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Abstract—Deep convolutional neural networks (CNNs) have
been popularly adopted in image super-resolution (SR). How-
ever, deep CNNs for SR often suffer from the instability of
training, resulting in poor image SR performance. Gathering
complementary contextual information can effectively overcome
the problem. Along this line, we propose a coarse-to-fine SR
CNN (CFSRCNN) to recover a high-resolution (HR) image from
its low-resolution version. The proposed CFSRCNN consists of
a stack of feature extraction blocks (FEBs), an enhancement
block (EB), a construction block (CB) and, a feature refinement
block (FRB) to learn a robust SR model. Specifically, the stack
of FEBs learns the long- and short-path features, and then fuses
the learned features by expending the effect of the shallower
layers to the deeper layers to improve the representing power of
learned features. A compression unit is then used in each FEB
to distill important information of features so as to reduce the
number of parameters. Subsequently, the EB utilizes residual
learning to integrate the extracted features to prevent from
losing edge information due to repeated distillation operations.
After that, the CB applies the global and local LR features to
obtain coarse features, followed by the FRB to refine the features
to reconstruct a high-resolution image. Extensive experiments
demonstrate the high efficiency and good performance of our
CFSRCNN model on benchmark datasets compared with state-
of-the-art SR models. The code of CFSRCNN is accessible on
https://github.com/hellloxiaotian/CFSRCNN.

Index Terms—Image super-resolution, convolutional neural
network, cascaded structure, feature fusion, feature refinement

I. INTRODUCTION

S INGLE image super-resolution (SISR) aims to reconstruct
a high-resolution (HR) image from a given low-resolution

(LR) image, which has been widely applied in many fields,
such as visual analysis [1], medical images [2], and person
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identification [3, 4]. Since SISR is an ill-posed inverse prob-
lem, prior information is important to guarantee the quality of
reconstructed SR image. For example, a set of patterns through
Bayesian knowledge was learned for SISR in [5]. The method
proposed in [6] utilizes sparse representation to predict the SR
counterparts of LR patches. The random forest-based method
proposed in [7] can directly map SR patches from LR patches
to overcome the difficulty of training. In addition, non-local
self-similarity (NLSS) [8], regression [9], dictionary learning
[10], and gradient methods [11] were shown to be effective
for SISR.

Although these SISR methods can achieve impressive per-
formances, most of them still suffer from two drawbacks. First,
they usually rely on complex optimization methods to recover
HR images, which are time-consuming. Second, they need
manually-tuned parameters to obtain a good performance of
SISR, making them inflexible.

Deep learning techniques have found wide applications in
low-level vision, such as image denoising [12], rain removal
[13, 14], deblurring [15] and image SR [16]. Taking image SR
as an example, the super-resolution CNN (SRCNN) proposed
in [17] utilizes three convolutional layers to predict the HR
image in a pixel-mapping manner, which, however, leads
to slow convergence and large training cost. To break the
bottleneck of the SRCNN, a very deep SR (VDSR) network
[18] uses residual learning and small filter sizes to accelerate
the speed of training while achieving good visual quality.
Moreover, reducing the number of parameters is effective to
overcome the difficulty in training a SR model. For example,
the deeply-recursive convolutional network (DRCN) [19] and
the deep recursive residual network (DRRN) [20] utilize
recursive learning and residual learning techniques to improve
training efficiency. Besides, using skip connections to fuse
global and local features, such as the 30-layer convolutional
residual encoder-decoder network (RED30) [21], is shown
effective in enhancing the expressive ability of the SISR
model. Moreover, the very deep persistent memory network
(MemNet) in [22] applies recursive and gate units to mine
useful features for some low-level tasks. However, very deep
networks are not easy to train. Additionally, some of these
methods perform bicubic interpolation to upscale a LR image
to the same size as the HR image on SISR, which resulted in
low efficiency for training [23]. Some existing methods only
extract LR features for the SR task and magnify the obtained
LR features in the final layer, which ignores the effect of HR
features on SISR and can lead to the instability of training.

In this paper, we propose a coarse-to-fine super-resolution
CNN (CFSRCNN) for SISR. It consists of a stack of fea-
ture extraction blocks (FEBs), an enhancement block (EB),
a construction block (CB), and a feature refinement block
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(FRB) to train a robust SR model. The combination of the
stacked FEBs, EB and CB can more effectively make use
of hierarchical LR features extracted from a LR image with
much fewer parameters to enhance LR features and infer
better initial HR features. Specifically, the stack of FEBs
learns the long- and short-path features, and then fuses these
features by expending the effect of the shallower layers to the
deeper layers to improve the representing power of the learned
features. A compression unit is then used in each FEB to distill
important information of features so as to reduce the number
of parameters. Subsequently, the EB utilizes residual learning
to integrate the learned features to prevent from losing edge
information due to repeated distillation operations. After that,
the CB applies global and local LR features to obtain initial
HR features, followed by the FRB to refine the HR features
to reconstruct the final SR image. The proposed CFSRCNN
has the following contributions.

(1) We propose a cascaded network that combines LR
and HR features to prevent possible training instability and
performance degradation caused by upsampling operations.

(2) We propose a novel feature fusion scheme based on
heterogeneous convolutions to well resolve the long-term
dependency problem and prevent information loss so as to
significantly improve the efficiency of SISR without sacrificing
the visual quality of reconstructed SR images.

(3) The proposed network achieves both good performance
and high computational efficiency for SISR.

The remainder of this paper is organized as follows. Section
II provides related work. Section III presents the proposed
method. Section IV shows extensive experimental results.
Section V reports conclusion.

II. RELATED WORK

A. Deep CNNs based on cascaded structures for SISR

In image SR, using LR information, especially with a large
upscaling factor to recover a HR image is very challenging. To
address this problem, deep CNNs based on cascaded structures
have been proposed to minimize the error between prediction
results and their ground-truths. They can be divided into
two categories in general. The first category applies bicubic
interpolation to upscale a given LR image to the same size as
the HR image, and then uses the upscaled image to predict a
SR image. Specifically, a simple, effective, robust, and fast
(SERF) method [24] cascades several linear least squares
functions to extract effective features and then compresses
the model in a coarse-to-fine manner. The second category
gradually uses upscaling in different stages to predict the SR
image. Specifically, the deep network cascade (DNC) in [25]
magnifies a LR image layer by layer and utilizes NLSS in
each sub-network to extract HR texture features. The cascaded
multi-scale cross (CMSC) network in [26] cascades different
sub-networks to obtain SR features. Then, it uses a reconstruc-
tion stage to fuse the obtained features in a weighted way to
reconstruct a SR image. To reduce computation, the cascading
residual network (CARN) in [27] cascades residual networks
with small filter sizes to train a fast, accurate, and lightweight
model. All the methods demonstrated the effectiveness of

cascading operations in mitigating the discrepancy between
a predicted SR image and its ground-truth.

B. Deep CNNs based on modules for SISR

Due to their flexible end-to-end architectures, CNNs have
been widely adopted in many fields, i.e., image processing
[29, 30], video surveillance [31] and speech processing [32],
and text recognition [33]. To facilitate more features, CNNs
based on modules are developed for image SR. Specifically,
these methods can be divided into two categories in general:
high accuracy (also referred to as performance) and efficiency.

