machine in VLSI reported in [27] and [30] utilizes noise to
introduce the binary stochasticity required by the Boltzmann
Machine [31]. CRBM neurons in VLSI, however, preserve the
continuous-valued nature of noise at the outputs of neurons
to enhance computation. The “Contrastive-Divergence” [32]
training algorithm of the CRBM has also been demonstrated in
VLSI in [29]. This paper describes a complete (small) CRBM
system implemented in VLSI, with on-chip adaptability. The
continuous-valued nature of the CRBM means that even a
small CRBM system has the potential to model nontrivial data
distributions. The full CRBM system provides a platform for
exploring both the utility and on-chip adaptability of noise-in-
duced, continuous-valued probabilistic behavior in VLSI. As a
generative model, the training procedure for the CRBM aims
toward an ability to “regenerate” data with the same distribution
as that of its training data. Therefore, on-chip adaptability is
included, to test the CRBM system’s ability to adapt its param-
eters in real time. We explore the VLSI CRBM system’s ability
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Fig. 1. (a) CRBM with two visible and four hidden neurons. v, and hq are
bias units. (b) Projection of the weight vector of hidden neuron h1, w1 in the
visible-state space, where r(1) = o (w(1)). Activation of hl encourages the
CRBM to regenerate visible states around the region circled by the dotted line.

to regenerate several low-dimensional, continuous-valued data
distributions. The results of these experiments aim to demon-
strate the feasibility of computation with continuous-valued
probabilistic behavior in VLSI, and the potential of a CRBM
system as an intelligent embedded system.

II. THE CRBM

The CRBM consists of continuous stochastic neurons with re-
stricted inter neural connections, as shown in Fig. 1. Each circle
represents one neuron and each line a bidirectional and sym-
metric (wij = wji) connection between neurons. Let s; denote
the state of a neuron [either v; or h; in Fig. 1(a)], and w;; the
connection between neuron ¢ and neuron j. The stochastic be-
havior of a neuron ¢ is described by the following equations:

si=@i | > wijs;+0o-Ni(0,1) ()

J
with
1

wilw) =0+ O = 01) - TS

2)
where N, (0,1) represents a unit-valued, zero-mean Gaussian
noise, o is a noise-scaling constant, and ;( - ) a sigmoid func-
tion with asymptotes at f and 6. The presence of Gaussian
noise renders s; both probabilistic and continuous-valued.
Given inputs from other neurons, { sj}, a value of s; can be
“Gibbs sampled” from (1). Parameter a, controls the slope of
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the sigmoidal nonlinearity and, thus, the effective influence of
noise on the probability density of s; [25], [26]. a; is adapted
along with the CRBM’s weights. This introduces a represen-
tational flexibility that endows the CRBM with the ability to
model different forms of data variability in a single model [26].
Finally, the black circles in Fig. 1 represent bias units whose
outputs are permanently “on” (i.e., vg = hg = ).

Neurons in a CRBM model are divided into two layers, one
visible and one hidden, as shown in Fig. 1(a). Given the states of
neurons in one layer, the states of neurons in the other layer are
conditionally independent and can be sampled simultaneously.
As a generative model, the CRBM aims to “regenerate” training
data distributions in its visible neurons. Hidden neurons then
function as individual “experts” that cooperate to “explain” the
data modeled by the CRBM. For example, hidden neuron £ in
Fig. 1(a) is an expert characterized by its connections to all vis-
ible neurons, w(). Turning h; (h1 ~ g ) on causes the CRBM
to tend to regenerate visible states whose state vectors v = {v;}
align with w(1)| as illustrated by Fig. 1(b). Conversely, when a
visible state aligning with w(1[e.g., v 4 in Fig. 1(b)] is applied,
hq has a high probability of activation. This feature is especially
useful for tasks like pattern recognition, in which responses of
hidden neurons to a testing datum indicate the category of the
datum, as demonstrated in [26] and [33].

Training rules for the CRBM are derived by minimizing the
contrastive divergence (MCD) [32] between training data and
one-step Gibbs-sampled data [26], as illustrated in Fig. 2. Each
training datum d; is first presented to visible neurons as ini-
tial visible state, {v;} = d;. Hidden neurons are then “Gibbs
sampled” to obtain corresponding hidden state, h = {h;}. Re-
peating this process once more to sample visible and hidden
neurons then produces one-step Gibbs-sampled states v = {v;}
and h = {h;}. Let 1, and 7, denote the training rates for pa-
rameters {w;;} and {a;}, respectively. Parameters {w;;} and
{a;} can be updated according to [26]

A7y = nu((vih;) — (Gihy)) 3)
Ad; = % (63 - (57)) @)

where s; represents both v; for visible neurons and & ; for hidden
neurons, and (-) refers to the expectation over all training data.
Although the simplicity of the rules in (3) and (4) makes them
intrinsically hardware-amenable, they can be further simplified
as follows [29]:

Ay = nusign((vihj)a — (Gih;)4) )
Ad; = nasign ((s7), = (7)) ©)

where (-)4 denotes averaging over only four training data, and
the simplified rules take only the signs of contrastive diver-
gences to update parameters in the correct direction, with fixed
stepsizes of 7, and 7, . It has been shown in [29], [34] that this
increases training time, but has little or no effect on modeling
ability. The simulations in [29], for example, showed that the re-
quired training time increased from 4000 to 30 000 epochs when
the CRBM was trained to model a simple but nontrivial dataset
with (5) and (6). Section III will show that each training epoch
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Fig. 3. Continuous stochastic neuron in CMOS VLSIL.

requires 24 clock cycles. As the CRBM system is designed to
operate at a frequency of 100 kHz, 30 000 epochs correspond to
a computing time of merely 7.2 s. The slower convergence time
is thus a small price to pay for simpler circuits and an economic
chip size.

