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Abstract—This paper presents a novel framework for object
completion in a video. To complete an occluded object, our
method first samples a 3-D volume of the video into directional
spatio-temporal slices, and performs patch-based image in-
painting to complete the partially damaged object trajectories in
the 2-D slices. The completed slices are then combined to obtain
a sequence of virtual contours of the damaged object. Next, a
posture sequence retrieval technique is applied to the virtual
contours to retrieve the most similar sequence of object postures
in the available non-occluded postures. Key-posture selection and
indexing are used to reduce the complexity of posture sequence
retrieval. We also propose a synthetic posture generation scheme
that enriches the collection of postures so as to reduce the effect
of insufficient postures. Our experiment results demonstrate that
the proposed method can maintain the spatial consistency and
temporal motion continuity of an object simultaneously.

Index Terms—Object completion, posture mapping, posture se-
quence retrieval, synthetic posture, video inpainting.

I. INTRODUCTION

V IDEO inpainting [1]–[11] has attracted a great deal of
attention in recent years because of its powerful ability

to fix/restore damaged videos and the flexibility it provides for
editing home videos. It also ensures visual privacy in security
[12] applications. More specifically, inpainting techniques have
been used extensively for fixing/restoring damaged digital
images [13]–[18]. Depending on how they restore damaged
images, the techniques can be categorized into three groups:
texture synthesis-based methods [13], [14], partial difference
equation-based (PDE-based) methods [15], and patch-based
methods [16]. The concept of texture synthesis is borrowed
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from computer graphics. Its main purpose is to insert a
chosen input texture into a damaged/missing region. In con-
trast, PDE-based approaches propagate information from the
boundary of a missing region toward the center of that region.
They are suitable for completing a damaged image in which
thin regions are missing. Texture synthesis and PDE-based
propagation cannot handle cases of general image inpainting
because the former does not consider structural information and
the latter frequently introduces blurring artifacts. A patch-based
approach [16], on the other hand, is much more suitable for
image inpainting because it can produce high-quality visual ef-
fects and maintain the consistency of local structures. Because
of the success of patch-based image inpainting, researchers
have applied a similar concept in video inpainting [3]; however,
the issues that need to be addressed in video inpainting are
much more challenging.

Although video inpainting is a relatively new research area, a
number of methods have been proposed in recent years. Gener-
ally, the methods can be classified into two types: patch-based
methods [1]–[6], and object-based methods [7], [8]. As the
patch-based approach has been successfully applied in image
inpainting [16], researchers have extended a similar concept
to video inpainting. For example, video inpainting under con-
strained camera motion [1] and under space-time completion
[3] can be regarded as extensions of the nonparametric sam-
pling technique developed by Efros and Leung [13]. In [1],
Patwardhan et al. propose a video inpainting technique that
combines motion information and image inpainting. Like most
existing methods, it is assumed that the camera’s movements
are constrained in some directions. In the preprocessing step,
three mosaics, i.e., the background, the foreground and the
optical-flow, are constructed to provide information for video
inpainting. Each missing region in a frame has a corresponding
missing region in the foreground or background mosaic. The
candidate patch in the foreground mosaic that is most similar
to the missing region in the frame is used to fill the missing re-
gion. For background inpainting, the image inpainting method
proposed in [16] is adopted to fill the missing regions of the
background mosaic. Although the approach in [1] produces a
good visual effect for each frame, it cannot maintain continuity
along the temporal axis. The lack of temporal continuity leads
to flickering artifacts. Wexler et al. [3] use a fixed-size cube
with three dimensions as the unit of the similarity measure
function. A set of constituent cubes are used to calculate the
value of a missing pixel. Based on the similarity measure
function, which is the sum of squared differences (SSD), each
cube finds the most similar candidate cube. Although the
results reported in [3] are good, only low resolution videos
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are considered and the multi-scale nature of the solution may
cause blurred results due to sampling and smoothing and
high computational complexity. In [4], Cheung et al. propose
a patch-based probability model for video inpainting. It is
suitable for synthesizing data that does not contain structured
information, but the reported inpainting results are of low
resolution and contain over-smoothing artifacts. Shen et al.
[6] propose constructing motion manifolds of the space-time
volume. The manifolds contain the entire trajectory of each
pixel, and the strategy proposed by Sun et al. [17] is used to
inpaint missing regions. In [17], a user only needs to draw one
structure line to perform inpainting; however, in [6], two lines
must be drawn because both the foreground and the background
must be considered. The inpainting process proposed in [17] is
computationally expensive, but the process proposed in [6] is
even more complicated and thus requires more time. Shen et
al.’s approach uses two-dimensional patches (one for the spatial
dimension and one for the temporal dimension). As a result,
if a patch contains both spatial and temporal dimensions, they
cannot be handled smoothly at the same time, which results in
either motion discontinuity or an incomplete structure.

