
3090 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

CS2DIPs: Unsupervised HSI Super-Resolution
Using Coupled Spatial and Spectral DIPs
Yuan Fang , Yipeng Liu , Senior Member, IEEE, Chong-Yung Chi , Life Fellow, IEEE,

Zhen Long , Student Member, IEEE, and Ce Zhu , Fellow, IEEE

Abstract— In recent years, fusing high spatial resolution
multispectral images (HR-MSIs) and low spatial resolution
hyperspectral images (LR-HSIs) has become a widely used
approach for hyperspectral image super-resolution (HSI-SR).
Various unsupervised HSI-SR methods based on deep image
prior (DIP) have gained wide popularity thanks to no pre-training
requirement. However, DIP-based methods often demonstrate
mediocre performance in extracting latent information from
the data. To resolve this performance deficiency, we propose
a coupled spatial and spectral deep image priors (CS2DIPs)
method for the fusion of an HR-MSI and an LR-HSI into an
HR-HSI. Specifically, we integrate the nonnegative matrix-vector
tensor factorization (NMVTF) into the DIP framework to jointly
learn the abundance tensor and spectral feature matrix. The
two coupled DIPs are designed to capture essential spatial and
spectral features in parallel from the observed HR-MSI and LR-
HSI, respectively, which are then used to guide the generation
of the abundance tensor and spectral signature matrix for the
fusion of the HSI-SR by mode-3 tensor product, meanwhile
taking some inherent physical constraints into account. Free from
any training data, the proposed CS2DIPs can effectively capture
rich spatial and spectral information. As a result, it exhibits
much superior performance and convergence speed over most
existing DIP-based methods. Extensive experiments are provided
to demonstrate its state-of-the-art overall performance including
comparison with benchmark peer methods.

Index Terms— Hyperspectral image, multispectral image, deep
image prior, super-resolution, nonnegative matrix-vector tensor
factorization.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) capture scenes across
continuous wavelengths of the electromagnetic spec-

trum [1], [2]. They contain hundreds of spectral bands with
rich spectral information, and have been widely applied in
remote sensing for target recognition [3], [4], geological
surveying [5], [6], plant disease detection [7], [8], etc.
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Due to limited solar irradiance, there is a trade-off between
the spatial and spectral resolution of HSI [9]. To maximize
spectral resolution, the spatial resolution is often relatively
low. Due to hardware limitations, it is difficult and costly
to enhance the spatial resolution of hyperspectral imaging
systems. In contrast, normally multispectral image (MSI) has
a much higher spatial resolution than that of HSI [10]. The
fusion of HSI and MSI has emerged as an effective HSI-SR
approach [11]. Existing HSI-SR methods basically fall into
two categories, i.e. model-based methods, and deep learning-
based methods.

Most model-based HSI-SR methods are based on the lin-
ear observation model linking the observed image and the
original spectral scene. These include total variation (TV)-
based methods [12], [13], [14], sparsity-based methods [15],
[16], [17], [18], and low rank-based methods [19], [20],
[21], [22], [23], [24]. Among all low rank-based methods,
matrix decomposition-based methods unfold the HR-HSI into
matrices [22], [23], [24], which may not be very effective
due to lacking the precise spatial-spectral information of
the underlying materials. In contrast, tensor decomposition
directly processes the HSIs in their original forms [19], [20],
[21], which effectively preserves both spectral and spatial
correlation. While it has a theoretically grounded explanation,
the performance of model-based methods is often limited
to reliable priors that can be handled mathematically in
optimization.

With the rapid development of deep learning, the corre-
sponding methods have been gradually applied to HSI-SR.
Convolutional neural networks have demonstrated powerful
performance in HSI-SR [25], [26], [27], [28], [29], [30],
owing to their excellent learning capabilities. Meanwhile,
a method called deep unrolling has received more and more
attention thanks to its integration of the interpretability of
model-based methods and the powerful mapping capability
of deep learning-based methods [29], [30]. However, deep
learning-based methods often suffer from poor generalization
and require a large number of training data. To deal with
such problems, unsupervised self-encoder approaches have
been proposed for HSI-SR by fusing HR-MSI and LR-HSI
observations without requiring training [31], [32], [33], [34],
[35]. However, unsupervised self-encoders need careful net-
work design and optimization.

Recently, an unsupervised image restoration method called
deep image prior (DIP) utilizes untrained CNN structures to
fit contaminated data from scratch to image data restoration
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[36], [37], [38], [39], [40], [41]. DIP’s effectiveness stems
from spectral shift [42], [43]. It first learns low-frequency
data like real images, followed by high-frequency data like
noise. However, DIP-based methods often may not effectively
utilize the spatial-spectral structure of HSI, so resulting in slow
convergence and mediocre performance. The performance
enhancement of DIP-based methods for HSI remains an open
challenge.