The performance of a trained CRBM model can be eval-
uated by generating an “approximate equilibrium reconstruc-
tion” through multistep Gibbs sampling [26]. In a multistep
Gibbs-sampling process, visible states are initialized to random
values. Hidden neurons and visible neurons are then sampled
alternatively, as in Fig. 2, for many times. Let the sampled vis-
ible states at N'th iteration be called N-step reconstructed visible
states. If N is large, the distribution of N-step reconstructed vis-
ible states approximate the equilibrium distribution of visible
states, and the similarity between the N-step reconstructed data
and the training data indicates how well the CRBM models the
training data.

III. A FuLL CRBM SYSTEM

A CRBM model with two visible and four hidden neurons
[Fig. 1(a)] has been fabricated on the AMS 0.6-um 2P3M
CMOS process. The following subsections describe the VLSI
implementation of the full CRBM system, including contin-
uous stochastic neurons, on-chip MCD training circuits, and
the architecture of the full system.

A. Continuous Stochastic Neurons in VLSI

Fig. 3 shows the circuit diagram of a continuous stochastic
neuron for the CRBM. The four-quadrant multipliers output a
total current proportional to igym = Y, WijS; [29], while the

RL Csi
1]

Vref

Ml

[
<
s}

differential pair, Mna and Mnb, transforms noise voltage V,,;
into a noise current 7, = gy (Vni — Viur). Viig controls the
transconductance g,,, through M7 and thus scales the noise cur-
rent (¢ in (1)). As a result, 4;,, represents the presigmoid input
(22, wijsj + o - Ni(0,1)) in (1). After conversion of i;, into
V., the sigmoid-function circuit basing on transistors(Mbp1-2)
in lateral-bipolar operation [35] produces an output current of
[29]

N

To =f%c1 —te2 = Ip - ¢ (—Zm : R(Vai)>

Vi

where ¢( -) denotes the sigmoid function ¢;(-) with g =
—01, = 1,and V; = kT'/q is the thermal voltage. Finally, the re-
sistor R, converts ¢, into a voltage v,, representing s; in (1), and
the switch is used to Gibbs sample a continuous-valued output
state V;.

Equation (7) implies that V,; controls the feedback resistance
of the I-V converter and thus adapts the slope of the sigmoidal
nonlinearity [a; in (1)]. The measured dc characteristics of the
sigmoid function, corresponding to various V,;, are shown in
Fig. 4(a). A mapping between V,; and the arithmetical value
for {a;} in simulation, as shown in Fig. 4(b), is also derived to
facilitate cross verification between a simulated CRBM model
and a CRBM system. The derivation method is described in the
Appendix.

Fig. 5(a) shows the measured output of a continuous-sto-
chastic neuron with inputs {s;} connected to a triangular wave
sweeping between 1.5t0 3.5V, {w;;} =4 V,and V,,; = 1.8
V. These values of {s;} and {w;;} correspond to {s;} = %1
and {w;;} = 1.5 numerically (Table I), forcing the neuron’s
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software simulation and hardware implementation.

TABLE 1
MAPPING OF PARAMETER VALUES BETWEEN SOFTWARE SIMULATION AND
HARDWARE IMPLEMENTATION

Matlab VLSI (V)  Mapping ratio
si [~1.0,1.0] [1.5,3.5] 1:1
Wy [—2.5,2.5] [0.0,5.0] 1:1
a; [0.5,9.0] [1.0,3.0] Fig.4(b)

output to sweep much of the range of the sigmoid curve, while
the noise injection clearly gives the curve a (continuous-valued)
probabilistic output that can be sampled. This neuron state Vj;
is sampled periodically by the clock signal in Fig. 5(a) and held
with negligible clockfeedthrough (i.e., when the switch in Fig. 3
is opened). This pleasing result demonstrates that the incorpora-
tion of noise is an effective and inexpensive way of introducing
continuous-valued probabilistic behavior to analog VLSI. The
near-linear mapping between Vi, and the value of o in (1) is
shown in Fig. 5(b), and the derivation of the mapping is de-
scribed in the Appendix.

B. Minimizing-Contrastive-Divergence (MCD) Training

The similarity between (5) and (6) indicates that parame-
ters {w;;} and {a;} can share the same MCD training circuit.
Fig. 6(a) and (b) shows the block diagram of the MCD training
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(a) Measured dc characteristics of a sigmoid-function circuit with variable nonlinearity. (b) Mapping for parameter {«; } between software simulation and
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(a) Measured output of a continuous stochastic neuron (upper trace) and the switching signal (lower trace) that samples V5;. (b) Mapping for o between

circuit, along with its digital control signals [29], [36]. To en-
sure normal operation of voltage-controlled resistors in Fig. 3
[37], the training circuit for {a;} differs from that for {w;;} in
the inclusion of a voltage-limiting circuit that constrains V,; to
the range [1, 3] (V).

In learning mode (LER/REF = 1), the first two clocks,
CKsi and CKsj, sample the initial states s; and s;, and the mul-
tiplier outputs a current It proportional to s; - s;. After CK+
samples and holds ™, CKsip and CKsjp sample the one-step
Gibbs-sampled states §; and §; to produce another current /.
CKq then triggers the accumulator to sample and hold the output
of the current subtrgctor Isup representing the contrastive diver-
gence (v;h;) — (0;h;) between the initial datum and its one-step
Gibbs sample. With the above sequence repeated for four cycles,
four I, are accumu/l\ated and averaged to derive Iy, repre-
senting (v;hj)s— (Bihj)s in (5) or (s?)4 — (5;°)4 in (6). Finally,
the sign circuit compares I,y to I or to determine the update
direction DIR, and the learning circuit, triggered by CKup, up-
dates the parameter once. In “refresh” mode (LER/REF = 0),
the signal REFR rather than DIR determines the update direc-
tion, causing the learning circuit to maintain the parameter at its
currently correct value.