For improving the accuracy of SR, fusing multiple features
has been found useful in enhancing the expressive ability
of a SR model. For example, the multi-scale dense network
(MSDN) in [34] employs a multi-scale dense block to fuse
intermediate features of different layers for SISR. Further, dif-
ferent views of an image are used as the inputs of a SR network
to improve accuracy. The residual channel attention network
(RCAN) in [35] utilizes residual channel attention blocks to
mine and integrate different features from the channels of a
LR image. The deep networks in [36, 37] fuse color and depth
information of a given LR image to enhance the expressive
ability of learned features. Besides, to make better use of
hierarchical features, the residual dense network (RDN) in [38]
combines local and global features via residual dense blocks to
recover HR image details. Using residual learning techniques
to learn hierarchical features is shown beneficial to build a
depth map for SISR [39]. To obtain more detailed information,
the SR CliqueNet (SRCliqueNet) in [40] utilizes a clique block
and an up-sampling module to extract textural details useful
for SISR. The recursively dilated residual network in [16]
increases the impact of local spatial information by using a
recursion module, followed by a refinement module to learn
more accurate LR features for recovering HR image details.

For improving efficiency, reducing the number of parame-
ters is a common way. The information distillation network
(IDN) in [41] applies a feature extraction block, a stacked
information distillation block, and a reconstruction block to
recover HR details. The stacked information distillation block
exploits part convolutional filters of size 1 × 1 to compress
the model for improving the speed of training. To reduce
complexity and computational cost, the block state-based re-
cursive network (BSRN) in [42], comprising an initial feature
extractor, a recursive residual block and an upscaling part, in-
creases the resolution of input images at the last stage to reduce
the model complexity. That was also extended to a deeper or
wider network, the convolutional anchored regression network
(CARN) [43] employs regression blocks to convert a LR input
image to an other domain, according to the regression and
similarity so as to achieve a better trade-off between speed and
accuracy in contrast to other SISR methods. The Laplacian
pyramid distillation network (LapIDN) in [44] first applies
a Laplacian pyramid module to upscale extracted features
gradually, followed by a distillation network to achieve high
SR performance while compressing the network complexity.
Moreover, there are other effective SISR methods, such as
the lightweight feature fusion network (LFFN) in [45] that
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aggregates different hierarchical features in an adaptively
convex weighed manner to control the number of parameters
through a spindle block and a softmax feature fusion module,
and the adaptive weighted SR network (AWSRN) in [46]
that utilizes adaptive weighted residual unit and local residual
fusion units, and an adaptive weighted multi-scale module to
reduce parameters, according to the contribution of obtained
features at different scales.

To achieve both high performance and efficiency in SISR,
we propose a novel cascaded structure consisting of modular
CNN blocks to learn accurate features.

III. PROPOSED METHOD

As shown in Fig. 1, our proposed CFSRCNN is composed
of a stack of Feature Extraction Blocks (FEBs), an Enhance-
ment Block (EB), a Construction Block (CB) and a Feature
Refinement Block (FRB). The combination of the stacked
FEBs, EB and CB can make use of hierarchical LR features
extracted from the LR image with fewer parameters to enhance
obtained LR features and derive coarse SR features. Specifi-
cally, combining an FEU and a CU into an FEB obtains long-
and short-path features. Also, fusing the obtained features
via the two closest FEUs can enlarge the effects of shallow
layers on deep layers to improve the representing power of the
SR model. The CU can distill more useful information and
reduce the number of parameters. The EB fuses the features
of all FEUs to offer complementary features for the stacked
FEBs and prevent from the loss of edge information caused
by the repeated distillation operations. Gathering several extra
stacked FEUs into the EB removes over-enhanced pixel points
from the previous stage of the EB. After that, the CB utilizes
the global and local LR features to obtain coarse SR features.
Finally, the FRB utilizes HR features to more effectively learn
HR features and reconstruct a HR image. We introduce these
techniques in the later sections.

A. Network architecture

The proposed 46-layer CFSRCNN is composed of four
parts, a stacked FEBs, an EB, a CB and an FRB. Let ILR

and ISR denote the input LR image and its corresponding
SR output image of CFSRCNN, respectively. We divide the
four blocks into two kinds, according to the obtained feature
types (i.e., LR and HR features): the combination of the stack
of FEBs, EB and CB, and FRB. For the combination of the
three functional blocks, a 40-layer network is used to extract
LR features from a given LR image and derive the coarse SR
features, as formulated below:

OCB = fCB(fEB(fsFEBs(ILR))), (1)

where fsFEBs, fEB and fCB denote the functions of the stack
of FEBs, EB and CB, respectively, OCB is the output of the
the combination of the stack of FEBs, EB and CB. Specifically,
OCB is used as the input of a 6-layer FRB, which utilizes HR
features to reduce the discrepancy between the predicted SR
and target HR images, as formulated below:

OFRB=fFRB(OCB)

=fCFSRCNN (ILR),
(2)

where fFRB and OFRB denote the function and output of
FRB, respectively. fCFSRCNN is the function of the CFSR-
CNN. Also, OFRB = ISR. Finally, CFSRCNN is optimized
by the loss function that will be explained in Section III.B.

B. Loss function

We use a set of training pairs {IjLR, I
j
HR}Nj=1 to train the

model, where N is the size of training set, and IjLR and IjHR

denote the j-th LR and HR training images, respectively. We
choose mean square error (MSE) [47] as the loss function to
minimize the difference between the predicted SR and target
HR images as follows:

l(θ) =
1

2N

N∑
j=1

∥∥∥fCFSRCNN (IjLR)− I
j
HR

∥∥∥2
2
, (3)

where θ denotes the parameter set of the trained model.

C. The combination of stacked FEBs, EB, and CB

The 40-layer block consists of 33-layer stacked FEBs, 6-
layer EB and 1-layer CB. Specifically, FEBs aim to improve
the efficiency and performance of SR by combining a FEU
with a CU, where CU is used to distill more useful informa-
tion. EB offers complementary features by fusing hierarchical
LR features to address the loss of edge information from the
CUs. Besides, EB also utilizes several additional stacked FEUs
to learn finer LR features to mitigate over-enhanced pixel
points caused by the previous stage of EB. Subsequently, CB
can apply the global and local LR features to obtain coarse
SR features. The detailed information is shown in latter sub-
sections.

1) Stacked FEBs: As illustrated in Fig. 2, the 33-layer
stacked FEBs fuses obtained features from the pair of FEU
and CU to enhance the performance and efficiency of the
SR model. FEB of the stacked FEBs is composed of a pair
of FEU and CU that respectively perform 3 × 3 and 1 × 1
heterogeneous convolutions, except for the last FEB that only
has a FEU without CU. Each FEB (except the last one) first
concatenates the output of the FEU from the previous FEB
(aka the long-path features) and that of its own FEU (aka the
short-path features) as the input of its own CU to enhance the
representing power for SR. Subsequently, CU distills useful
information from the enhanced LR features above, which can
reduce the number of parameters and improve the training
efficiency for a SR model. In practice, each FEU and CU
comprise Conv+ReLU: a convolution filter followed by a
rectified linear unit [48]. As mentioned above, the filter sizes
of the FEU and CU are 3 × 3 and 1 × 1, respectively. The
ReLU is used to non-linearly transform the fused features,
which is then used as the input of the following CU. Further,
the sizes of the first FEU and CU are 3 × 3 × 3 × 64 and
64× 1× 1× 64, respectively, where 3 and 64 are the channel
numbers of the input and output of the first FEU, respectively,
and 64 is the channel number of the input and output of the
first CU, respectively. The sizes of FEU and CU of the other
FEBs are 64×3×3×64 and 128×1×1×64, respectively, where
64 represents the channel numbers of input and output except
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Fig. 1. Network architecture of CFSRCNN.

for the first FEU, and 128 and 64 are the channel numbers of
input and output except the first CU, respectively. Due to the
1 × 1 convolution, CUs can better distill useful information
as well as reduce the number of parameters [41], as will be
shown in Section IV.D.