In this paper, we propose a novel coupled spatial and
spectral deep image priors (CS2DIPs) method for HSI-SR.
Specifically, we integrate the nonnegative matrix-vector tensor
factorization (NMVTF) [44], [45] into the DIP framework
to jointly train the abundance tensor and spectral signature
matrix. Then we propose a new DIP-based network that guides
the learning of these two with the given observations of
HR-MSI and LR-HSI as the inputs to the network. Finally,
non-negativity and sum-to-one constraints are applied to the
learned abundance tensor and spectral signature matrix for
physical realism.

The main contributions are summarized as follows:
1) The proposed novel CS2DIPs framework uses NMVTF

to transform the learning of HSI-SR into the learning of
abundance tensor (a DIP guided by HR-MSI) and spec-
tral feature matrix (a DIP guided by LR-HSI), thereby
effectively and efficiently extracting various HSI spatial
and spectral attributes with super-resolution, followed
by their fusion for the recovery of the desired HSI-SR,
and meanwhile significantly improving performance and
convergence speed of DIP.

2) As for the learning process of CS2DIPs (cf. Fig. 2),
specifically, the observed HR-MSI and LR-HSI are fed
into two separate U-Nets with skip connections. Their
deep and surface features then jointly guide the learning
of the upsampling-based abundance tensor and spectral
signature matrix, meanwhile integrating their inherent
constraints (i.e., non-negativity on both and sum-to-one
on the abundance tensor).

3) Extensive experiments on both simulated data and real
data are provided to demonstrate the efficacy of the pro-
posed CS2DIPs, exhibiting state-of-the-art unsupervised
HSI-SR fusion performance, as well as comparison with
some benchmark approaches.

II. NOTATIONS AND PROBLEM FORMULATION

A. Notations

In this paper, a scalar, a vector, a matrix, and a tensor are
denoted by a lowercase letter x , a boldface lowercase letter
x, a boldface capital letter X, and a calligraphic letter X ,
respectively. For a tensor X ∈ RI1×I2×···×IN , X ≥ 0 means
that X (i1, i2, . . . , iN )= xi1,i2,...,iN ≥ 0 for all in ∈ [In] ≜
{1, 2, . . . , In} and n ∈ [N ]. ⌈·⌉ denotes the ceiling function.

B. Preliminaries on Tensor Computation

Definition 1 (Mode-n Product): The mode-n product of
tensor A ∈ RI1×···×IN and martix B ∈ RJ×In is defined
as:

C = A×n B ∈ RI1×···×In−1×J×In+1×···×IN (1)

whose entries are defined as:

C(i1, . . . , j, . . . , iN ) =

In∑
in=1

A(i1, . . . , j, . . . , iN )B( j, in) (2)

Definition 2 (Tensor Inner Product): The inner product of
two tensors A,B ∈ RI1×···×IN with the same size is defined
as:

⟨A,B⟩ =

I1∑
i1=1

I2∑
i2=1

· · ·

IN∑
iN =1

ai1,...,iN bi1,...,iN (3)

Definition 3 (Vector Outer Product): The outer product of
two vectors a ∈ RI , b ∈ RJ is defined as:

C = a ◦ b ∈ RI×J (4)

Similarly, extending to multidimensional space, the outer
product for vectors an ∈ RIn , n = 1, . . . , N is defined as:

C = a1 ◦ a2 ◦ · · · ◦ aN ∈ RI1×I2×···×IN (5)

Definition 4 (Tensor ℓ1-Norm): The ℓ1-norm of a tensor
A ∈ RI1×···×IN is defined as:

∥A∥1 =

I1∑
i1=1

I2∑
i2=1

· · ·

IN∑
iN =1

|xi1,i2,...,iN | (6)

Definition 5 (Frobenius Norm): The Frobenius norm of a
tensor A ∈ RI1×···×IN is defined as:

∥A∥F =

√
⟨A,A⟩ =

( I1∑
i1=1

I2∑
i2=1

· · ·

IN∑
iN =1

|xi1,i2,...,iN |
2
)1/2

(7)

C. Related Works

HSI-SR aims to recover an HR-HSI Z ∈ RW×H×C from
an LR-HSI X ∈ RWHSI×HHSI×C and an HR-MSI Y ∈

RW×H×CMSI , where C and CMSI represent the number of
spectral bands in HSI and MSI, respectively. The models for
the observations LR-HSI and HR-MSI can be formulated as:

X = Z ×1 S1 ×2 S2

Y = Z ×3 P (8)

where S1 ∈ RWHSI×W and S2 ∈ RHHSI×H are the blurring and
downsampling matrices along horizontal axis and vertical axis,
respectively, and P ∈ RCMSI×C denotes the spectral response
matrix associated with the imaging sensor.