The stepsize of each update is controlled by the voltage V.,
which sets the pulsewidth controlling the period of charging or
discharging C,, when CKup is high [29], [36]. V,,,.., therefore,
controls the training rates 7,, and 7, in (5) and (6). As shown
in [36], the pulsewidth can vary from 5 ns to many seconds,
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Fig. 7. Modules of the on-chip CRBM.

corresponding to several orders of magnitude for training rates
(stepsizes in each update).

C. System Architecture

Combining the CRBM neurons in VLSI with the MCD
training circuits, a full CRBM system with two visible and four
hidden neurons was implemented. Fig. 7 shows the modular
diagram of a full CRBM system. The black pins represent dig-
ital-control signals and the grey pins indicate noise inputs into
the neurons. The white pins represent both the analog signals
that connect the CRBM to its external, real-valued environment

dA
NAC
xvud g
it 4

and the reference voltages and currents for the system. The 20
capacitors store the 14{w;;} between neurons, and the {a;}
of the six neurons. All of them are adapted by the 20 learning
circuits simultaneously. The mapping for all parameters be-
tween software simulation and hardware implementation are
summarized in Table I.

The digital-control signals in Fig. 6(b) are applicable to the
full CRBM system. In learning mode (LER/REF 1),
simply set CKdata CKsi, CKV CKsip, and
CKH CKsj + CKsjp. The CRBM system will sample
an external training datum on clock CKdata, and will execute
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Fig. 8. Full CRBM system on silicon.

TABLE 1I
POWER CONSUMPTION AND AREA OF A FULL CRBM SYSTEM

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 3, MAY 2006

g4

-1 -1

(©) (d)

Power supply current Circuit Area
(mA) (um x pm) 1
Visible neuron 0.941 367x523
Hidden neuron 0.876 257x523
MCD training for {w;;} 0.109 1128x 145 0 | e 0
MCD training for {a;} 0.255 898x 145 /ﬁ $
Analogue buffer 0.624 327x87
Full CRBM system 19.644 31972928
*Power supply currents are measured at Vg = 5V. _—11 0 1 _—11 0 1
O] ®
one step of Gibbs sampling on clocks CKV and CKH. The Fig. 9. (a) Twenty training data points sampled from a single Gaussian

following clock sequence (CK+, q1—q4, and CKup) then drives
the learning circuits to update parameters once. In regenerating
mode (LER/REF = 0), simply sets CKV = CKsi + CKsip
and CKH = CKsj 4+ CKsjp. The CRBM will then execute
multiple steps of Gibbs sampling, while the parameters of
the CRBM are refreshed to reference values set by external
voltage comparators. Note that the digital-control circuits for
training a CRBM system, although not shown in Fig. 7, were
also implemented on the same chip. Fig. 8 shows the chip
layout of the full CRBM system described, with power con-
sumption and layout areas summarized in Table II. Although
the full system consumes a total current of 19.644 mA, most
current consumption is attributable to the analog buffers that
read out parameter values, as shown in Fig. 8. Excluding
the 20 analog buffers, the CRBM system alone draws only
7.164 mA.

IV. MODELING CONTINUOUS-VALUED DATA DISTRIBUTIONS

To probe a CRBM system’s ability to adapt its noise-induced
probabilistic behavior, a CRBM system was trained on a variety
of continuous-valued data distributions. Let +n, and —, de-
note the decreasing and increasing stepsizes, respectively, for

distribution. (b) Projections of the trained weight vectors of hidden neurons in
data space, where r(?) = ¢(w(?) and w(?) represents the weight vector of
hidden neuron 2. (c)—(f) Twenty-step reconstructions generated by a CRBM
model with parameters values learnt by a CRBM system after (c) 50; (d) 120;
(e) 550; (f) 1000 training epochs.

a parameter \. The training stepsizes for {w;;} and {a;} are
FNwij = —MNahi = FNavi = 18, =Nwij = +Nani = 3,
and —74,; = —45 mV. The noise scaling constants, V;,_, and
Viig_n, were set to be 4.05 V, corresponding to o = 0.2 in simu-
lation [Fig. 5(b)]. The following subsections present and discuss
the results of training a CRBM system on continuous-valued
data distributions.

A. Modeling a Single-Gaussian Distribution

A VLSI CRBM system was trained to model the
single-Gaussian distribution shown in Fig. 9(a) for 1000
epochs(steps). Fig. 10 shows the adaptation of on-chip param-
eter values during training, and Fig. 9(b) shows the projections
of all weight vectors learnt after 1000 epochs into the data
space. To visualise the distributions modeled by the CRBM
system, parameter values at training epochs 50, 120, 550,
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Fig. 10. Measured traces of {a;} and {w;; } when a CRBM system was trained with the data in Fig. 9(a) for 1000 epochs (a) w(®); (b) w(1) and w(2); (c) w(3)
and w(®) (d) {wo;}; (e) {@w: }; (f) {@n: }. The dotted lines highlight the parameter values used to generate the 20-step reconstructions in Fig. 9(c)—(f).

and 1000 were substituted into a CRBM model in Matlab to
generate the 20-step reconstructions shown in Fig. 9(c)—(f).