We further clarify the formulation of the stacked FEBs in
details. Let Oi

FEU and Oi
CU denote the output of the FEU and

CU of the i-th FEB, respectively. According to the previous
descriptions, the function of the i-th FEB can be expressed as

Oi
CU = CU(Cat(FEU(Oi−1

CU ), Oi−1
FEU )), (4)

where i = 2, 3, , ..., 16 and Cat represents a concatenation
operation. Specifically, the first FEB can be represented as
O1

CU = CU(FEU(ILR)). Because the last FEB (the 17th
FEB) only has a FEU, it can be formulated as

O17
CU = Cat(FEU(O16

CU ), O
16
FEU ), (5)

where OsFEBs = O17
CU and OsFEBs is the output of the

stacked FEBs.
2) Enhancement block: It is known that as the depth of the

network increases, the extracted features are more accurate.
However, this will also lead to the information loss of shallow
layers [49]. Also, although the CUs can reduce the number
of parameters and improve the efficiency for a SR model,
repeated distillation operations lead to the loss of edge infor-
mation extracted from the shallow layers. Taking into account
these two factors, we propose a two-step feature enhancement
block (EB) as demonstrated in Fig. 2. The first step of the EB,
involving one Conv+ReLU with a filter size of 128×3×3×64,
gathers hierarchical features extracted by the FEUs of all FEBs
through residual learning to offer features complementary to

the stacked FEBs. The second step, involving five Conv+ReLU
with the same filter size of 64× 3× 3× 64, fine-tunes the LR
features to mitigate possible over-enhancement caused by the
first step. The first-step operation of EB can be formulated as
follows:

O1
EB =

17∑
i=1

(FEU(OsFEBs) +Oi
FEU ), (6)

where O1
EB denotes the first-step output of EB. The EB’s

second-step can be expressed as:

O2
EB = FEU(FEU(FEU(FEU(FEU(O1

EB))))), (7)

where O2
EB represents the final output of EB.

3) Construction block: It is known that a given LR image
uses bicubic interpolation to obtain the same size as the HR
image as the input of a SR network for training the model,
which can result in high computational cost and memory
consumption [23]. To address this problem, the up-sampling
technique was proposed [50]. For example, a fast SR convolu-
tional neural network (FSRCNN) [23] utilized deconvolution
as the last layer to upscale the extracted LR features for SISR.
FSRCNN directly utilized a LR image as input to extract LR
features, then applied the deconvolution technique in the last
layer to reconstruct the HR image. Although this approach can
improve the efficiency of training, its performance in SISR is
not satisfactory. In this paper, we use two steps in the construc-
tion block (CB) to overcome this problem. CB first performs
a sub-pixel convolution with a filter size of 64 × 3 × 3 × 64
to obtain global- and local-features. Subsequently, CB fuses
the obtained features by residual learning to derive coarse HR
features. The operation of CB can be formulated as follows:
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Fig. 2. Architecture of the CFSRCNN.

OCB = S(O1
FEU ) + S(O2

EB), (8)

where S and + stand for the functions of the sub-pixel
convolution and residual learning, respectively. In addition, the
residual learning operation is denoted as

⊕
in Figs. 1 and 2.

D. Feature refinement block

Feature refinement block (FRB) is used to reduce the
discrepancy between the predicted SR and ground-truth HR
images. It involves five cascaded FEUs followed by a convo-
lutional filter, where each FEU consists of Conv+ReLU with
the same filter size of 64×3×3×64, where 64 is the channel
numbers of the input and output. This operation of cascaded
FEUs is shown in Eq. (9).

OFRB1 = FEU(FEU(FEU(FEU(FEU(OCB))))), (9)

where OFRB1 is the output of five cascaded FEUs of FRB,
which is then filtered by the final convolution with a filter size
of 64× 3× 3× 3 as follows:

ISR = C(OFRB1), (10)

where C denotes the final convolution function.

IV. EXPERIMENTAL RESULTS

A. Training dataset

Following the state-of-the-art SR methods in [27, 51, 52],
we utilize the public DIV2K dataset [53] to train our model.
The DIV2K dataset contains 800 training images, 100 valida-
tion images, and 100 test images at three different scales: ×2,
×3, and ×4. We merge the training and validation datasets
of the DIV2K to expand the training dataset. Further, to
improve the efficiency of model training, we divide each LR

image into patches of size 77 × 77. Besides, we use random
horizontal flipping and 90◦ rotation operations [27] to augment
the training patches.

B. Testing datasets

We utilize five benchmark datasets, including Set5 [54],
Set14 [6], BSD100 [55], Urban100 [56] and 720p, which
are constructed at three different scales (×2, ×3, and ×4),
to evaluate the performance of the trained SR model. Set5
and Set14 respectively contain 5 and 14 images from different
scenes, and BSD100 (a.k.a. B100) and Urban100 (a.k.a. U100)
both consist of 100 images. The 720p dataset is composed
of three typical images from clean images in the PolyU
dataset [57], which are cropped to 1280× 720.

Note, existing methods, such as DnCNN [58] and RED30
utilize YCbCr channel (also named Y channel) to conduct
experiments. Thus, we covert the RGB image predicted by
CFSRCNN into Y channel to evaluate the performance for
SISR.

C. Implementation details

In the training process, the initial parameters are batch size
of 64, beta 1 of 0.9, beta 2 of 0.999 and epsilon of 1e-8. All
steps of the training are 6e+5. The initial learning rate is 1e-
4 and halved every 4e+5 steps. Also, the initial weights and
biases are the same as [27].

The propose CFSRCNN is implemented on Pytorch 0.41
and Python 2.7 for training and inference, respectively. Be-
sides, all experiments are conducted on Ubuntu 16.04 on a
PC equipped with an Intel Core i7-7800 CPU, 16G RAM,
and two GPUs of Nvidia GeForce GTX 1080Ti with Nvidia
CUDA 9.0, and CuDNN 7.5.
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D. Network analysis

Extracting suitable features has been shown useful to ac-
celerate the training process and improve performance in
many image applications [59, 60]. To this end, feature ex-
traction for a SR network usually involves HR features, LR
features, and the combination of HR and LR features. For
HR features, using bicubic interpolation to upscale a LR
image as the input for training a SR model was popular [61].
This method, however, may lose some LR features, thereby
resulting in performance degradation in SISR. Also, it leads
to high computational cost as well. To address this issue,
directly using LR features to train a SR model has been
proposed. For example, FSRCNN [23] accelerates the SR
task by utilizing only LR features prior to upsampling LR
features in the last layer to obtain the HR image. However,
as reported in [62], the upsampling operation may lead to
a sudden shock to the model, which makes the training
procedure unstable. To address the problem, an additional
refinement process was found useful in [62] which refines the
HR features obtained by the upsampling process by combining
HR and LR information. Motivated by this, we also cascade a
feature refinement block (FEB) to recover HR image details.
Moreover, when the network depth goes deeper, the shallow-
layer features would have weaker effect on deep-layer features.
To address this problem, fusing hierarchical information has
been proposed. Notably, the RDN in [38] fuses hierarchical
non-linear features extracted from all convolutional layers
via a residual dense block (see Fig. 3(a)) to enhance the
memory ability of shallow layers. Besides, it employs global
residual learning to learn global features complementary to
local features obtained from the residual dense blocks, thereby
achieving performance improvement in SISR. Moreover, the
channel-wise and spatial feature modulation (CSFM) method
proposed in [63] applies channel-wise and spatial attentions
as block to extract hierarchical features and fuse them for
enhancing the expressive ability of the SR model, as illustrated
in Fig. 3(b). These methods achieve great performances for
SISR. Similarly, our proposed CFSRCNN makes full use of
hierarchical features to enhance LR features in the cascaded
network for SISR. Nevertheless, as can be easily seen by
comparing Figs. 1–2 and Fig. 3, CFSRCNN is different from
the RDN and CSFM in the following aspects:

(1) We concatenate the features of two neighboring FEBs,
instead of using solely the current layer (used in RDB and
CSFM), as the input of all the following layers to propagate the
effect of shallower-layer features to deeper layers. Besides, we
use a pair of heterogeneous (3×3 and 1×1) convolutions with
two layers, rather than stacking multiple (3× 3) convolutions,
and fuse them into a block (FEB) to reduce the network depth
and complexity (i.e., the numbers of parameters and flops).
The above two changes together largely reduce the number
of parameters to only 5.5% of RDB and 9.3% of CSFM, and
the run-time, without severely sacrificing the visual quality of
reconstructed SR images, as shown in the next subsection.