In this section, we review three existing groups of HSI
super-resolution methods.

1) Model-Based HSI Super-Resolution: Judiciously utiliz-
ing the prior information about the images under consideration
is a common approach for solving inverse problems in image
restoration [15], [22], [46], [47], [48]. Model-based methods
heavily rely on spectral and spatial priors. The key idea behind
model-based methods can be summarized as:

min
Z

∥X − Z ×1 S1 ×2 S2∥F

+ ∥Y − Z ×3 P∥F + λ φ(Z) (9)

where λ is a regularization parameter and φ(Z) is a regular-
ization term reflecting the prior knowledge of the HSI.
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By reasonably constructing regularization terms and min-
ing basic features from information-rich images, degraded
images can be effectively restored. Many methods have been
applied to HSI super-resolution, including TV-based [12],
[13], [14], sparsity-based [15], [16], [17], [18] and low-rank-
based [19], [20], [21], [22], [23], [24], [49] methods, etc. For
example, He et al. [12] used 3D total variation to describe
the local space and spectral smoothness of the highlight
band; Yokoya et al. [50] proposed a coupled nonnegative
matrix decomposition (CNMF) to alternatively estimate the
abundance matrix and endmember of the HSI; Lin et al. [51]
further developed a method called CO-CNMF by judiciously
applying alternating direction method of multipliers (ADMM)
and various inherent matrix structures, therefore much more
efficient and effective than the CNMF, besides its better
robustness against noise contamination; Zhao et al. [17]
proposed a hyperspectral super-resolution method based on
sparse representation and spectral mixing model; Xue et al.
[18] considered the spatial/spectral subspace low-rank rela-
tionships and proposed a subspace clustering method based
on structured sparse low-rank representation; Han et al. [22]
explored the similar patch structure of images and proposed
a super-resolution model based on non-local similarity; Xu
et al. [19] proposed a model based on nonlocal and CP
tensor decomposition; Xu et al. [49] quantized HSI tensor
into higher-order tensor and proposed a coupled Tensor Ring
(TR) representation model; He et al. [20] developed a coupled
TR model with spectral kernel normalization to exploit global
spectral low-rank attributes.

2) Deep Learning-Based HSI Super-Resolution: In recent
years, deep learning-based methods have gradually become
mainstream, benefiting from the powerful data-driven feature
extraction capabilities of deep networks. The key idea behind
the deep learning-based methods can be summarized as:

min
θ

E( fθ (X ,Y), Ẑ) (10)

where E(·) is the loss function of data-fitting error between
fθ (X ,Y) and the given data Ẑ , fθ (X ,Y) is the output of the
CNN parameterized by θ .

Deep learning-based methods can mine implicit proper-
ties of data from large amounts of data. Wang et al. [25]
proposed a deep residual convolution network and used it
to improve the spatial resolution of hyperspectral images;
Han et al. [26] proposed a CNN-based spatial-spectral fusion
architecture for fusion of LR-HSI and HR-MSI; Hu et al.
[27] designed a transformer-based network that can explore
the internal relationship of features globally. Meanwhile,
approaches combining model-based and deep learning have
gained popularity, including Deep Plug-and-Play and Deep
Unrolling. Lai et al. [28] used a trained CNN denoiser as a
prior in the reconstruction model; Dong et al. [29] expanded
the HSI-SR optimization model and designed a new deep
convolution network; Ma et al. [30] expanded the HSI-SR
model and designed a network structure of Transformer+3D-
CNN to explore the global spatial interaction ability and
spatial-spectral correlation of data at the same time.

3) Deep Image Prior: Recently, Ulyanov et al. [36] pro-
posed Deep Image Prior (DIP), where an untrained deep

Fig. 1. The matrix-vector tensor factorization of HSI, where er and Gr denote
the spectral signature and corresponding abundance map of r -th materials,
respectively.

network is initialized with random weights and optimized so
that the generated image approximates the target. DIP is an
unsupervised approach whose prior stems solely from the fixed
convolutional structure of the generative network. The key idea
behind DIP can be summarized as:

min
θ

E( fθ (J ) ×1 S1 ×2 S2,X ) + E( fθ (J ) ×3 P,Y)

s. t. Z∗
= fθ (J ) (11)

where J is an initial random input with the same dimension
of Z . Problem (11) can be handled by gradient descent
method for obtaining a local minimizer provided that E(·) is
differentiable.

The powerful learning capability and flexible framework of
DIP enable excellent performance on many image restoration
tasks. However, traditional DIP utilizes only the network struc-
ture as a prior, thus suffering many limitations. To upgrade
the DIP’s learning capability, some improved DIP schemes
have been proposed for HSI. Zhang et al. [52] proposed an
unsupervised DIP framework that uses degenerate estimation
in the HSI-SR algorithm design; Zhang et al. [53] incorporated
supervised learning into the unsupervised DIP, utilizing a priori
information from supervision for preliminary image fusion.