The reconstruction in Fig. 9(c) indicates that the CRBM
system modeled a single-Gaussian distribution roughly in the
first 50 epochs. However, as the system continued to shape the
variance in accordance with the training data, the center(mean)
of the distribution gradually drifted away from its initial po-
sition [Fig. 9(d) and (e)]. The CRBM system finally modeled
a single-Gaussian distribution at epoch 1000, as shown by
Fig. 9(f), whose center differs significantly from that of training
data.

The nonideal training result is caused by the saturation of sev-
eral parameter values, as revealed by Fig. 10. At epoch 120,
parameters was, ap3, and wos reach their limits. The weight
vector of hidden neuron hs, w(® = {wa3, w13}, thus, point
toward the upper-left corner of the data space [Fig. 9(b)]. As
large values of a3 and wgs further enhance the activation of
hs, the reconstruction drifts toward the left of the data space, as
shown in Fig. 9(d). After 550 epochs, weight vectors w(!) =
{w11, w1} and w® = {w14, w24} also reached their limits.
Both vectors point toward the bottom-left corner of the state
space [Fig. 9(b)], and thus encourage the reconstruction to drift
toward the bottom-left corner.

Giving a clearer insight into the training result, Fig. 9(b)
shows that w(2) models the location of the training cluster, but
w(@® and w® points at an opposite direction against w(2),
causing reconstruction to appear at the bottom-left region.
Nevertheless, Fig. 10(f) shows that the CRBM training process
has tended to enhance the impact of w(®? by increasing apa,
and reducing the impact of w(1) and w® by reducing as1 a4,
respectively. Note that high voltages of {a;} in a CRBM
system correspond to small values of {a;} in a CRBM model
[Fig. 4(b)].

B. Modeling Data With a Symmetric Distribution

A CRBM system was trained to model two clusters of
Gaussian-distributed data, as shown in Fig. 11(a), for 1000
epochs. The traces of parameter values recorded during training
are shown in Fig. 12, and Fig. 11(b) shows the projections of
all weight vectors learnt after 1000 epochs into the data space.
The 20-step reconstructions with parameter values learnt after
50, 200, 500, and 1000 epochs are shown in Fig. 11(c)—(f).

Fig. 11(c) shows that the CRBM system generates a crude
approximation to the training data shortly after the onset of
training. As {a.,; } reached their limits at epoch 200, the variance
of the reconstruction decreases to as small as a single cluster in

Authorized licensed use limited to: National Tsing Hua University. Downloaded on February 24, 2009 at 20:14 from IEEE Xplore. Restrictions apply.



762
1 1
[¢]
o]
Do
(o]
o
0 0
[¢]
o® @
[e]
o8
-1 -1
-1 0 1 -1 -0.5 0 0.5 1
(@) ()
1 1
3 " S ‘:»
.m‘ i
0 0
-1 -1
-1 0 1 -1 0 1
() (d
1 1
s S
0 0 :
# N
-1 -1
-1 0 1 -1 0 1
(e) ®
Fig. 11. (a) Twenty training data points sampled from two circular Gaussians.

(b) Projections of the trained weight vectors of hidden neurons in data space,
where r(?) = ¢(w(?). (c)~(f) Twenty-step reconstructions generated by a
CRBM model with parameters values learnt after (c) 50; (d) 200; (e) 500; (f)
1000 training epochs.

the training data [Fig. 11(d)]. Although parameter a3 reached
its limit again at epoch 200, parameters w3 and wqz did not ap-
proach their limits as rapidly as they did in the previous experi-
ment. This allowed the reconstruction in Fig. 11(d) to maintain
its center at about the same position as in Fig. 11(c). At epoch
500, the bias vectors w(®) = {w1q, w20} approached their limits
and pointed toward the bottom-right corner of the data space
[Fig. 11(b)]. The reconstruction in Fig. 11(e) therefore began to
develop data points between the center and bottom-right corner
of the data space. Finally, as w14 increased to a positive value
after 1000 epochs, the weight vector w(*) approximately aligns
with w(®), encouraging data points to be reconstructed at the
bottom-right corner, as shown in Fig. 11(f). This result indicates
that the CRBM system finally modeled a two-cluster distribu-
tion, while the saturation of several parameters prevented the
CRBM system from modeling the correct positions of the clus-
ters. It is particularly clear that the variance of the bottom-right
cluster is “squashed” by the asymptote of the sigmoid function.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 3, MAY 2006

Comparing the projection of weight vectors in Fig. 11(b) to
that in Fig. 9(b) reveals that w(?) and w(*) differ significantly in
the two experiments. When modeling the single-Gaussian distri-
bution, the CRBM system adapted w(?) and w(?¥ to discourage
reconstruction at the bottom-right corner, while w® and w®
were adapted to encourage reconstruction at the bottom-right
corner for modeling the two-cluster distribution. This evident
difference indicates that the CRBM system has adapted its lim-
ited number of parameters to minimizing the contrastive diver-
gence between training data and modeled distribution. In other
words, this demonstrates that continuous-valued probabilistic
behavior in VLSI can be adapted toward modeling continuous-
valued data distributions. Limitations, attributable to parameter
saturation and not present in CRBM simulations [26], are ap-
parent. These will be explored in Section V

V. NONIDEAL TRAINING IN A CRBM SYSTEM

A simplified training task was used to investigate the cause
of these nonideal training effects in the VLSI CRBM system.
Furthermore, the nonideal training effects will be modeled ana-
Iytically and tested by Matlab simulation.

A. The Cause of Nonideal Training

To investigate why parameters tend to approach their min-
imum or maximum limits, the training task was simplified to a
single training datum, (Vir, Var) = (3, 3) (V). The trace of woq
and the output of visible neuron V2 were then monitored during
a training process. Ideally, the updating direction for wsyq fol-
lows:

Awag o< sgn((v2)a — (02)4) ®)

where vy and 0, denote the initial and the one-step sampled
outputs of V2, respectively, [note that hy = 1 and is, thus, not
shown in (8)]. As the single training datum sets vo = Vor = 3
V continuously, (8) indicates that wsg should be incremented as
long as 72 < 3 V.