(2) The Enhancement Block (EB) is not simply a concate-
nation of multiple FEUs. Instead, it adopts residual learning,
rather than concatenating FEUs, to integrate the hierarchical

LR features obtained from FEUs for enhancing the robust-
ness of obtained LR features, which are complementary to
the sFEBs. To prevent possible over-enhancement caused by
previous operations, inspired by VDSR [18], we stack several
convolutional layers to smooth out sharp features.

(3) By gathering the global and local features via the
residual learning and sub-pixel convolution to obtain coarse
HR features, rather than using solely local features, CB can
effectively address the long-term dependency problem.

(4) Different from most existing learning-based SR methods
which utilize LR features to train their models, we additionally
make use of HR features to boost the SR performance via
FRB that learns more accurate HR features by stacking mul-
tiple convolutional layers to reduce the discrepancy between
the predicted SR image and its ground-truth. This also can
enhance the stability of the training process.
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Fig. 3. (a) The residual dense block (RDB) architecture proposed in [38]; (b)
The FMM module in the CFSM [63].
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CFSRCNN is composed of a number of stacked feature
extraction blocks (sFEBs), an enhancement block (EB), a con-
struction block (CB), and a feature refinement block (FRB).
Such a combination efficiently makes full use of extracted
hierarchical features to enhance the LR features, that are then
used to infer initial SR features. The feature refinement block
further employs HR features to learn more robust SR features
to reduce the discrepancy between the predicted SR and its
ground-truth. Thus, the combination of the sFEBs, EB, CB,
and FRB can enhance the stability of SR model training. These
key modules constituting CFSRCNN are elaborated below.

1) Stacked Feature Extraction Blocks (sFEBs): The sFEBs
well collaborate with the EB and CB to extract more robust
LR features for training a SR model, where each FEB includes
an FEU and a CU. The design of FEB breaks two rules: less
parameters and better performance for a SR model. For the first
aspect, we use partial heterogeneous convolutions with P = 2
[64] to reduce computation and improve efficiency of training
the SR network, where P denotes part. These heterogeneous
convolutions consist of 16 standard convolutions with size 3×3
and 16 small convolutions with size 1 × 1. The convolutions
of size 3 × 3 and 1 × 1 are integrated into FEU and CU,
respectively. Since the convolution of size 1 × 1 can remove
redundant information and distill important features [41], the
proposed CU can effectively reduce the number of parameters
and improve the efficiency of training CFSRCNN.

The higher diversity the network architecture is, the better
performance the SR model achieves as revealed in [38]. We
therefore append a standard convolutional layer of 3 × 3 to
heterogeneous convolutions. Given a LR input image, we
consolidate the sub-pixel layer to learn SR features after
heterogeneous convolutions by using a standard convolution.
To reconstruct the final SR image, we employ a standard
convolution with size 64 × 3 × 3 × 3 as the final layer. The
depth of heterogeneous convolutional network (HCN) is set
to be 35. For fair comparison, we compare HCN with a
standard convolutional network (SCN) of the same depth as
that of HCN. Table I shows that HCN consumes significantly
fewer computational cost and memory space than SCN for
×2 upscaling. Besides, HCN is also more computationally
efficient than SCN in run-time complexity as shown in Table
II. These results verify that our method effectively reduces the
number of parameters and complexity. Additionally, Table III
show that HCN achieves the same Peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM) performance as
that of SCN on U100 for ×2 upscaling.

Note, with the increase of network depth, shallow-layer
features would make weaker effect on deep-layer ones, making
a deep network suffer from SR performance degradation [49].
To address this problem, gathering hierarchical features can
offer complementary contextual information from shallower
layers to deeper layers [38]. Motivated by this, we propose
a two-step enhancement mechanism in the sFEBs to enhance
the expressive ability of the SR model. The first step utilizes
the FEUs and CUs from two contiguous FEBs to extract long-
and short-path features, respectively. The second step exploits
a concatenation operation to fuse the extracted long- and short-
path features to address the long-term dependency problem.

Further, the effectiveness of the two-step enhancement mech-
anism for SR is illustrated in Table III, where the sFEBs with
long and short-path achieve higher PSNR and SSIM than that
of HCN without long and short-path on B100 and U100,
showing the effectiveness of the combination of long- and
short-path.

2) Enhancement Block (EB): Although a convolution of
size 1× 1 can distill useful features [41], repeated distillation
operations may lead to information loss of the original images.
To address this issue, a two-step enhancement mechanism
has been adopted in the sFEBs. However, the two-step en-
hancement mechanism can fuse long- and short-path features
by concatenating their half feature points to enhance the
generalization ability of a SR model. The features extracted
from the deep layers only inherit partial features from shallow
layers, which cannot completely address the above-mentioned
problem. To better handle this problem, we propose a two-
phase EB. The first phase of EB (named EB1) applies the
residual learning technique to integrate hierarchical features of
all FEUs to offer complementary features for the sFEBs. The
second phase uses several additional stacked FEUs to refine
the learned LR features, which can mitigate over-enhanced
pixels from EB1. The two phases not only provide extra
information for SISR, but also enhance the diversity of the
network architecture. These are useful to recover a latent HR
image as verified in Table III. That is, the ‘combination of
stacked FEBs and EB1’ outperforms ‘sFEBs’ in PSRN and
SSIM on B100 and U100, showing the effectiveness of EB1
for SISR. ‘The combination of stacked FEBs and EB’ achieves
higher PSNR and SSIM performances than ‘The combination
of stacked FEBs and EB1’, implies that the second phase of
EB improves SR performance.

3) Construction Block (CB): Using bicubic interpolation
to upscale a given LR image as the input of a SR model
leads to high computational cost and memory consumption
[23]. Taking this into consideration, we use the sub-pixel
technique to magnify the obtained LR features as SR features,
which can improve the training efficiency by reducing the
computational cost and memory consumption. However, local
LR features benefit from multiple convolutions may ignore
some useful information in the original LR images, making
the extracted SR features anemic. It is known that global
features are complementary with local features to promote
the expressive ability for SISR [38]. Inspired by that, we
utilize the residual learning technique to fuse global and local
features for enhancing the robustness of the extracted SR
features as follows. First, the outputs of the FEU from the
first FEB and the EB are treated as global and local SR
features, respectively. The global and local features are then
upscaled by the sub-pixel technique as the global and local SR
features, respectively. Second, residual learning is employed to
fuse the obtained global and local SR features to derive the
coarse SR features. This phase makes full use of global and
local information from LR and SR features to improve the
expressive ability of a SR model, where is tested by Table
III. That is, the ‘The combination of sFEBs, EB and CB’ has
better results of PSNR and SSIM on B100 and U100 than that
of ‘The combination of sFEBs and EB’ in SISR.
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TABLE I
COMPLEXITY COMPARISON OF TWO DIFFERENT NETWORKS.