III. PROPOSED METHOD

In this section, we first present our optimization model.
Then, we present the network structure and our loss function.

A. Optimization Model

1) MVTF Inspired DIP: Traditional DIP methods typically
initialize the random input with the same size as the image,
and optimize through iterative training [36]. However, this is
difficult to jointly capture dense spatial and spectral charac-
teristics, the results thus turn out to be suboptimal.

Methods based on MVTF capture the intrinsic structure of
the tensor and represent the data in a sparse manner [45].
MVTF can decompose HSI into a series of spectral signatures
(endmembers) and proportions in pixels (abundance matrices)
of different materials (cf. Fig. 1), which can be defined by

Z ≈

R∑
r=1

Gr ◦ er (12)

where Gr ∈ RW×H , er ∈ RC represent abundance matrix and
spectral signature vector, respectively, and r = 1, . . . , R, R is
the number of materials in Z .
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Fig. 2. (a) The proposed CS2DIPs model, which consists of two main modules with identical architecture: Spatial-GDIP and Spectral-GDIP, each including
(b) a two-layer Guided Up Sampling (GUS) and the embedded Feature Attention Unit (FAU), and (c) a two-layer Guided Deformed Convolution (DC) Block
(for the Spatial-GDIP) or Guided Conv Block (for the Spectral-GDIP) and the embedded Deep Attention Unit (DAU), except for 1D (2D) convolutions
performed in Conv (DC) Block. Finally, after the normalization via non-negativity and sum-to-one, the outputs of Spatial-GDIP and Spectral-GDIP are fused
into the desired HR-HSI by mode-3 tensor product.

To effectively utilize the MVTF, we adopt the following
low-rank representation:

Z ≈

R∑
r=1

Gr ◦ er = G ×3 E (13)

where G = [G1, G2, . . . , GR] ∈ RW×H×R and E =

[e1, e2, . . . , eR] ∈ RC×R represent abundance tensor and
spectral signature matrix, respectively.

2) Inherent Constraints on G and E: Traditional DIP train-
ing methods primarily consider the loss function used and its
impact on the restored data, which should not violate physical
constraints [37]. To this end, we incorporate nonnegativity
and sum-to-one constraints, simply because the former is
a common constraint for both G and E while the latter is
necessary, particularly for G.

3) The Proposed Optimization Model: To efficiently exploit
the strength of NMVTF and constraints based on physical
properties, the proposed optimization model for the HSI super-

resolution is formulated as

min
θ1,θ2

∥Y − Z ×3 P∥
2
F + ∥X − Z ×1 S1 ×2 S2∥

2
F

s. t. Z = G ×3 E, G = fθ1(J1,Y) ≥ 0,

E = fθ2(J2,X ) ≥ 0,

R∑
r=1

Gi, j,r = 1 (14)

where J1 ∈ RŴ×Ĥ×N1 , J2 ∈ RB̂×N2 denote random inputs to
the CS2DIPs and fθ1(·,Y) and fθ2(·,X ) are the corresponding
outputs of GUS-2d and GUS-1d in CS2DIPs (cf. Fig. 2), and
Ŵ = ⌈W/2M

⌉, Ĥ = ⌈H/2M
⌉, B̂ = ⌈C/2M

⌉ and M denotes
network depth.

B. Network Architecture

Inspired by the spectral-spatial properties of HSI and the
U-net structure, the proposed CS2DIPs method is shown in
Fig. 2. Next, let us present its essential constituents.
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1) Network Framework With Low-Rank Prior: To effi-
ciently utilize the low-rank prior in (14), as shown in Fig. 2(a),
designed CS2DIPs model consists of two subnetworks with
identical architecture: Spatial-GDIP and Spectral-GDIP for
learning G (abundance tensor) and E (spectral signature
matrix) respectively. Spatial-GDIP and Spectral-GDIP adopt
the same GDIP architecture, though they perform 2D convolu-
tional and 1D convolutional operations of GDIP, respectively.
They are coupled via the mode-3 tensor product, and their
learning processes are guided by the HR-MSI and LR-HSI
observations, respectively.

2) Guided Upsampling Generation Under-Parameterization
Subframework: Inspired by [54] and [55], we propose a
guided upsampling generation subframework called GDIP (cf.
Fig. 2(a)), comprising a U-Net with skip connections and an
upsampling network. Generally, the input (i.e., J1 or J2) of
each GDIP passing through the guidance network plays a
supervisory role in the generation of G and E.

Existing research works have shown that DIP’s effectiveness
stems from spectral bias induced by upsampling [42], [43].
Hence, we use a generative network containing only upsam-
pling layers, and an under-parameterized design.