Object-based approaches, such as [7] and [8], also employ a
video inpainting mechanism. In [8], Cheung et al. propose an ef-
ficient object-based video inpainting technique for dealing with
videos recorded by a stationary camera. To inpaint the back-
ground, they use the background pixels that are most compatible
with the current frame to fill a missing region; and to inpaint the
foreground, they utilize all available object templates. A fixed-
size sliding window is defined to include a set of continuous
object templates. The authors also propose a similarity func-
tion that measures the similarity between two sets of continuous
object templates. For each missing object, a sliding window
that covers the missing object and its neighboring objects’ tem-
plates is used to find the most similar object template. The cor-
responding object template is then used to replace the missing
object. However, if the number of postures in the database is not
sufficient, the inpainting result could be unsatisfactory. More-
over, the method does not provide a systematic way to identify
a good filling position for an object template. This may cause vi-
sually annoying artifacts if the chosen position is inappropriate.
In [7], Jia et al. propose a user-assisted video layer segmenta-
tion technique that decomposes a target video into color and il-
lumination videos. Then, a tensor voting technique is used to
maintain consistency in both the spatio-temporal domain and
the illumination domain. The method reconstructs an occluded
object by synthesizing other available objects, but the synthe-
sized object does not have a real trajectory and only textures are
allowed in the background.

Patch-based methods often have difficulty handling spatial
consistency and temporal continuity problems. For example, the
approaches proposed in [1] and [6] can only maintain spatial
consistency or temporal continuity; they cannot solve both prob-
lems simultaneously. On the other hand, the approaches pro-
posed in [3] and [4] can deal with spatial and temporal informa-
tion simultaneously, but they suffer from the over-smoothing ar-
tifacts problem. In addition, patch-based approaches often gen-
erate inpainting errors in the foreground. As a result, many re-
searchers have focused on object-based approaches, which usu-

Fig. 1. Simplified flowchart of the proposed video inpainting scheme.

ally generate high-quality visual results. Even so, some difficult
issues still need to be addressed; for example, the unrealistic
trajectory problem and the inaccurate representation problem
caused by an insufficient number of postures in the database.

In this paper, we propose an object-based video inpainting
scheme that can solve the spatial inconsistency problem and
the temporal continuity problem simultaneously. The scheme is
comprised of three steps: virtual contour construction, key-pos-
ture selection and mapping, and synthetic posture generation.
The contribution of this work is three-fold. First, we propose a
scheme that is able to derive the virtual contour of an occluded
object. The contour provides a fairly precise initial estimate of
the posture and filling location of the occluded object, even if
the object is completely occluded. Therefore, the virtual con-
tour is suitable for finding a good replacement for the occluded
object from the available postures in the input video. Second, we
propose a key posture-based mapping scheme that converts the
posture sequence retrieval problem into a substring matching
problem, thereby reducing the computational complexity sig-
nificantly, while maintaining the matching accuracy. Since the
occluded objects are completed for a whole subsequence rather
than for individual frames, the temporal continuity of object mo-
tion is maintained as well. Third, for a sequence in which we
cannot find a sufficiently rich set of available postures for com-
pleting occluded postures, our proposed synthetic posture gen-
eration scheme can effectively enrich the database of postures
by combining the constituent parts of different available pos-
tures. As a result, improved inpainting performance is achieved.

The remainder of this paper is organized as follows.
Section II provides an overview of the proposed video com-
pletion scheme. In Section III, we present the proposed
posture-based, inpainting scheme for occluded objects; and in
Section IV, we evaluate the scheme’s performance. Section V
contains some concluding remarks.