Methods Parameters Flops
HCN 757k 5.18G
SCN 1257K 8.14G

TABLE II
RUN-TIME PERFORMANCE COMPARISON OF HCN AND SCN FOR ×2

UPSCALING ON IMAGES OF SIZES 256× 256, 512× 512, AND
1024× 1024.

Sizes
Methods

HCN SCN
×2

256× 256 0.009466 0.009536
512× 512 0.011093 0.011369

1024× 1024 0.019960 0.026624

TABLE III
AVERAGE PSNR AND SSIM PERFORMANCES OF VARIOUS SR METHODS
FOR ×2 UPSCALING ON TWO BENCHMARK DATASETS: B100 AND U100.

Methods B100 U100
PSNR/SSIM PSNR/SSIM

HCN 14.64/0.4132 12.86/0.3788
SCN 14.64/0.4132 12.86/0.3788

sFEBs 31.83/0.8954 31.07/0.9169
The combination of sFEBs and EB1 32.03/0.8974 31.77/0.9243
The combination of sFEBs and EB 32.05/0.8976 31.80/0.9247

The combination of sFEBs, EB and CB 32.06/0.8981 31.91/0.9261
FRNet 14.64/0.4132 12.86/0.3788

CFSRCNN (Ours) 32.11/0.8988 32.03/0.9273

4) Feature Refinement Block (FRB): The combination of
the sFEBs, EB and CB mainly extracts LR features to learn
coarse SR features, which, however, cannot fully characterize
the latent HR image. Also, the training of a SISR model
is unstable. To tackle these problems, a six-layer FRB is
proposed to refine SR features. That is, FRB can use HR
features to refine SR features so as to reduce the discrepancy
between the predicted SR and its ground-truth, which is
complementary with the combination of the sFEBs, EB and
CB. As a consequence, combining the sFEBs, EB, CB and
FRB can enhance the stability of training the SR model.
This fact is verified by comparing ‘CFSRCNN’ with ‘The
combination of sFEBs, EB and CB’ about PSNR and SSIM on
U100 and B100 in Table III. Also, we employ FRB in the LR
space (called FRNet) to extract features with approximately
the same number of parameters to validate the effectiveness of
FRB as shown in Table III. However, solely using FRB in the
LR space behalves like a VGG network with a very deep depth
that usually leads to gradient vanishing/explosion, thereby
significantly degrading performance. Since such validation
method does not provide meaningful comparison, we do not
include it in the comparison. Finally, we use a convolution of
size 64×3×3×3 as the final layer to reconstruct a SR image.

E. Comparisons with state-of-the-arts

We conduct quantitative and qualitative analyses to evaluate
the performance of CFSRCNN for SISR. Specifically, we
evaluate quantitatively the average PSNR and SSIM perfor-
mances and the run-time and model complexities of various

SR methods on five benchmark datasets: Set5, Set14, B100,
U100 and 720p. The compared methods include Bicubic, A+
[9], RFL [7], self-exemplars SR method (SelfEx) [56], cascade
of sparse coding based network (CSCN) [67], RED30 [21],
DnCNN [58], trainable nonlinear reaction diffusion (TNRD)
[68], fast dilated SR method (FDSR) [69], SRCNN [17], FS-
RCNN [23], residue context sub-network (RCN) [61], VDSR
[18], DRCN [19], context-wise network fusion (CNF) [51],
Laplacian SR network (LapSRN) [70], DRRN [20], balanced
two-stage residual networks (BTSRN) [71], MemNet [22],
CARN-M [27], CARN [27], end-to-end deep and shallow net-
work (EEDS)+ [72], two-stage convolutional network (TSCN)
[73], deep recurrent fusion network (DRFN) [74], RDN [38],
CSFM [63], and super-resolution feedback network (SRFBN)
[75]. We also demonstrate a few reconstructed SR images for
subjective visual comparisons.

The average PSNR and SSIM performances of various SR
methods on the Set5, Set14, B100, U100 and 720p datasets
are demonstrated in Tables IV–VIII, respectively. As shown in
Table IV, our CFSRCNN with scaling factors of ×3 and ×4
outperforms the state-of-the-art SR methods, such as DRFN,
TSCN, EEDS+ and CARN-M on Set5, and achieves a com-
parable performance with that of CARN-M for ×2 upscaling.
Specifically, compared with CARN-M, CFSRCNN achieves a
notable gain of 0.14dB in PSNR for ×4 upscaling. Moreover,
as shown in Tables V–VIII, CFSRCNN achieves excellent
performances for all the three scaling factors: ×2 , ×3 and
×4. For example, Table V shows that, CFSRCNN outperforms
MemNet by 0.23dB, 0.27dB, and 0.31dB in PSNR on Set14
for ×2 , ×3, and ×4 upscaling, respectively. Similarly, Table
VI also shows that CFSRCNN outperforms several popular SR
methods, such as CARN-M, TSCN and DRFN. As illustrated
in Table VII, CFSRCNN achieves a significant PSNR gain
over CARN-M by 1.24dB on U100 for ×2 upscaling. In
Table VIII, CFSRCNN outperforms CARN for all the three
scaling factors on 720p. Besides, these tables also show that
CFSRCNN performs stably well.

Figs. 4–6 compare the subjective visual quality of CF-
SRCNN with that of four SR methods, including Bicubic,
SRCNN, SelfEx, and CARN-M for ×2 upscaling on Set14, ×3
upscaling on B100 and ×4 upscaling U100, respectively. To
facilitate subjective comparison visually, we enlarge selected
regions in the SR images, showing that the images super-
resolved by CFSRCNN are clearer than those super-resolved
by the other methods for ×2, ×3, and ×4 upscaling.

We then compare the run-time complexity of CFSRCNN
with that of six methods, including VDSR, DRRN, MemNet,
RDN, SRFBN, and CARN-M, on HR images of sizes 256×
256, 512× 512 and 1024× 1024 for ×2 upscaling. Table IX
shows that CFSRCNN achieves the fastest processing speed.
Besides run-time, we also evaluate the number of parameters
and flops [76] in Table X that reflect the SR model complexity
(i.e., computational cost and memory consumption) for SR
images of size 154 × 154. Table X shows that CFSRCNN
consumes the third fewest number of flops while faithfully
reconstructing high-quality SR images. Due to its shallower
architecture and fewer concatenation operations, CFSRCNN
does not outperform some deeper SR networks, such as RDN,
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TABLE IV
COMPARISON OF AVERAGE PSNR/SSIM PERFORMANCES OF VARIOUS

SR METHODS FOR ×2, ×3, AND ×4 UPSCALING ON SET5.