Fig. 13 shows the measured wsg, V2, and related digital con-
trol signals. CKdata and CKV activate alternately to sample
initial datum V2 to v, and then one-step sample ©,. Before
training, (LER/REF = 0), 0, is clearly smaller than vy. As
soon as LER/REF goes high, wsq increments for several steps
as predicted by (8), and the difference between vo and v de-
creases gradually. However, wy starts to decrement after 15 ms
and the difference between vo and 72 subsequently stops de-
creasing. This leads to the suspicion that the training circuit can
not determine a correct updating direction when the contrastive
divergence, v2 — U5 in this experiment, is smaller than a certain
threshold value (e.g., 200 mV).

To verify this suspicion, all training circuits were tested
individually to detect various levels of contrastive divergence,
Ap = ({s;-8;)a—(5; - §;)4). Similar to the experiment above,
the results reveal that, if Ap is smaller than a threshold value,
say Ar, each training circuit updates its parameter in a fixed
direction, either upwards or downwards. In addition, the fixed
direction and the threshold value vary between training circuits.
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Fig. 12. Measured traces of {a;} and {w,;} when a CRBM system was trained with the data in Fig. 11(a) for 1000 epochs (a) w(®); (b) w(!) and w(?) (c)
w3 and w(®) (d) {wo;}; (€) {avi}; (f) {@n: }. The dotted lines highlight the parameter values used to generate the 20-step reconstructions in Fig. 11(c)—(f).

The training circuits thus actually performs MCD training rules
as

AX = -sgn[({si - sj)a = (5i - 5j)a) + Ar]

= -sgn[Ap + Ar] )
where ) represents any parameter of a CRBM system, and
Ar denotes an “offset” existing in a training circuit. If
Ar > |Ap| > 0, (9) indicates that the training circuit
always increases A, regardless of Ap < 0. Conversely, if
A7 < —|Ap]| < 0, (9) indicates that the training circuit always
decreases A, regardless of Ap > 0. Let Arw, Aray, Arag
denote the measured offsets for {w;;}, the {a;} for visible
neurons, and the {a;} for hidden neurons, respectively. The
measured offsets are

x =026 —0.22 +0.02 —0.06
Apw = | 40.1  —04 +0.16 —0.52 —0.08 | (V)
—024 -04 —0.06 +0.08 —0.3

Arav = [+0.14  +0.18] (V)

Apap =[+0.14 0  —0.12 +0.16](V). (10)

Equation (10) indicates that the training circuit for wyg has an
offset of —240 mV. A contrastive divergence smaller than 200
mV is thus not large enough to overcome this offset for wqg
to increment, as shown in Fig. 13. Moreover, the measured
offsets in (10) agree with the measured traces of parameters in
Section IV. Parameters with training offsets smaller than 100
mV (wos3, Wo4, Wa2, Was, and apo) had more dramatic changes
during training, while others tended to increase or decrease
monotonically. This suggests that offsets in training circuits are
the primary nonideal effect that inhibits a CRBM system from
modeling data faithfully.

B. Simulating Nonideal Training in A CRBM System

To confirm the suggestion above, a CRBM system was sim-
ulated in Matlab and was trained on the single-Gaussian data in
Fig. 9(a), with the training rule in (9) and the offsets given in
(10). Fig. 14 shows the simulated traces of parameters during
1000 training epochs. Fig. 14 is strikingly similar to Fig. 10!
which represents the response of the VLSI CRBM, complete
with training offsets. This agreement supports the suggestion

Note that a higher value of {a;} in simulation corresponds to a lower voltage
of {a;} in hardware, as indicated by Fig. 4(b).
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Fig. 13. Measured w20 and V2 when only one training datum, (Vir, Var) = (3, 3) (V), is presented to visible neurons.
2 2t wi2 training offsets. To examine the maximum tolerable offset,
1 wio 1 w22 it is assumed that |Ar| for all parameters are equivalent,
whereas the signs of A7 remain in accord with (10). A CRBM
0 w20 0 , . .
w2l system’s performance on modeling the same single-cluster data
-1 - > [Fig. 9(a)], with various values of |Ar|, was then simulated.
w . .
-2 -2 Fig. 15 shows the 20-step reconstructions generated by a
0 200 400 600 800 1000 0 500 1000 trained CRBM model when |Ar| equals (a) 0.05; (b) 0.01. As
(epochs) (epochs)  these values of |Ar| are all smaller than the measured values
(a) (b) in (10), Fig. 15 shows that the CRBM modeled one cluster of
) data points corresponding with the training data. However, the
023 CRBM also generated extra data points when |Ar| equals 0.05
1 [Fig. 15(a)]. This undesirable effect finally disappears when
0 wi4 |Ar| equals 0.01 [Fig. 15(b)]. Therefore, the modeled CRBM
-1 3 w24 system can tolerate a maximum offset of only 0.01, even when
- v modeling a dataset as simple as a single cluster of data points.
0 200 400 600 800 1000 0 200 400 600 800 1000
(epochs) (epochs) C. Discussion
d
5 © 10 @ Fig. 6 suggests that the training offsets can be attributed to
allaavi 8 nonlinearity, mismatches, and clockfeedthrough errors in com-
w2 ponent circuits. Among these factors, mismatches and clock-
3 6 feedthrough errors in the accumulator section should be the
2 4 dominant ones. Although the accumulators cannot be tested in-
1 2 - dividually in our fabricated CRBM system, they are identical to
0 0 ahl aht those used in [36], which known to introduce offsets with an av-
0 200 400 600 800 1000 0 200 400 600 800 1000  erage value of 7%. For s; with a voltage range of 2 V (Table I),
(epochs) (epochs)  the offset is estimated to be 140 mV. This estimate is consistent
(e) ® with the measured values in (10), supporting the suggestion that

Fig. 14. Simulated traces of {a; } and { w;; } when a CRBM model was trained
with the data in Fig. 9(a) for 1000 epochs: (a) w(®); (b) w") and w(*) (c) w(®);
and w® (d) {wo,}; (e) {ayi}; () {an:}.

that the CRBM system’s inability to model training data faith-
fully can be attributed to training offsets. Furthermore, the ex-
periment demonstrates that a good mapping (i.e., Table I) be-
tween software simulation and hardware implementation of a
CRBM system has been established.