Based on (8), HR-MSI undergoes spatial blurring while LR-
HSI experiences spectral downsampling. We incorporate HR-
MSI and LR-HSI in GDIP to guide the generation of G and E,
respectively. This enables more rapid and accurate learning of
dense spatial features and spectral signatures. The upsampling-
based generation for G and E are given by:

G = fθ1(J1,Y)

E = fθ2(J2,X ) (15)

where θ1 and θ2 represent the up-to-date CNN parameters of
Spatial-GDIP and Spectral-GDIP, respectively.

3) Guided Up Sampling: The designed guided upsam-
pling (GUS) module enables surface-level guidance from the
observations for generating G and E. The downsampling and
upsampling of the bootstrap network simultaneously guide
the upsampling to reconstruct corresponding regions. Unlike
supervised learning, our bootstrap data rely solely on either
HR-MSI observations or LR-HSI ones.

The feature attention unit (FAU) is a key component of
GUS. To ensure validity of the top and bottom samples,
we first multiply the generated data with the top sample, and
then the bottom sample after a Conv+BN+LeakyReLU layer.
FAU introduces an attention mechanism to deepen the learning
of spatial and spectral features of G and E, respectively.
Fig. 2(b) shows the details of the two-layer GUS and FAU
structure.

4) Guided Deformable Convolution Block (GDC):
Deformable Convolution (DC) expands the receptive field and
enhances model transformation capability through adaptive
kernel shapes [56]. As shown in Fig. 2(c), the designed
GDC structure with stacked deformable convolutions enables
free deformation of the sampling network. Study in [57] has
shown that deeper stacking can yield better results. We also
use a Deep Attention Unit (DAU) to enhance deep feature
learning from the guidance data, and reduce DIP’s burden.
DAU uses an attention mechanism to selectively emphasize

important features from the guided data while yielding the
generated data. Since deformable convolutions only apply to
2D, we simply use conv block in Spectral-GDIP instead of
DC block.

5) Normalization on GDIPs’ Outputs: The constraints on
G and E in (14) are incorporated at the network level.
Specifically, we add ReLU operations on the generated G and
E to enforce non-negativity. Meanwhile, G undertakes a sum-
to-one normalization, i.e.,

G := G/
( R∑

r=1

Gi, j,r + ϵ
)

(16)

where ϵ > 0 is a small constant to avoid division by zero.

C. Loss Function

To train the model by (14), we use the Huber loss function
(HLF) [58], [59], which is more robust against outliers than
Frobenius norm, while less sensitive to discrete anomalies than
ℓ1 norm. The HLF can be defined by

hδ(t) =


1
2

t2
|t | ≤ δ

δ|t | −
1
2
δ2

|t | > δ

(17)

where δ is a user-defined threshold. The overall loss function
used can be expressed as

L = Hδ(Y − Z ×3 P) + Hδ(X − Z ×1 S1 ×2 S2), (18)

where Hδ(Y − Z ×3 P) ≜
∑

i jr hδ(yi jr − ŷi jr ) (i.e., sum of
HLFs defined by (17) for all yi jr ∈ Y and ŷi jr ∈ Z ×3 P),
and Hδ(X − Z ×1 S1 ×2 S2) is defined similarly.

D. Differences Between CS2DIPs and Closely Related
Approaches

Most existing DIP-based methods utilize the classic U-Net
to obtain some prior information without focusing on the
fundamental spatial-spectral coupling structure, which there-
fore may not comprehensively cover most essential spatial
and spectral characteristics of hyperspectral images [37], [39],
[55]. In contrast, the proposed CS2DIPs equipped with two
coupled DIPs in parallel are capable of capturing more useful
spatial and spectral features from the observed HR-MSI and
LR-HSI, respectively, which are then used to guide the gen-
eration of the crucial abundance tensor and spectral signature
matrix for the fusion of the super-resolution HSI, meanwhile
taking some inherent physical constraints into account.

IV. EXPERIMENTAL RESULTS

In this section, we present extensive experimental results
with both simulation and real datasets to demonstrate the
efficacy of the proposed CS2DIPs.

A. Datasets

We selected five simulation datasets and one real dataset
for experimental evaluation. The simulation datasets include:
CAVE1, Harvard2, Pavia Centre (PaviaC)3, KSC3, Washington

1https://www1.cs.columbia.edu/CAVE/databases/multispectral/
2http://vision.seas.harvard.edu/hyperspec/explore.html
3https://www.ehu.eus/ccwintco/index.php/
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DC Mall (WDC)4; the real dataset is University of Houston
(UH)5.

The CAVE dataset contains 32 HSIs, each with 512 ×

512 pixels and 31 spectral bands, covering the visible spectrum
from 400 nm to 700 nm. We use the ‘face_ms’ image as our
simulation dataset and extract 256 × 256 pixels sub-image
through downsampling.