II. OVERVIEW OF THE PROPOSED SCHEME

We propose an object-based video inpainting scheme that can
maintain the spatial consistency and temporal motion continuity
of an object simultaneously. The scheme can also handle the
problem of insufficiency of available postures. Fig. 1 shows a
block diagram of the proposed scheme. Initially, we assume that
the objects to be removed and the occluded objects to be re-
stored have been extracted by an automatic object segmentation
scheme [19], or by an interactive extraction scheme [20]–[22].
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Fig. 2. Flowchart of the proposed object completion scheme.

After object extraction, the occluded objects and the background
are completed separately. We also assume that the trajectory of
each occluded object can be approximated by a linear line seg-
ment during the period of occlusion. This assumption is reason-
able for many practical applications because the duration of an
occlusion is typically short, and an object does not usually per-
form complex motions during such a short period.

Our primary goal is to solve the problem of completing
partially or totally occluded objects in a video. Fig. 2 shows
the flowchart of the proposed object completion scheme which
is comprised of three steps: virtual contour construction, key
posture-based posture sequence matching, and synthetic key
posture generation. The first step of object inpainting involves
sampling a 3-D volume of video into directional spatio-temporal
slices. Then a patch-based (exemplar-based) image inpainting
[16] operation is performed to complete the partially damaged
object trajectories in the 2-D spatio-temporal slices. The ob-
jective is to maintain the trajectories’ temporal continuity. The
completed spatio-temporal slices are then combined to form
a sequence of virtual contours of the target object to infer the
missing part of the object’s posture [29]. Next, the derived
virtual contours and a posture sequence matching technique are
used to retrieve the most similar sequence of object postures
from among the available non-occluded postures. The available
postures are collected from the non-occluded part of the input

Fig. 3. Extracting the local context of a posture: (a) the object’s original pos-
ture; (b) the object’s silhouette described by a set of feature points; (c) the local
histogram of a significant feature point where the numbers of feature points con-
tained in some bins are shown; (d) extracting significant feature points of the
object’s silhouette using a convex hull surrounding the silhouette; and (e) the
resultant significant feature points of the object’s silhouette.

video. We perform key posture selection, indexing, and coding
operations to convert the posture sequence retrieval problem
into a substring search problem, which can be solved efficiently
by existing substring-matching algorithms [23]. If a virtual
contour cannot find a good match in the database of available
postures, we construct synthetic postures by combining the
constituent components of key postures to enrich the posture
database. This process mitigates the problem of insufficient
available postures. After retrieving the most similar posture
sequence, the occluded objects are completed by replacing the
damaged objects with the retrieved ones.

For background inpainting, we follow the background mo-
saics method proposed in [1]. The method first constructs
a background mosaic for each video shot based on global
motion estimation (GME), and then finds the corresponding
available data in the background mosaic for each pixel in a
missing region. The data are used to fill the missing regions and
thereby achieve spatio-temporal consistency in the completed
background. Since background inpainting is not the focus of
this paper, we do not consider its implementation in detail.

III. OCCLUDED OBJECT COMPLETION USING

POSTURE SEQUENCE MATCHING

A. Shape Context Descriptor

Before discussing the proposed method in detail, we describe
the shape context descriptor in [23] and [24], which we use for
posture alignment/normalization and key posture selection. The
descriptor is invariant to translation, scaling, and rotation; and
it is even robust against small amounts of geometrical distor-
tion, occlusion, and outliers. As shown in Fig. 3, given an object
image [Fig. 3(a)], the descriptor selects a set of feature points
to describe the object’s silhouette [Fig. 3(b)]. The object’s local
shape context is described by the local histograms of the regions
centered at the feature points. Under this method, for each fea-
ture point, a circle with radius [Fig. 3(c)] is used to find the
local histogram. The circle is then divided into partitions
and the number of feature points in each partition is calculated,
resulting in a histogram with bins. The value of is
empirically set to be 60 for all sequences. The cost of matching
two different sampled points which belong to two different pos-
tures can be defined as follows:

(1)
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where and denote the th bin of the two sam-
pled points and , respectively. The best match between two
different postures can be accomplished by minimizing the fol-
lowing total matching cost:

(2)

where is a permutation of . Due to the con-
straint of one-to-one matching, shape matching can be consid-
ered as an assignment problem that can be solved by a bipartite
graph matching method. Therefore, the shape context distance
between two shapes and can be computed as follows:

(3)
where and are the number of sample points on the shape

and , respectively.