Dataset Model ×2 ×3 ×4
PSNR/SSIM PSNR/SSIM PSNR/SSIM

Set5

Bicubic 33.66/0.9299 30.39/0.8682 28.42/0.8104
A+ [9] 36.54/0.9544 32.58/0.9088 30.28/0.8603

RFL [7] 36.54/0.9537 32.43/0.9057 30.14/0.8548
SelfEx [56] 36.49/0.9537 32.58/0.9093 30.31/0.8619
CSCN [67] 36.93/0.9552 33.10/0.9144 30.86/0.8732
RED30 [21] 37.66/0.9599 33.82/0.9230 31.51/0.8869
DnCNN [58] 37.58/0.9590 33.75/0.9222 31.40/0.8845
TNRD [68] 36.86/0.9556 33.18/0.9152 30.85/0.8732
FDSR [69] 37.40/0.9513 33.68/0.9096 31.28/0.8658

SRCNN [17] 36.66/0.9542 32.75/0.9090 30.48/0.8628
FSRCNN [23] 37.00/0.9558 33.16/0.9140 30.71/0.8657

RCN [61] 37.17/0.9583 33.45/0.9175 31.11/0.8736
VDSR [18] 37.53/0.9587 33.66/0.9213 31.35/0.8838
DRCN [19] 37.63/0.9588 33.82/0.9226 31.53/0.8854
CNF [51] 37.66/0.9590 33.74/0.9226 31.55/0.8856

LapSRN [70] 37.52/0.9590 - 31.54/0.8850
IDN [41] 37.83/0.9600 34.11/0.9253 31.82/0.8903

DRRN [20] 37.74/0.9591 34.03/0.9244 31.68/0.8888
BTSRN [71] 37.75/- 34.03/- 31.85/-
MemNet [22] 37.78/0.9597 34.09/0.9248 31.74/0.8893
CARN-M [27] 37.53/0.9583 33.99/0.9255 31.92/0.8903

CARN [27] 37.76/0.9590 34.29/0.9255 32.13/0.8937
EEDS+ [72] 37.78/0.9609 33.81/0.9252 31.53/0.8869
TSCN [73] 37.88/0.9602 34.18/0.9256 31.82/0.8907
DRFN [74] 37.71/0.9595 34.01/0.9234 31.55/0.8861
RDN [38] 38.24/0.9614 34.71/0.9296 32.47/0.8990

CSFM [63] 38.26/0.9615 34.76/0.9301 32.61/0.9000
SRFBN [75] 38.11/0.9609 34.70/0.9292 32.47/0.8983

CFSRCNN (Ours) 37.79/0.9591 34.24/0.9256 32.06/0.8920

TABLE V
COMPARISON OF AVERAGE PSNR/SSIM PERFORMANCES OF VARIOUS

SR METHODS FOR ×2, ×3, AND ×4 UPSCALING ON SET14.

Dataset Model ×2 ×3 ×4
PSNR/SSIM PSNR/SSIM PSNR/SSIM

Set14

Bicubic 30.24/0.8688 27.55/0.7742 26.00/0.7027
A+ [9] 32.28/0.9056 29.13/0.8188 27.32/0.7491

RFL [7] 32.26/0.9040 29.05/0.8164 27.24/0.7451
SelfEx [56] 32.22/0.9034 29.16/0.8196 27.40/0.7518
CSCN [67] 32.56/0.9074 29.41/0.8238 27.64/0.7578
RED30 [21] 32.94/0.9144 29.61/0.8341 27.86/0.7718
DnCNN [58] 33.03/0.9128 29.81/0.8321 28.04/0.7672
TNRD [68] 32.51/0.9069 29.43/0.8232 27.66/0.7563
FDSR [69] 33.00/0.9042 29.61/0.8179 27.86/0.7500

SRCNN [17] 32.42/0.9063 29.28/0.8209 27.49/0.7503
FSRCNN [23] 32.63/0.9088 29.43/0.8242 27.59/0.7535

RCN [61] 32.77/0.9109 29.63/0.8269 27.79/0.7594
VDSR [18] 33.03/0.9124 29.77/0.8314 28.01/0.7674
DRCN [19] 33.04/0.9118 29.76/0.8311 28.02/0.7670
CNF [51] 33.38/0.9136 29.90/0.8322 28.15/0.7680

LapSRN [70] 33.08/0.9130 29.63/0.8269 28.19/0.7720
IDN [41] 33.30/0.9148 29.99/0.8354 28.25/0.7730

DRRN [20] 33.23/0.9136 29.96/0.8349 28.21/0.7720
BTSRN [71] 33.20/- 29.90/- 28.20/-
MemNet [22] 33.28/0.9142 30.00/0.8350 28.26/0.7723
CARN-M [27] 33.26/0.9141 30.08/0.8367 28.42/0.7762

CARN [27] 33.52/0.9166 30.29/0.8407 8.60/0.7806
EEDS+ [72] 33.21/0.9151 29.85/0.8339 28.13/0.7698
TSCN [73] 33.28/0.9147 29.99/0.8351 28.28/0.7734
DRFN [74] 33.29/0.9142 30.06/0.8366 28.30/0.7737
RDN [38] 34.01/0.9212 30.57/0.8468 28.81/0.7871

CSFM [63] 34.07/0.9213 30.63/0.8477 28.87/0.7886
SRFBN [75] 33.82/0.9196 30.51/0.8461 28.81/0.7868

CFSRCNN (Ours) 33.51/0.9165 30.27/0.8410 28.57/0.7800

CSFM and SRFBM. However, CFSRCNN offers an excellent

TABLE VI
COMPARISON OF AVERAGE PSNR/SSIM PERFORMANCES OF VARIOUS

SR METHODS FOR ×2, ×3, AND ×4 UPSCALING ON B100.

Dataset Model ×2 ×3 ×4
PSNR/SSIM PSNR/SSIM PSNR/SSIM

B100

Bicubic 29.56/0.8431 27.21/0.7385 25.96/0.6675
A+ [9] 31.21/0.8863 28.29/0.7835 26.82/0.7087

RFL [7] 31.16/0.8840 28.22/0.7806 26.75/0.7054
SelfEx [56] 31.18/0.8855 28.29/0.7840 26.84/0.7106
CSCN [67] 31.40/0.8884 28.50/0.7885 27.03/0.7161
RED30 [21] 31.98/0.8974 28.92/0.7993 27.39/0.7286
DnCNN [58] 31.90/0.8961 28.85/0.7981 27.29/0.7253
TNRD [68] 31.40/0.8878 28.50/0.7881 27.00/0.7140
FDSR [69] 31.87/0.8847 28.82/0.7797 27.31/0.7031

SRCNN [17] 31.36/0.8879 28.41/0.7863 26.90/0.7101
FSRCNN [23] 31.53/0.8920 28.53/0.7910 26.98/0.7150

VDSR [18] 31.90/0.8960 28.82/0.7976 27.29/0.7251
DRCN [19] 31.85/0.8942 28.80/0.7963 27.23/0.7233
CNF [51] 31.91/0.8962 28.82/0.7980 27.32/0.7253

LapSRN [70] 31.80/0.8950 - 27.32/0.7280
IDN [41] 32.08/0.8985 28.95/0.8013 27.41/0.7297

DRRN [20] 32.05/0.8973 28.95/0.8004 27.38/0.7284
BTSRN [71] 32.05/- 28.97/- 27.47/-
MemNet [22] 32.08/0.8978 28.96/0.8001 27.40/0.7281
CARN-M [27] 31.92/0.8960 28.91/0.8000 27.44/0.7304

CARN [27] 32.09/0.8978 29.06/0.8034 27.58/0.7349
EEDS+ [72] 31.95/0.8963 28.88/0.8054 27.35/0.7263
TSCN [73] 32.09/0.8985 28.95/0.8012 27.42/0.7301
DRFN [74] 32.02/0.8979 28.93/0.8010 27.39/0.7293
RDN [38] 32.34/0.9017 29.26/0.8093 27.72/0.7419

CSFM [63] 32.37/0.9021 29.30/0.8105 27.76/0.7432
SRFBN [75] 32.29/0.9010 29.24/0.8084 27.72/0.7409

CFSRCNN (Ours) 32.11/0.8988 29.03/0.8035 27.53/0.7333

TABLE VII
COMPARISON OF AVERAGE PSNR/SSIM PERFORMANCES OF VARIOUS

SR METHODS FOR ×2, ×3, AND ×4 UPSCALING ON U100.