The Harvard dataset contains 50 HSIs, each with 1392 ×

1040 pixels and 31 spectral bands, covering the visible spec-
trum from 420 nm to 720 nm. We use ‘img1’ image as our
simulation dataset and extract 256 × 256 sub-images through
downsampling and cropping.

The PaviaC dataset was obtained by the imaging spec-
trometer of the catoptrics system, with 1096 × 1096 pix-
els, 115 spectral bands, and 102 residual spectral bands.
We selected a portion of 192 × 192 pixels and 102 spectral
bands as the reference image.

The KSC dataset was acquired by the NASA AVIRIS instru-
ment over the Kennedy Space Center, with 512 × 614 pixels
and 176 spectral bands. We selected a 256 × 256 pixels sub-
image covering the first 103 spectral bands.

The WDC dataset contains a total of 191 bands ranging
from 0.4 to 2.4 um visible and near-infrared bands, with a
data size of 1208 × 307. We extracted a 256 × 256 pixels
sub-image by cropping the first 103 spectral bands.

The UH dataset was acquired by the National Center for
Airborne Laser Mapping (NCALM) over the University of
Houston campus and its neighborhood. The dataset provides
HR-MSI of 83440 × 24040 pixels and LR-HSI of 4172 ×

1202 pixels with 48 bands. We selected a sub-image LR-HSI
of 32 × 32 × 48 and obtained an HR-MSI of 256 × 256 ×

3 through cropping and downsampling.

B. Comparison Methods

The peer methods for performance comparison with
the proposed CS2DIPs include four model-based methods:
Hysure [60], CSTF [61], NLSTF [62], SC-LL1 [63] and
six deep learning-based methods: DIP-2D [37], DIP-3D [37],
DeepTensor [39], GDD [55], uSDN [31] and MIAE [34].
However, MIAE is an unsupervised blind estimation method
developed without the prior information of parameters P,
S1 and S2. For a fair comparison, we further considered a
non-blind counterpart, referred to as MIAE*, by replacing all
the estimated values of these parameters with true values in
the original MIAE, and both of them were included in the
performance comparison in our experiment.

In the experiment, all datasets were normalized on the
interval [0,1]. The quality of the generated HR-HSI images
is evaluated using four performance indexes, including
peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM), spectral angle mapper (SAM), and erreur relative
globale adimensionnelle de synthèse (ERGAS).

4https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
5https://hyperspectral.ee.uh.edu/?page_id=1075

Fig. 3. Performance of the proposed CS2DIPs on five datasets for K = 8,
in terms of PSNR versus hyperparameters (R, δ = 0.1, N1 = 10, N2 = 256)
(a), while the top right plot, bottom left plot, and bottom right plot show
the performance on the CAVE dataset, specifically (R = 10, δ, N1 = 10,
N2 = 256) (b), PSNR versus iteration number for (R = 10, δ = 0.1,
N1 ∈ {10, 256}, N2 = 256) (c), and (R = 10, δ = 0.1, N1 = 10,
N2 ∈ {10, 256}) (d), respectively.

C. Implementation Details

For each reference image, i.e., HR-HSI (Z) used as the
ground truth (GT), the observation image LR-HSI (X ) is
generated through Gaussian blur processing on the GT in the
spatial domain (Gaussian kernel with the size of 8, mean of 0,
and standard deviation of

√
3), followed by downsampling on

the resulting image, with downsampling ratio K (the ratio
|Z|/|X |) equal to 8 or 16. The observation image HR-MSI
(Y) is generated by the convolution integral of the simulated
spectral response (based on Nikon cameras) with the GT for
each spectral band in the 3-band (4-band) HR-MSI in the
CAVE and Harvard (PaviaC, KSC and WDC) dataset.

In the CS2DIPs network proposed above, we used a four-
layer Spatial-GDIP and a three-layer Spectral-GDIP. In the
Guided DC Block and Guided Conv Block (cf. Fig. 2(c)),
we used four-layer structures. We employed the Adam opti-
mizer with learning rate lr = 0.001. The maximum number
of iterations Imax was set to 5000.

In the experiment, the proposed CS2DIPs method was
implemented by the Python framework. All experiments were
run on a computer with an Intel i5-11400F CPU, 16GB RAM,
and an NVIDIA RTX 3060Ti GPU.