B. Virtual Contour Construction Using Spatio-Temporal Slices

The main difficulty in completing a damaged video object is
that the information left in a badly damaged object is usually
insufficient to reconstruct the object properly by using spatio-
temporal clues. Furthermore, completing an object frame-by-
frame often causes temporal discontinuity in the object’s ap-
pearance and motion, since a frame-wise completion process
does not consider an object’s temporal dependency in consecu-
tive frames. Such temporal discontinuity results in visually an-
noying artifacts like flickering and jerkiness. To ensure that a
completed object is visually pleasing, it is important to extract
a set of features from a damaged object in a number of con-
secutive frames. As a result, the features not only represent the
object’s characteristics (e.g., motion, appearance, and posture),
but also take its temporal continuity into account.

Manifold learning-based methods [10], [25] have been pro-
posed to recover the damaged/missing poses of an occluded
object. Although the consecutive poses of an object with reg-
ular and cyclic motion can be well represented by a low-dimen-
sional manifold embedded in a high-dimensional visual space,
poses with nonregular motions (e.g., transitions in two types
of motions) are usually not the case. As a result, mapping re-
constructing a high-dimensional video object with irregular or
noncyclic motion from the object’s low-dimensional manifold
approximation usually leads to annoying artifacts (e.g., ghost
images).

As mentioned earlier, we use spatio-temporal slices of a video
to derive virtual object contours, which are then used as fea-
tures to infer the occluded object poses. More specifically, after
object extraction and removal, we sample a 3-D video volume
comprised of several consecutive frames to obtain a set of di-
rectional 2-D spatio-temporal slices, as shown in Fig. 4. For ex-
ample, if a 3-D video volume [Fig. 4(a)] is sampled at different
Y values [Fig. 4(b)], each resulting XT slice represents the hori-
zontal trajectory of an object over time. The trajectory can fully
capture an object’s motion if it only has horizontal motions.
Other directional sampling schemes can be used to deal with
objects that have different motion directions. Note that a non-
pure horizontal motion will cause an object’s size to vary over

Fig. 4. Sampling a 3-D video volume comprised of several consecutive frames.
(a) Original frame. (b) Object trajectory on a sampled XT plane s, indicated by
the green lines in (a). (c) 2-D spatio-temporal slices sampled on a video shot,
where the object’s size varies due to nonpure horizontal motion. (d) Removed
occluded object trajectories on the XT plane sampled on the 2-D plane.

time due to the zoom-in/zoom-out effect, as shown in Fig. 4(c).
In this case, posture alignment and normalization can be used
to avoid the inference of different posture scales. Without loss
of generality, we use the largest posture of an object as a ref-
erence for aligning and normalizing the other postures. First,
we establish the correspondence between the contour points of
every two adjacent postures by shape matching [23] and [24].
The affine transformation parameters between the largest pos-
ture and the others can then be estimated from the corresponding
points using the least squares optimization method. As a result,
all postures are aligned and normalized with the largest pos-
ture via the affine transformations. As shown in Fig. 4(d), after
removing the foreground object and posture alignment, object
occlusion results in incomplete trajectories of the object in the
spatio-temporal slices. The missing regions of object trajecto-
ries in the 2-D spatio-temporal slices must be completed using
an image inpainting method before composing a virtual con-
tour. Because an object’s occlusion period is usually short, we
assume that the occluded part of a motion trajectory in a 2-D
slice can be approximated by a line. Based on this assumption,
the occluded part in each directionally sampled slices can be in-
painted well. Since the trajectory of an object on each 2-D slice
records the locations of the same part of object over time, as
long as the missing regions of trajectories are completed prop-
erly, the reconstructed trajectories will be continuous, thereby
preserving the temporal continuity of an object.