Dataset Model ×2 ×3 ×4
PSNR/SSIM PSNR/SSIM PSNR/SSIM

U100

Bicubic 26.88/0.8403 24.46/0.7349 23.14/0.6577
A+ [9] 29.20/0.8938 26.03/0.7973 24.32/0.7183

RFL [7] 29.11/0.8904 25.86/0.7900 24.19/0.7096
SelfEx [56] 29.54/0.8967 26.44/0.8088 24.79/0.7374
RED30 [21] 30.91/0.9159 27.31/0.8303 25.35/0.7587
DnCNN [58] 30.74/0.9139 27.15/0.8276 25.20/0.7521
TNRD [68] 29.70/0.8994 26.42/0.8076 24.61/0.7291
FDSR [69] 30.91/0.9088 27.23/0.8190 25.27/0.7417

SRCNN [17] 29.50/0.8946 26.24/0.7989 24.52/0.7221
FSRCNN [23] 29.88/0.9020 26.43/0.8080 24.62/0.7280

VDSR [18] 30.76/0.9140 27.14/0.8279 25.18/0.7524
DRCN [19] 30.75/0.9133 27.15/0.8276 25.14/0.7510

LapSRN [70] 30.41/0.9100 - 25.21/0.7560
IDN [41] 31.27/0.9196 27.42/0.8359 25.41/0.7632

DRRN [20] 31.23/0.9188 27.53/0.8378 25.44/0.7638
BTSRN [71] 31.63/- 27.75/- 25.74-
MemNet [22] 31.31/0.9195 27.56/0.8376 25.50/0.7630
CARN-M [27] 30.83/0.9233 26.86/0.8263 25.63/0.7688

CARN [27] 31.92/0.9256 28.06/0.8493 26.07/0.7837
TSCN [73] 31.29/0.9198 27.46/0.8362 25.44/0.7644
DRFN [74] 31.08/0.9179 27.43/0.8359 25.45/0.7629
RDN [38] 32.89/0.9353 28.80/0.8653 26.61/0.8028

CSFM [63] 33.12/0.9366 28.98/0.8681 26.78/0.8065
SRFBN [75] 32.62/0.9328 28.73/0.8641 26.60/0.8015

CFSRCNN (Ours) 32.07/0.9273 28.04/0.8496 26.03/0.7824

trade-off among visual quality, computational efficiency, and
model complexity.
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Fig. 4. Visual qualitative comparison of various SR methods for ×2 upscaling on Set14: (a) HR image (PSNR/SSIM), (b) Bicubic (26.85/0.9468), (c) SRCNN
(30.24/0.9743), (d) SelfEx (31.49/0.9823), (e) CARN-M (33.63/0.9888) and (f) CFSRCNN (34.45/0.9901).

TABLE VIII
COMPARISON OF AVERAGE PSNR/SSIM PERFORMANCES OF VARIOUS

SR METHODS FOR ×2, ×3, AND ×4 UPSCALING ON 720P.

Dataset Model ×2 ×3 ×4
PSNR/SSIM PSNR/SSIM PSNR/SSIM

720p
CARN-M [27] 43.62/0.9791 39.87/0.9602 37.61/0.9389

CARN [27] 44.57/0.9809 40.66/0.9633 38.03/0.9429
CFSRCNN (Ours) 44.77/0.9811 40.93/0.9656 38.34/0.9482

TABLE IX
COMPARISON OF RUN-TIME (SECONDS) OF VARIOUS SR METHODS ON
HR IMAGES OF SIZES 256× 256, 512× 512 AND 1024× 1024 FOR ×2

UPSCALING.

Single Image Super-Resolution
Size 256× 256 512× 512 1024× 1024

VDSR [18] 0.0172 0.0575 0.2126
DRRN [20] 3.063 8.050 25.23

MemNet [22] 0.8774 3.605 14.69
RDN [38] 0.0553 0.2232 0.9124

SRFBN [75] 0.0761 0.2508 0.9787
CARN-M [27] 0.0159 0.0199 0.0320

CFSRCNN (Ours) 0.0153 0.0184 0.0298

TABLE X
COMPARISON OF MODEL COMPLEXITIES OF VARIOUS SR METHODS FOR

×2 UPSCALING.

Methods Parameters Flops
VDSR [18] 665K 15.82G

DnCNN [58] 556K 13.20G
DRCN [19] 1,774K 42.07G

MemNet [22] 677K 16.06G
CARN-M [27] 412K 2.50G

CARN [27] 1,592K 10.13G
CSFM [63] 12,841K 76.82G
RDN [38] 21,937K 130.75G

SRFBN [75] 3,631K 22.24G
CFSRCNN (Ours) 1,200K 11.08G

V. CONCLUSION

In this paper, we proposed a coarse-to-fine super-resolution
CNN (CFSRCNN) for single-image super-resolution. CFSR-
CNN combines low-resolution and high-resolution features by
cascading several types of modular blocks to prevent possible
training instability and performance degradation caused by
upsampling operations. We have also proposed a novel feature
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(d) (e) (f)

Fig. 5. Subjective visual quality comparison of various SR methods for ×3 upscaling on B100: (a) HR image (PSNR/SSIM), (b) Bicubic (25.52/0.7731), (c)
SRCNN (26.58/0.8217), (d) SelfEx (27.32/0.8424), (e) CARN-M (27.90/0.8626) and (f) CFSRCNN (28.56/0.8732).

fusion scheme based on heterogeneous convolutions to address
the long-term dependency problem as well as prevent infor-
mation loss so as to significantly improve the computational
efficiency of super-resolution without sacrificing the visual
quality of reconstructed images. Comprehensive evaluations
on four benchmark datasets demonstrate that CFSRCNN offers
an excellent trade-off among visual quality, computational
efficiency, and model complexity.
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[47] C. Douillard, M. Jézéquel, C. Berrou, D. Electronique, A. Picart, P. Di-
dier, and A. Glavieux, “Iterative correction of intersymbol interference:
Turbo-equalization,” European Trans. Telecom., vol. 6, no. 5, pp. 507–
511, 1995.

[48] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp.
770–778.

[50] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 1874–1883.

[51] H. Ren, M. El-Khamy, and J. Lee, “Image super resolution based
on fusing multiple convolution neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2017, pp. 54–61.

[52] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo, “Multi-level wavelet-
cnn for image restoration,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2018, pp. 773–782.

[53] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image
super-resolution: Dataset and study,” in Proc. IEEE Conf. Computer Vis.
Pattern Recog. Workshops, 2017, pp. 126–135.

[54] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, “Low-
complexity single-image super-resolution based on nonnegative neighbor
embedding,” 2012.

[55] D. Martin, C. Fowlkes, D. Tal, J. Malik et al., “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics.” ICCV Vancouver:, 2001.

[56] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution
from transformed self-exemplars,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2015, pp. 5197–5206.

[57] J. Xu, H. Li, Z. Liang, D. Zhang, and L. Zhang, “Real-world noisy
image denoising: A new benchmark,” arXiv preprint arXiv:1804.02603,
2018.

[58] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising,” IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, 2017.

[59] J. Xu, L. Zhang, W. Zuo, D. Zhang, and X. Feng, “Patch group based
nonlocal self-similarity prior learning for image denoising,” in Proc. IEEE
int. conf. comput. vis., 2015, pp. 244–252.

[60] J. Xu, L. Zhang, D. Zhang, and X. Feng, “Multi-channel weighted
nuclear norm minimization for real color image denoising,” in Proc. IEEE
Int. Conf. Comput. Vis., 2017, pp. 1096–1104.

[61] Y. Shi, K. Wang, C. Chen, L. Xu, and L. Lin, “Structure-preserving im-
age super-resolution via contextualized multitask learning,” IEEE Trans.
Multimedia, vol. 19, no. 12, pp. 2804–2815, 2017.