D. Hyperparameter Setting

The hyperparameters δ, N1, and N2 for the proposed
CS2DIPs are advisably chosen through experiments on the
CAVE dataset for K = 8, while R chosen from the results
over all five different datasets. Let us consider its PSNR
performance versus i) R and δ, respectively, and ii) iteration
number for N1, N2 ∈ {10, 256}. These experimental results in
terms of PSNR are shown in Fig. 3, which suggests the values
for parameters δ = 0.1, N1 = 10, N2 = 256, and R = 15(35)

in CAVE and Harvard (PaviaC, KSC and WDC) datasets in
our experiment.
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TABLE I
QUANTITATIVE RESULTS OF VARIOUS METHODS IN TERMS OF PSNR AND SSIM (SAM AND ERGAS) FOR WHICH “↑” (“↓”) INDICATES THAT THE

LARGER (SMALLER) THE NUMERICAL VALUES, THE BETTER THE CORRESPONDING RESULTS. THE BEST RESULTS ARE SHOWN IN BOLDFACE
AND THE SECOND-BEST RESULTS ARE UNDERLINED

E. Experimental Results on Simulated Data
The obtained simulation results with five simulation datasets

are numerically listed in Table I, where the best results are
given in boldface and the second best results are underlined
for clarity. One can observe from this table, that CS2DIPs
perform the best, MIAE* the second best, and both of them
outperform the other 10 methods under test overall. However,
the running time for obtaining the simulation results for the
datasets CAVE and PaviaC are listed in Table II for the case of
K equal to 8, indicating that the proposed CS2DIPs expends
more running time than most of the methods under test, around
4.9 to 7.5 times running time of MIAE.

For visual quality assessment, Figs. 4 through 7 display
some results obtained by all the methods under test for WDC,
CAVE, Harvard, and PaviaC datasets, respectively. For each
figure, the reconstructed HR-HSI for three spectral bands
([30,15,10] for CAVE, [30,12,8] for Harvard, [85,55,35] for
PaviaC, KSC and WDC) are shown in the top two rows and
the absolute image errors (scaled up by 10 for clarity) for
the 8th band are shown in the bottom two rows, respectively.
One can observe from these figures: i) DIP-2D and DIP-3D
perform the worst (cf. Figs. 6 and 7), ii) CS2DIPs perform
the best for K = 8 and K = 16, iii) the performances of
DeepTensor, GDD, and uSDN are in the middle among all
the unsupervised deep learning based methods; iv) all the

4 model-based methods also perform comparably with each
other but worse than CS2DIPs for K = 8 and 16. Therefore,
the results shown in Figs. 4 through 7 are also consistent with
those listed in Table I.

Fig. 8 shows the simulation results in terms of PSNR versus
spectral band for K equal to 8 (16) for the top (bottom) row,
where the performances of only 6 tested methods (i.e., CSTF,
NLSTF, DeepTensor, MIAE, MIAE*, CS2DIPs) are illustrated
for clarity, while the other 6 methods are omitted due to their
inferior overall performances. Again, one can also observe
that CS2DIPs show superior overall performance, while MIAE
comes behind as the runner-up.

Finally, let us conclude this subsection by showing some
convergence results for a comparison of the proposed CS2DIPs
with 4 widely used DIP based methods (DIP-2D, DIP-3D,
DeepTensor, GDD). Fig. 9 shows some results (obtained on
the KSC dataset) in terms of PSNR versus iteration number
for K equal to 8. The proposed CS2DIPs method exhibits a
faster convergence rate and better PSNR performance than all
the other methods.

F. Ablation Studies

In this section, we perform ablation experiments on the
proposed CS2DIPs using the PaviaC dataset. Without loss of
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Fig. 4. Reconstructed images of various methods for the WDC dataset are illustrated by the false color image of [80,55,35] bands for K = 8 (the first row)
and K = 16 (the second row), respectively, and the error images of the 8th band for K = 8 (16) are shown in the third (fourth) row.

Fig. 5. Reconstructed images of various methods for the Face (CAVE) dataset are illustrated by the false color image of [30,15,10] bands for K = 8 (the
first row) and K = 16 (the second row), respectively, and the error images of the 8th band for K = 8 (16) are shown in the third (fourth) row.

Fig. 6. Reconstructed images of various methods for the Img1 (Harvard) dataset are illustrated by the false color image of [30,12,8] bands for K = 8 (the
first row) and K = 16 (the second row), respectively, and the error images of the 8th band for K = 8 (16) are shown in the third (fourth) row.

TABLE II
RUNNING TIME (IN SEC) OF ALL THE METHODS UNDER TEST EXPENDED ON DATASETS CAVE AND PAVIAC FOR THE CASE OF K = 8

generality, we fix K = 8 and use an 8 × 8 Gaussian blur kernel
(zero mean and standard deviation equal to 3).

1) Effectiveness of CS2DIPs Components: The pro-
posed CS2DIPs model consists of three components:
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Fig. 7. Reconstructed images of various methods for the PaivaC dataset are illustrated by the false color image of [80,55,35] bands for K = 8 (the first
row) and K = 16 (the second row), respectively, and the error images of the 8th band for K = 8 (16) are shown in the third (fourth) row.