The near-perfect mapping between software and hardware
facilitates the simulation of a CRBM system’s tolerance to

the training offsets primarily arise in the accumulator section.
Nonideal hardware effects on a CRBM system were not ana-
lyzed before fabrication because a CRBM system should be able
to use probabilistic behavior to enhance its robustness against
noise or computational errors. This idea can be illustrated by
noting that {s;} in (9) are inherently noisy, as indicated by (1).
As long as the variance of noise is greater than the offset, the
noise inherited in {s;} can shield the effects of the offset. How-
ever, experiment results indicated that nonzero offsets domi-
nate instead, preventing training circuits from minimizing con-
trastive divergence when |Ap| < |Ar|. In other words, the
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Fig. 16. (a) Twenty-step reconstruction generated by a CRBM model after being trained on the data in Fig. 9(a) for 3000 epochs. (b) Twenty-step reconstruction

generated by a CRBM system with parameters refreshed to the levels in (11).

minimum divergence achievable for a CRBM system is equiva-
lent to the offsets | Ar|. Therefore, training circuits with reduced
offsets will be essential if a CRBM system is to be trained opti-
mally.

An improved training circuit with an offset smaller than 1% is
quite a challenge, but not infeasible. One potential approach is
redesigning accumulators and subtractors with the dynamic cur-
rent mirrors proposed in [38], [39]. The dynamic current mirror
avoids device mismatches by using the same transistor both to
sample and to output a current. With clockfeedthroughs well
compensated, the error of a dynamic current mirror can be as
small as 500 ppm [39], 20 times smaller than the tolerable offset
in a CRBM system. As dynamic current mirrors have an archi-
tecture similar to conventional current mirrors, training circuits
based on dynamic current mirrors are expected to achieve satis-
factory precision without consuming extra power and area. Fi-
nally, the saturation of parameters observed in Section I'V should
not be attributed to the limited voltage ranges set for parameters,
as will be seen in the experiments in next section.

VI. REGENERATING CONTINUOUS-VALUED DATA
DISTRIBUTIONS

Although nonnegligible training offsets prevent optimum
modeling with the reported circuits for on-chip training, simu-
lation of the VLSI CRBM system allows us to explore optimal

training of a CRBM system in Matlab, and then to “download”
the parameter values resulting from that training process on
to a VLSI CRBM system for regenerating modeled distribu-
tions. This allows us to side-step the offsets introduced by the
current training circuits and anticipate the performance of a
VLSI CRBM with improved accumulators. Such experiments
allow the exploration of noise-induced, continuous-valued
probabilistic behavior in a VLSI CRBM system. The results
are presented and discussed in the following section.

A. Regenerating a Single Cluster of Data Points

Taking into account all hardware simplifications and limi-
tations, while removing training offsets, a CRBM model was
trained on the single-Gaussian data in Fig. 9(a) for 3000 epochs.
The trained CRBM model generated the 20-step reconstruction
shown in Fig. 16(a). According to Table I and Fig. 4(b), the pa-
rameter values learned by the CRBM model are translated into
parameter voltages for a CRBM system as follows:

X 3.452 2.612 3.064 0.961

{w;;} = | 2916 2569 2.738 2.849 2.219 | (V)
2484 3.033 2313 2441 1.959

{ayi} = [1.737 1.520](V)

{ani} =[2.275 1.326 1.456 1.241](V). (11)
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(a) Twenty-step reconstruction generated by a CRBM model after being trained on the data in Fig. 11(a) for 30 000 epochs. (b) Twenty-step reconstruction
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Two distinct measured activities of visible neurons during 20 steps of Gibbs sampling in a CRBM system. (a) Trace composed of sampled visible

states moving from initial state, V(0) = (2.5,2.5) (V), toward the upper-left cluster. (b) Trace composed of sampled visible states moving from initial state,

V(0) = (2.5,2.5) (V), toward the bottom-right cluster.

With {w;;} and {a;} refreshed to the voltage levels in (11),
a CRBM system generated the 20-step reconstruction shown
in Fig. 16(b). The match between Fig. 16(a) and (b) demon-
strates that the CRBM system is able to reconstruct data in
single-Gaussian distribution, by the use of its noise-induced,
continuous-valued probabilistic behavior. It is notable that all
parameter voltages in (11) lie comfortably in the range speci-
fied in Table I. The saturation of parameter values therefore must
not be attributed to limited voltage ranges available for parame-
ters. The CRBM system could have modeled training data faith-
fully using its on-chip training circuits, if training offsets were
negligible.