[62] N. Ahn, B. Kang, and K.-A. Sohn, “Image super-resolution via pro-
gressive cascading residual network,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog. Workshops, 2018, pp. 791–799.

[63] Y. Hu, J. Li, Y. Huang, and X. Gao, “Channel-wise and spatial feature
modulation network for single image super-resolution,” IEEE Trans.
Circuits Syst. Video Technol., 2019.

[64] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “Hetconv:
Heterogeneous kernel-based convolutions for deep cnns,” arXiv preprint
arXiv:1903.04120, 2019.

[65] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010
20th International Conference on Pattern Recognition. IEEE, 2010, pp.
2366–2369.

[66] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al., “Image
quality assessment: from error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.

[67] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, “Deep networks
for image super-resolution with sparse prior,” in Proc. IEEE Int. Conf.
Comput. Vis., 2015, pp. 370–378.

[68] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1256–1272, 2016.

[69] Z. Lu, Z. Yu, P. Ya-Li, L. Shi-Gang, W. Xiaojun, L. Gang, and R. Yuan,
“Fast single image super-resolution via dilated residual networks,” IEEE
Access, 2018.

[70] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep laplacian
pyramid networks for fast and accurate super-resolution,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2017, pp. 624–632.

[71] Y. Fan, H. Shi, J. Yu, D. Liu, W. Han, H. Yu, Z. Wang, X. Wang, and
T. S. Huang, “Balanced two-stage residual networks for image super-
resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog. Workshops,
2017, pp. 161–168.

[72] Y. Wang, L. Wang, H. Wang, and P. Li, “End-to-end image super-
resolution via deep and shallow convolutional networks,” IEEE Access,
vol. 7, pp. 31 959–31 970, 2019.

[73] Z. Hui, X. Wang, and X. Gao, “Two-stage convolutional network for
image super-resolution,” in Proc. Int. Conf. Pattern Recog.. IEEE, 2018,
pp. 2670–2675.

[74] X. Yang, H. Mei, J. Zhang, K. Xu, B. Yin, Q. Zhang, and X. Wei,
“Drfn: Deep recurrent fusion network for single-image super-resolution
with large factors,” IEEE Trans. Multimedia, vol. 21, no. 2, pp. 328–337,
2018.

[75] Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu, “Feedback network
for image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2019, pp. 3867–3876.

[76] C. Tian, Y. Xu, Z. Li, W. Zuo, L. Fei, and H. Liu, “Attention-guided
cnn for image denoising,” Neural Net., 2020.

Chunwei Tian is currently pursuing the Ph.D degree
in the School of Computer Science and Technol-
ogy at Harbin Institute of Technology, Shenzhen.
He received the M.S. degree and B.S. degree at
Harbin University of Science and Technology, in
2017 and 2014, respectively. His research interests
include image denoising, image super-resolution,
pattern recognition and deep learning.

He has published over 20 papers in academic jour-
nals and conferences, including Neural Networks,
Pattern Recognition Letters and ICASSP. He is a

PC of the 18th IEEE International Conference on Dependable, Autonomic
and Secure Computing (DASC 2020), a PC Assistant of IJCAI 2019, a
reviewer of some journals and conferences, such as the IEEE Transactions
on Industrial Informatics, the Computer Vision and Image Understanding,
the Nerocomputing, the Visual Computer, the Journal of Modern Optics,
the IEEE Access, the CAAI Transactions on Intelligence Technology, the
International Journal of Biometrics (IJBM), the International Journal of Image
and Graphics, the ACAIT2019, the 2019 International Conference on Artificial
Intelligence and the Information Processing and Clod Computing (AIIPC
2019).

Yong Xu (Senior Member, IEEE) received his B.S.
degree, M.S. degree in 1994 and 1997, respectively.
He received the Ph.D. degree in Pattern Recogni-
tion and Intelligence system at NUST (China) in
2005. Now he works at Harbin Institute of Tech-
nology, Shenzhen. His current interests include pat-
tern recognition, deep learning, biometrics, machine
learning and video analysis. He has published over
70 papers in toptier academic journals and confer-
ences. He has served as an Co-Editors-in-Chief of
the International Journal of Image and Graphics, an

Associate Editor of the CAAI Transactions on Intelligence Technology, an
editor of the Pattern Recognition and Artificial Intelligence. More information
please refer to http://www.yongxu.org/lunwen.html.



IEEE TRANSACTIONS ON MULTIMEDIA 14

Wangmeng Zuo (Senior Member, IEEE) received
the Ph.D. degree in computer application technology
from the Harbin Institute of Technology, Harbin,
China, in 2007. He is currently a Professor in
the School of Computer Science and Technology,
Harbin Institute of Technology. His current research
interests include image enhancement and restoration,
object detection, visual tracking, and image classi-
fication. He has published over 70 papers in toptier
academic journals and conferences. He has served as
a Tutorial Organizer in ECCV 2016, an Associate

Editor of the IET Biometrics and Journal of Electronic Imaging, and the
Guest Editor of Neurocomputing, Pattern Recognition, IEEE Transactions on
Circuits and Systems for Video Technology, and IEEE Transactions on Neural
Networks and Learning Systems.

Bob Zhang (Senior Member, IEEE) received the
B.A. degree in computer science from York Univer-
sity, Toronto, ON, Canada, in 2006, the M.A.Sc. de-
gree in information systems security from Concordia
University, Montreal, QC, Canada, in 2007, and the
Ph.D. degree in electrical and computer engineering
from the University of Waterloo, Waterloo, ON,
Canada, in 2011.

He is currently an Associate Professor with the
Department of Computer and Information Science,
University of Macau, Macau, China. His current

research interests include medical biometrics, pattern recognition, and image
processing.

Lunke Fei (Member, IEEE) received the B.S. degree
in computer science and technology and the M.S.
degree in computer application technology from
East China Jiaotong University, Nanchang, China, in
2004 and 2007, respectively, and the Ph.D. degree
in computer science and technology from the Harbin
Institute of Technology, Harbin, China, in 2016. He
is currently an Associate Professor with the School
of Computer Science and Technology, Guangdong
University of Technology, Guangzhou, China. His
current research interests include biometrics, pattern

recognition, image processing, and machine learning.

Chia-Wen Lin (Fellow, IEEE) received the Ph.D
degree in electrical engineering from National Tsing
Hua University (NTHU), Hsinchu, Taiwan, in 2000.
He is currently Professor with the Department of
Electrical Engineering and the Institute of Commu-
nications Engineering, NTHU. He is also Deputy
Director of the AI Research Center of NTHU. His
research interests include computer vision and image
and video processing. He has served as a Distin-
guished Lecturer for IEEE Circuits and Systems
Society from 2018 to 2019, a Steering Committee

member for the IEEE TRANSACTIONS ON MULTIMEDIA from 2014 to
2015, and the Chair of the Multimedia Systems and Applications Technical
Committee of the IEEE Circuits and Systems Society from 2013 to 2015. His
articles received the Best Paper Award of IEEE VCIP 2015, Top 10% Paper
Awards of IEEE MMSP 2013, and the Young Investigator Award of VCIP
2005. He has been serving as President of the Chinese Image Processing and
Pattern Recognition Association, Taiwan. He served as a General Co-Chair
of IEEE VCIP 2018, a Technical Program Co-Chair of IEEE ICME 2010,
and a Technical Program Co-Chair of IEEE ICIP 2019. He has served as an
Associate Editor for the IEEE TRANSACTIONS ON IMAGE PROCESSING, the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOL-
OGY, the IEEE TRANSACTIONS ON MULTIMEDIA, IEEE MULTIMEDIA, and
the Journal of Visual Communication and Image Representation.