Fig. 8. Simulation results in terms of PSNR versus spectral band for K equal to 8 (top row) and 16 (bottom row) and the datasets PaviaC, KSC, CAVE,
Harvard, and WDC (from left to right).

Fig. 9. Convergence of 5 DIP-based methods on the KSC dataset for K = 8.

1) decomposition based on NMVTF; 2) GDIP network struc-
ture; 3) spatial and spectral constraints based on physical

properties. To demonstrate the importance of these three
components, we designed three ablation experiments. The first
replaces NMVTF with NMF, the second removes the GDIP
and the third removes all equality and inequality constraints.
These experiments are referred to as ‘CS2DIPs w/ NMF’,
‘CS2DIPs w/o GDIP’, and ‘CS2DIPs w/o constraints’. The
results are listed in Table III. The performance of the CS2DIPs
version with GDIP removed is seriously degraded, with the
PSNR drop of 2.83 dB, while the PSNR of the CS2DIPs with
NMF replaced and constraints removed drops by 1.03 and
2.18 dB, respectively.

2) Effectiveness of GDIP Network Structure Components:
The GDIP structure proposed in this paper consists of several
modules. We designed four ablation experiments. The first
removes the guided DCB, the second removes the GUS, the
third removes the attention mechanism used in DAU and
FAU, and the fourth removes the skip-connect branch. These
experiments are referred to as ‘CS2DIPs w/o GDC’, ‘CS2DIPs
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Fig. 10. Reconstructed HR-HSI images by all the methods under test on the real UH dataset (without GT Z). The images shown are false colour images
consisting of [17, 12, 10] bands with K = 8, except for the image HR-RGB (treated as the “GT” for visual assessment).

Fig. 11. Abundance maps of all the reconstructed HR-HSI images (for real UH dataset) shown in Fig. 10, consisting of 4 distinct material distributions (one
for each row), including the brown-color material (first row), white-color material (second row), light green-color material (third row) and dark green-color
material (fourth row) material, respectively.

TABLE III
CS2DIPS ABLATION EXPERIMENT METRICS ON THE PAVIAC DATASET

w/o GUS’, ‘CS2DIPs w/o attention’ and ‘CS2DIPs w/o skip-
connect’. The results are also listed in Table III. One can
observe that removing each of these components leads to some
performance degradation; serious performance loss happens
in the case of w/o GUS (e.g., PSNR loss of 12.51 dB),
implying that the component GUS is most sensitive to the
performance loss; and the component GDC is most insensitive
to the performance loss.

G. Experimental Results on Real Data

We used the real UH dataset released by the 2018 IEEE
GRSS Data Fusion Contest to evaluate the effectiveness of
CS2DIPs. The resolution is set to K = 8. P, S1 and S2 are
estimated using the method in [64] since they are unknown
for this real dataset. The experimental results are shown in
Fig. 10, colorblackfrom which one can see that the proposed
CS2DIPs method yields good visual-quality fusion results.

In order to further assess the quality of the HR-HSI recov-
ered by all the methods under test, we used the SCM method
[65] for spectral unmixing of the recovered HR-HSI. From
the real image of the HR-RGB shown in Fig. 10, one can
classify the image into four objects: (1) red plastic runway;
(2) white runway scale, markers inside the soccer field, and
rain shed; (3) light green grass outside the runway and light
green triangular icons inside the runway; and (4) dark green
grass inside the soccer field. We set the maximum number
of iterations to 100 and the number of materials to 4 (i.e.,
R = 4) in the HSI under consideration, for all the algorithms
under test. The 4 abundance maps of HR-HSI recovered are
shown in Fig. 11. From this figure, one can see that the
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abundance maps yielded by applying SCM to unmixing the
HR-HSI data reconstructed by CSTF, NLSTF, SC-LL1, and
uSDN have some bias and detail loss, and the abundance maps
decomposed by Hysure, DeepTensor, and CS2DIPs have more
accurate details.

V. CONCLUSION

We have presented the CS2DIPs for HSI-SR (shown in
Fig. 2), that, without the need for pretraining, can effectively
learn the abundance tensor and spectral signature matrix of
the desired HR-HSI from the given HR-MSI and LR-HSI in
a coupling-guided fashion with physical constraints of (non-
negativity and sum-to-one) incorporated in the meantime. The
proposed CS2DIPs is also an unsupervised DIP-based method
by minimizing the differentiable convex HLF (cf. (18)), which
can effectively exploit intrinsic statistical spatial-spectral
correlations, and various prior characteristics embedded in
HR-MSI and LR-HSI. To the best of our knowledge, it is
applied to DIP-based HSI-SR for the first time, in addition
to its recent application to DIP-based HSI denoising and
inpainting [59], [66]. Extensive simulated experiments and
real-data experiments have been provided to demonstrate the
CS2DIPs’ superior overall performance over state-of-the-art
methods.
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