To obtain continuous object trajectories, we use the patch-
based image inpainting scheme proposed in [16] to complete
missing regions in the spatio-temporal slices. The method first
determines the filling order of the missing regions based on the
confidence term and data term as follows:

(4)
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Fig. 5. Notations used for the data and confidence terms in patch-based image
inpainting [14].

where represents the priority of a missing region ; and
and denote the confidence term and the data term

expressed in (5) and (6), respectively:

(5)

(6)

where represents the area of region , is a normaliza-
tion factor, denotes the unit vector orthogonal to the front

at point , and stands for the orthogonal operator, as illus-
trated in Fig. 5.

Based on the filling order, a missing region is filled with
the most similar neighboring patches (measured by the sum
of squared differences). After completing each spatio-temporal
slice of a video frame, we use the Sobel edge detector to find the
boundary of the object’s trajectory in the slice. Then, the com-
pleted spatio-temporal slices are combined to construct a virtual
contour, which is used to guide the subsequent posture mapping
and retrieval process.

Sometimes, image inpainting errors lead to imprecise virtual
contours, making it difficult to retrieve correct postures for
object inpainting. To resolve this problem, we use the object
tracking scheme proposed in [27] to correct image inpainting
errors. To inpaint an occluded object, our method tracks the
object in the non-occlusion period to obtain their positions.
Accordingly, each spatio-temporal slice is then divided into two
regions, the background region and the foreground trajectory,
which allows us to apply image inpainting to the regions sep-
arately and thereby avoid inpainting errors. That is, available
foreground information will only be used to infill the missing
region of foreground region, and vice versa. Fig. 6 shows that
the tracking-based correction technique significantly reduces
the distortion of a virtual contour caused by inpainting errors.

The rationale behind the proposed virtual contour construc-
tion method is that if the continuity of object trajectories can
be maintained in individually completed spatio-temporal slices,
then the motion continuity of an object reconstructed by com-
bining all the inpainted slices will also be maintained. Thus, so
long as the linear line motion assumption holds during the oc-
clusion period, a virtual contour can provide fairly precise in-
formation about the posture and filling location of an occluded
object, even if the object is badly damaged.

Fig. 6. Virtual contours constructed by combining 2-D spatio-temporal slices
derived via the patch-based inpainting method proposed in [14]. The left-hand
side shows the virtual contours obtained by combining completed spatio-tem-
proal slices without corrections, and the right-hand side shows the virtual con-
tours with corrections.

C. Key Posture-Based Posture Sequence Matching

After composing a sequence of consecutive virtual contours,
we use them to match the most similar posture sequence in the
set of available postures to complete the occluded objects. To
simplify the posture sequence matching process, we use the key
posture selection method proposed in [24] to select the most
representative postures from among the available postures.
The method also uses the shape context descriptor in [24] to
measure the distance (dissimilarity) between two postures. As
illustrated in Fig. 3, given an object’s posture [Fig. 3(a)], a set
of feature points are selected to describe the object’s silhouette
[Fig. 3(b)]. To reduce the complexity of posture matching
without sacrificing the matching accuracy significantly, a
convex hull bounding the silhouette [Fig. 3(d)] is used to select
a subset of key feature points [Fig. 3(e)] to describe the shape
context of the object. The distance (dissimilarity) between two
postures is evaluated by matching the two corresponding pos-
ture silhouettes by (3). A posture is deemed a key posture if its
degree of dissimilarity to all key postures exceeds a predefined
threshold, , that is empirically set to be 0.08. The
key-posture selection algorithm is summarized below.

Algorithm: Key Posture Selection

The set of key-postures

The available posture database

For to

{

If

else if

}
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Fig. 7. Process for converting available postures and virtual contours into a
sequence of key posture labels. The blue frames and numbers indicate the frames
with available postures and their corresponding key-posture labels. The orange
frames and numbers indicate the frames with constructed virtual contours and
their corresponding key-posture labels.