B. Regenerating Data With a Symmetric Distribution

To demonstrate the probabilistic behavior of a CRBM system
more clearly, a CRBM system was set to regenerate the two-
cluster data in Fig. 11(a), with parameter voltages learnt by a
CRBM model. Fig. 17(a) and (b) shows the 20-step reconstruc-
tions generated by the trained CRBM model and by a CRBM

system, respectively. The corresponding parameter voltages are

X 3.203 2.598 2.400 1.319
{w;;} = [2.862 2.280 2.180 4.061 2.589
2.616 2.365 2.471 1.811 2.565

{av;} = [2.458 1.651](V)
{ani} =[1.503 2516 1.286 1.551](V).

(V)

(12)

Once again that the CRBM system is able to model two-
cluster data with some accuracy, if training offsets are removed.
Furthermore, the voltage ranges in (12) indicate that parameters
have not saturated artificially owing to the constraints of hard-
ware.

Moreover, this experiment facilitates the exploration of
the “continuous-valued, probabilistic dynamics” of a CRBM
system. Fig. 18 shows two distinct and different measured
activities of the visible neurons in a CRBM system during
20-step Gibbs sampling. In each measurement, visible neurons
were initialized to V(0) = (2.5,2.5) (V), and then sampled
for 20 steps. Each measurement thus contains 20 consecutively
sampled visible states. The states of the visible neurons reflect
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(a) Training data sampled from one elliptic and one circular Gaussian. (b) Twenty-step reconstruction generated by a CRBM model after being trained

on the data in (a) for 30 000 epochs. (c) Twenty-step reconstruction generated by a CRBM system with parameters refreshed to the levels in (13). (d) Twenty-step
reconstruction generated by a CRBM system after a1, ¢p1, and wqo are adjusted to 2.1, 2.274, and 2.45 V, respectively.

the changes during the 20 steps of sampling and Fig. 18 plots
two such distinct traces of sampled visible states. It is clear
that, although the visible neurons have the same initial states,
the iteratively sampled visible states move either toward the
top-left cluster or toward the bottom-right cluster in a series
of steps. The visible states reach one of the clusters within the
first few steps, and subsequently “move around” the region
corresponding to this cluster. The mechanism behind formation
of the two-cluster reconstruction in the generative model that is
the CRBM [see Fig. 17(b)] thus, becomes clear. Furthermore,
the “continuous-valued probabilistic dynamics” of a CRBM
system are demonstrated clearly. The noise injected into the
CRBM neurons prevents visible states from stabilising in a
particular state, while the parameters of the CRBM system
encode the regions with higher probabilities, corresponding
to two attractors in this experiment, which encourage visible
states to move toward and then around these regions.

C. Regenerating Data With a Nonsymmetric Distribution

A CRBM system was further tested to regenerate a more
complicated distribution, as shown in Fig. 19(a), comprising
data points sampled from one elliptic Gaussian and one circular
Gaussian. This training dataset has been used to demonstrate the
ability of the CRBM to model nonsymmetric data distributions
[26], as well as to simulate a CRBM system’s modeling ability
under hardware simplifications and limitations [29]. A VLSI
CRBM model was trained on this dataset for 30 000 epochs with

Nw = Nar = 0.003 and 74, = 0.03. The CRBM model gener-
ated the 20-step reconstruction as shown in Fig. 19(b), and the
learnt parameter values correspond to parameter voltages of

X 2.662 2.702 1.927 2.425

{wi;} = [ 2.571 4.544 1.661 2.446 2.748 | (V)
2.186 3.732 3.875 2.451 2.593

{ayi} =[2.011 2.151](V)

{an:} =[1.8287 1.2083 2.0883 2.4835](V). (13)

With {w;;} and {a;} refreshed to the level in (13), a CRBM
system generated the 20-step reconstruction as shown in
Fig. 19(c). The cluster at the bottom-right corner in Fig. 19(c)
corresponds to the circular cluster in training data. However,
the reconstruction in Fig. 19(c) models the elliptic cluster in
the training data rather roughly as two separate clusters. As
separation of clusters are largely mediated by large values of
{a;} [26], a better reconstruction of the training data, shown
in Fig. 19(d), was obtained by adjusting a,; to 2.1 V, a1 to
2.274 V, and wip to 2.45 V. This implies that reconstructing a
complicated distribution requires some “tuning” of parameter
values. This requirement is, however, able to be removed when
the CRBM system is trained on-chip, without offsets, to achieve
a minimum-divergence solution. On-chip training circuits, with
substantially reduced offsets, are therefore necessary for a
CRBM system.
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(a) Training data with a doughnut-shaped distribution. (b) Twenty-step reconstruction generated by a CRBM model after being trained on the data in (a)

for 20000 epochs. (c) Twenty-step reconstruction generated by a CRBM system with the parameter values learnt by the CRBM model (¢,1 and ¢,» were adjusted
to 1.41 and 1.1 V, respectively). (d) Trace of sampled visible states when the CRBM system was Gibbs sampled for 50 steps.

D. Regenerating Data With a Doughnut-Shaped Distribution

To highlight the distinctive continuous-valued probabilistic
behavior a CRBM system possesses, a CRBM system was
used to regenerate data with a doughnut-shaped distribution,
as shown in Fig. 20(a). To model this training dataset well, the
CRBM must be able to capture correlations between probabili-
ties in the two dimensions.

