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1 Convex Analysis for Non-negative
Blind Source Separation with
Application in Imaging

Wing-Kin Ma, Tsung-Han Chan, Chong-Yung Chi, and Yue Wang

Wing-Kin Ma is with the Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
Tsung-Han Chan is with the National Tsing Hua University, Hsinchu, Taiwan.
Chong-Yung Chi is with the National Tsing Hua University, Hsinchu, Taiwan.
Yue Wang is with the Virginia Polytechnic Institute and State University, Arlington, VA, USA.

In recent years, there has been a growing interest in blind separation of non-
negative sources, as simply non-negative blind source separation (nBSS). Poten-
tial applications of nBSS include biomedical imaging, multi/hyper-spectral imag-
ing, and analytical chemistry. In this chapter, we describe a rather new endeavor
of nBSS, where convex geometry is utilized to analyze the nBSS problem. Called
convex analysis of mixtures of non-negative sources (CAMNS), the framework
described here makes use of a very special assumption called local dominance,
which is a reasonable assumption for source signals exhibiting sparsity or high
contrast. Under the local dominant and some usual nBSS assumptions, we show
that the source signals can be perfectly identified by finding the extreme points of
an observation-constructed polyhedral set. Two methods for practically locating
the extreme points are also derived. One is analysis-based with some appealing
theoretical guarantees, while the other is heuristic in comparison but is intu-
itively expected to provide better robustness against model mismatches. Both
are based on linear programming and thus can be effectively implemented. Sim-
ulation results on several data sets are presented to demonstrate the efficacy of
the CAMNS-based methods over several other reported nBSS methods.

1.1 Introduction

Blind source separation (BSS) is a signal processing technique the purpose of
which is to separate source signals from observations, without information of
how the source signals are mixed in the observations. BSS presents a technically
very challenging topic to the signal processing community, but it has stimulated
significant interest for many years due to its relevance to a wide variety of appli-
cations. BSS has been applied to wireless communications and speech processing,
and recently there has been an increasing interest in imaging applications.
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4 Chapter 1. Convex Analysis for Non-negative Blind Source Separation with Application in Imaging

BSS methods are ‘blind’ in the sense that the mixing process is not known,
at least not explicitly. But what is universally true for all BSS frameworks is
that we make certain presumptions on the source characteristics (and some-
times on the mixing characteristics as well), and then exploit such characteris-
tics during the blind separation process. For instance, independent component
analysis (ICA) [1, 2], a major and very representative BSS framework on which
many BSS methods are based, assumes that the sources are mutually uncorre-
lated/independent random processes possibly with non-Gaussian distributions.
There are many other possibilities one can consider; for example, using quasi-
stationarity [3, 4] (speech signals are quasi-stationary), and using boundness of
the source magnitudes [5, 6, 7] (suitable for digital signals). In choosing a right
BSS method for a particular application, it is important to examine whether the
underlying assumptions of the BSS method are a good match to the application.
For instance, statistical independence is a reasonable assumption in applications
such as speech signal separation, but it may be violated in certain imaging sce-
narios such as hyperspectral imaging [8].

This book chapter focuses on non-negative blind source separation (nBSS), in
which the source signals are assumed to take on non-negative values. Naturally,
images are non-negative signals. Potential applications of nBSS include biomed-
ical imaging [9], hyperspectral imaging [10], and analytical chemistry [11]. In
biomedical imaging, for instance, there are realistic, meaningful problems where
nBSS may serve as a powerful image analysis tool for practitioners. Such exam-
ples will be briefly described in this book chapter.

In nBSS, how to cleverly utilize source non-negativity to achieve clean sepa-
ration has been an intriguing subject that has received much attention recently.
Presently available nBSS methods may be classified into two groups. One group
is similar to ICA: Assume that the sources are mutually uncorrelated or indepen-
dent, but with non-negative source distributions. Methods falling in this class
include non-negative ICA (nICA) [12], stochastic non-negative ICA (SNICA)
[13], and Bayesian positive source separation (BPSS) [14]. In particular, in nICA
the blind separation criterion can theoretically guarantee perfect separation of
sources [15], under an additional assumption where the source distributions are
non-vanishing around zero (this is called the well-grounded condition).

Another group of nBSS methods does not rely on statistical assumptions.
Roughly speaking, these methods explicitly exploit source non-negativity or even
mixing matrix non-negativity, with an attempt to achieve some kind of least
square fitting criterion. Methods falling in this group are generally known as (or
may be vaguely recognized as) non-negative matrix factorization (NMF) [16, 17].
An advantage with NMF is that it does not operate on the premise of mutual
uncorrelatedness/independence as in the first group of nBSS methods. NMF is a
nonconvex constrained optimization problem. A popular way of handling NMF
is to apply gradient descent [17], but it is known to be suboptimal and slowly
convergent. A projected quasi-Newton method has been incorporated in NMF
to speed up its convergence [18]. Alternatively, alternating least squares (ALS)
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[19, 20, 21, 22] can also be applied. Fundamentally, the original NMF [16, 17]
does not always yield unique factorization, and this means that NMF may fail
to provide perfect separation. Possible circumstances under which NMF draws
a unique decomposition can be found in [23]. Simply speaking, unique NMF
would be possible if both the source signals and mixing process exhibit some
form of sparsity. Some recent works have focused on incorporating additional
penalty functions or constraints, such as sparse constraints, to strengthen the
NMF uniqueness [24, 25].

In this chapter we introduce an nBSS framework that is different from the two
groups of nBSS approaches mentioned above. Called convex analysis of mixtures
of non-negative sources (CAMNS) [26], this framework is deterministic using
convex geometry to analyze the relationships of the observations and sources
in a vector space. Apart from source non-negativity, CAMNS adopts a special
deterministic assumption called local dominance. We initially introduced this
assumption to capture the sparse characteristics of biomedical images [27, 28],
but we also found that local dominance can be perfectly or approximately satis-
fied for high-contrast images such as human portraits. (We however should stress
that the local dominance assumption is different from the sparsity assumption
in compressive sensing.) Under the local dominance assumption and some stan-
dard nBSS assumptions, we can show using convex analysis that the true source
vectors serve as the extreme points of some observation-constructed polyhedral
set. This geometrical discovery is surprising, with a profound implication that
perfect blind separation can be achieved by solving an extreme point finding
problem that is not seen in the other BSS approaches to our best knowledge.
Then we will describe two methods for practical realizations of CAMNS. The first
method is analysis-based, using LPs to locate all the extreme points systemati-
cally. Its analysis-based construction endows it with several theoretical appealing
properties, as we will elaborate upon later. The second method is heuristic in
comparison, but intuitively it is expected to have better robustness against mis-
match of model assumptions. In our simulation results with real images, the
second method was found to exhibit further improved separation performance
over the first.

In Figure 1.1 we use diagrams to give readers some impressions on how
CAMNS works.

The chapter is organized as follows. In Section 1.2, the problem statement is
given. In Section 1.3, we review some key concepts of convex analysis, which
would be useful for understanding of the mathematical derivations that follow.
CAMNS and its resultant implications on nBSS criteria are developed in Section
1.4. The systematic, analysis-based LP method for implementing CAMNS is
described in Section 1.5. We then introduce an alternating volume maximization
heuristics for implementing CAMNS in Section 1.6. Finally, in Section 1.7, we use
simulations to evaluate the performance of the proposed CAMNS-based nBSS
methods and some other existing nBSS methods.