After the key posture selection process, each key posture is
labeled with a unique number. The virtual contour of each oc-
cluded posture is then matched with the key posture that has the
most similar context, as defined in (3). If a virtual contour cannot
be matched in this way, it is given a special label. As a result, a
sequence of contiguous available postures and virtual contours
can be converted into a string of key-posture labels based on the
temporal order, as shown in Fig. 7. After the encoding process,
the problem of retrieving the most similar sequence of postures
for a sequence of virtual contours becomes a substring matching
problem [26] that, given an input segment of codes, searches
for the most similar substring in a long string of codes. The
occluded objects are then replaced with the retrieved sequence
of available postures. Fig. 8 shows two examples of using sub-
string matching to solve the posture mapping problem. During
the occlusion period, a string of labels in a fixed-size sliding
window (the size is 4 in the example) is matched to the sub-
string of labels in the normal periods. We use two sliding win-
dows that start from each end of the occlusion period and move
toward the center of the period. Each sliding window overlaps
with the neighboring normal period by half a window. As a re-
sult, half of the labels in the initial string are derived from avail-
able postures and the remaining labels are obtained from the
virtual contours. As illustrated in the first example of Fig. 8, the
left sliding window initially consists of four postures encoded
as “BBCC” including two available postures (the “BB” part) in
frames , and two virtual contours (the “CC” part) in
frames , . The right sliding window initially contains four
postures encoded as “EFGG” where “EF” represents the two vir-
tual contours in frame and and “GG” represents the two
available postures in frames , and , respectively. In this
example, the available postures in frames 5, 6, , and
of the two initial sliding windows are deemed the best-match se-
quence to replace the damaged objects in frames , , ,
and . In the second matching, however, a good match cannot
be found for the damaged object in frame (with virtual
contour label “V”) after substring matching. Our method han-
dles such situations by constructing synthetic key-postures, as
will be discussed later.

Using the proposed key-posture selection and mapping
method to encode a sequence of virtual contours and available
postures with a compact representation of key-posture labels
has two advantages. First, since there are many efficient sub-
string matching algorithms, converting the posture sequence
retrieval problem into a substring matching problem reduces

Fig. 8. Examples of using substring matching to solve the posture mapping
problem. The length of the substring is 4. The blue numbers indicate the key-
posture labels of available postures; the brown numbers indicate the labels of
virtual contours; and the red numbers indicate the labels of available postures
used to replace the occluded objects. In the first posture mapping, the available
postures in frames 5, 6, ���, and ��� are deemed the best matches to replace
the damaged objects in frames �, ���, ���, and � , respectively. In the second
mapping, however, a good match cannot be found for the damaged object in
frame � � � (with the virtual contour labeled “V”).

the computational complexity substantially. Second, as the
occluded objects are completed for a whole subsequence rather
than for individual frames, the temporal continuity of object
motion is maintained.

D. Synthetic Posture Generation

The occlusion problem occurs in real-world applications all
the time; hence, a virtual contour generated from an occlusion
event may not find a good match among the selected key pos-
tures due to the lack of available non-occluded object postures.
The problem of insufficient postures usually arises when the
occlusion period for a to-be-completed object is long, resulting
in many reconstructed virtual contours, or when the object’s
non-occlusion period is too short to collect a sufficiently rich
set of non-occluded postures. Using a poorly matched posture
to complete an occluded object can result in visually annoying
artifacts. To resolve the problem where a virtual contour
cannot find a good-match in the available key-posture database,
we synthesize more postures by combining the constituent
components of the available postures to enrich the content of
the database. Fig. 9 shows how a new posture is synthesized
by using three constituent components (the head, torso, and
legs) from different available postures selected by a skeleton
matching process.

The flowchart of the proposed synthetic posture generation
process is shown in Fig. 10. First, the skeleton of a virtual con-
tour that cannot find a good match in the posture database is
extracted using the scheme proposed in [28], which is also used
to extract the skeletons of all available postures. Then, the con-
stituent components of each selected key-posture are decom-
posed based on the distribution of the variance in alignment er-
rors between every two aligned key-postures. The component
decomposition result of key postures is used to help segment
the extracted skeletons into their constituent components. We
use the segmented skeleton components of a virtual contour to
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Fig. 9. Synthesizing a new posture using available postures. The new posture is
comprised of three components (the head, body, and legs) taken from different
postures.

Fig. 10. Flowchart of the proposed synthetic posture generation process.

retrieve similar posture components, which are then used to syn-
thesize new postures.