A CRBM model was trained on the data for 20 000 epochs
with 1, = 0.000 75,14, = Nan = 0.0075. The trained CRBM
model generated the 20-step reconstruction shown in Fig. 20(b).
The reconstruction forms a circular band with larger variance
than the training data and a slightly “uneven” distribution of
reconstructed data. The CRBM’s four hidden neurons provide
only a limited number of parameters to represent the circular
band perfectly. The corresponding parameter voltages learnt by
the CRBM model are

X 2,503 2.548 2.451 2.498

{wi;} = | 2497 2964 2.514 2526 2.025| (V)
2.498 2.973 2.503 2434 2.975

{ap} =[1.287 1.294](V)

{ani} =[1.154 1.835 1.898 1.173](V). (14)

By downloading the learnt parameters into a CRBM system with
slight adjustments on a,; and a1, the CRBM system regen-
erated the 20-step reconstruction shown in Fig. 20(c). The re-
construction not only retains a slight uneven distribution sim-
ilar to that in Fig. 20(b), but also represents the circular band
roughly. The roughness is due to the fact that the multipliers in

neurons do not calculate ) w;;s; as linearly as in simulation.
Multi-step sampling amplifies the nonlinearity, and thus results
in a distorted circular shape. This reinforces, once again, the
need for on-chip training circuits to model a complex distribu-
tion optimally, adapting with the multipliers’ nonlinearity (for
example) in place. Nevertheless, this experiment demonstrates
that the CRBM system is able to model a complex distribution
with only four hidden neurons, a capability that is a result of the
continuous-valued probabilistic behavior for which the CRBM
system was developed.

To further illustrate the richly probabilistic, contin-
uous-valued behavior of a CRBM system, Fig. 20(d) shows
the trace of sampled visible states during 50 steps of Gibbs
sampling. The visible state was initialized to V(0), a point at
the bottom-right corner of the data space. The visible state then
moved into the circular band of the doughnut-shaped distribu-
tion in the first few steps, as shown by Fig. 20(d), and visited
different states in the right half of the circular band with nearly
equal probability. This result demonstrates the “dynamics” of
a CRBM system as a more sophisticated, stochastic moving of
its visible states. The high-probability regions defined by the
CRBM system form a circular low-energy valley. Fig. 20(d)
shows that the visible state travels along the right half of the
valley, but is “bounced” back at the top and bottom ends. This
indicates that the CRBM system creates small energy barriers
in these places. If the visible state does not get enough “noise”
(energy) it cannot pass the barriers to visit the left half of the
circular band. The slight uneven distribution in Fig. 20(c) thus
becomes clear.
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VII. CONCLUSION

This paper set out to explore the both abilities and limitations
of a mixed-mode implementation of a probabilistic architecture
(the CRBM) developed previously by the authors [25], [26]. The
CRBM was developed to use continuous-valued stochastic com-
putation to model real-valued data and complex distributions
where a binary representation is inappropriate. A mixed-mode
VLSI CRBM system with two visible and four hidden neurons
has been fabricated and tested. The training experiments indi-
cate that continuous-valued probabilistic behavior in VLSI can
be achieved and trained, based on the algorithm of the CRBM,
toward modeling a range of continuous-valued data distribu-
tions. This is all clear from the significantly different results be-
tween training experiments, even though nonideal training off-
sets in current circuitry prevent the CRBM system from mod-
eling data optimally.

Moreover, the utility of continuous-valued probabilistic be-
havior in VLSI has been demonstrated as a CRBM system’s
ability to regenerate a variety of simple and more complex con-
tinuous-valued data distributions, with as few as four hidden
neurons. The measurements of the probabilistic dynamics of
visible neurons further highlights the distinctive and rich prob-
abilistic behavior a CRBM system possesses. These promising
results indicate that computation with continuous-valued prob-
abilistic behavior in VLSI is feasible, and that a CRBM system
is potential for an intelligent embedded system, provided im-
proved training circuits can be achieved.

For high-dimensional data and real applications, it is im-
portant that a CRBM system is developed to be scalable and
programmable. The nonideal training results observed in this
paper further indicate that probabilistic behavior appears not
to always guarantee the robustness of a CRBM system, as was
initially assumed. It is thus essential to analyze the robustness
of a large-scale CRBM system quantitatively, and this will
lead to the interesting examination on the suggestion that VLSI
systems with probabilistic behavior are robust against compu-
tational errors and noise. While Gaussian noise has been used
in this paper, it will be also interesting to explore the CRBM
system’s performance in the presence of other types of noise.
Furthermore, as continuous-valued, probabilistic dynamics
have been proved to be implementable in VLSI, the similarity
between the CRBM and the diffusion network [40], [26] further
encourages the exploitation of continuous-valued, probabilistic
“dynamics” in VLSL

APPENDIX
DERIVATION OF THE MAPPING FOR PARAMETERS IN A CRBM
SYSTEM

A. Noise-Control Parameter {a;}

The mapping for parameter {a; } of the CRBM system, shown
in Fig. 4(b) is derived by the following steps.

1) Select V,; = 1.8 V to correspond to a; = 1 in simula-
tion.

2) Choose a reference current input /... Let V,. denote the
output voltage of the sigmoid-function circuit when
Iin = IT and VM‘ =18V
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3) With the same input current /,. but various levels of V;,
measure the output voltages of the sigmoid-function
circuits V, (V).

4)  The mapping between V,; and a; is then derived ac-
cording to

¢~ (Vo(Vai))

¢~ (V2)
where ¢~1(-) is the inverse of the sigmoid function
¢(-) with g = —6r = 1. The result in Fig. 4(b)
is an average over measurements from three fabricated
chips.

a;i(Vai) = (15)

B. Noise-Scaling Parameter o

With constant V,,; but various levels of V, in Fig. 3, the
peak-to-peak values of a neuron’s output were measured when
all {s;} = 2.5V (i.e., no deterministic input). Let A,,(V;)
denote a measured peak-to-peak value for a particular V. As
99.7% of samples from a Gaussian distribution lie in three stan-
dard deviations, the corresponding value of ¢ is estimated ac-
cording to

¢~ (An(Vo)/2)

3 (16)

U(V0> =

where ¢~1(-) is the inverse of the sigmoid function ¢( - ). The
derived mapping between V,; and o is shown in Fig. 5(b).
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