All of the above-mentioned constituent components are de-
rived from the components of existing database postures. To
use these components, we need to perform segmentation on the
key-postures in advance, as shown in Fig. 11. After aligning the
postures, we compute the difference between every two consec-
utive key postures. From the distribution of the variance, it is
possible to identify the components that move more frequently.
Then, we label the “frequently moving” components as the con-
stituent components of the key-posture synthesis process.

We use the skeletons of objects to retrieve similar posture
components, which are then used to synthesize new postures.
To extract object skeletons, we employ the method proposed
in [28]. It defines candidate skeleton points as the centers of
the maximal disks located inside the planar shape. Then, a

Fig. 11. Constituent components of a posture are partitioned based on local
variance extraction. The dashed lines which separate postures into constituent
components are determined based on the distribution of local variance shown
on the right-hand side.

Euclidean distance map is used to determine whether or not a
candidate skeleton point is a genuine skeleton point. A candi-
date skeleton point is deemed a real skeleton point if any one of
its eight neighbors satisfies the following connectivity criterion:

(7)

where and , in which and
denote, respectively, the coordinates of the two nearest

contour points and ; and represent, respectively, the
shortest and longest distances between the contour point and the
neighbors of the skeleton point; is the distance between the
two nearest contour points; and is a pre-determined threshold.

We use the following relevance metric, , to measure the
contribution of an arc to the shape of a contour in order to de-
termine whether the arc is a redundant branch of the skeleton:

(8)

where and represent, respectively, two line segments of the
object’s contour; is the turn angle at the common vertex
of segments and ; and denotes the length function.

The relevance metric allows us to select and remove arcs that
only make a small contribution to an object’s shape. This oper-
ation reduces the shape’s contour, which is then used to remove
unimportant skeleton points. We use the thresholds derived in
the posture classification step to separate the skeletons of virtual
contours and those of the available postures. After aligning the
parts of a skeleton in the virtual contours with the corresponding
parts in the available postures, the best-matched skeleton com-
ponents of the available postures can be identified based on the
following similarity metric:

(9)

where and denote, respectively, the skeleton component of
a virtual contour and the corresponding part in an available pos-
ture; and represents the matching score of the cor-
responding skeleton points, and , of the virtual contour
and the available posture, defined as follows:

if and belong to the
skeleton region

if and belong to the
foreground region

otherwise.
(10)
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Fig. 12. Test sequence #1 containing a single pedestrian. (a) Some snapshots
of the original video (ground-truths). (b) Virtual contours (on the left), which
are constructed by combining the completed spatio-temporal slices and their
corresponding best-match postures (on the right). (c) Corresponding completed
frames. (d) Comparison of the completed objects (on the left) and the ground-
truths (on the right).

Here, the two score constants, and , are set em-
pirically as 3 and 1, respectively.

Finally, a new posture can be synthesized by combining all
the best-matched constituent components of the available pos-
tures selected by the component-wise skeleton retrieval process.

IV. EXPERIMENTAL RESULTS

We used six test sequences to evaluate the efficacy of our
method. Five sequences were captured by a commercial digital
camcorder with a frame rate of 30 fps, and a resolution of 352

240 (SIF). The remaining one was taken from [1]. In the ex-
periments, we first removed unwanted objects and occluded ob-
jects completely, and then used the proposed inpainting method
to reconstruct the occluded objects. For subjective performance
comparison, readers can obtain the complete set of test results,
including the original test videos, the videos after object re-
moval, and the completed videos, from our project website [30].

Fig. 12(a) shows some snapshots of test sequence #1, which
contains a pedestrian. In this experiment, we intentionally re-
moved the person from 20 consecutive frames, and then used the
proposed method to restore the missing person. This test case

Fig. 13. Test sequence #2 with two people walking toward each other. (a) Orig-
inal video frames. (b) Virtual contours (on the left), which are constructed by
combining the completed spatio-temporal slices and the corresponding best-
match postures (on the right). (c) Completed frames (on the left) using the orig-
inal key-postures and the additional synthetic postures and the corresponding
frames composed from the completed 2-D slices (on the right).

simulates a real-world situation in which objects in a number
of consecutive frames are damaged due to packet loss during
transmission of the video (e.g., the loss of several video-ob-
ject-planes of an MPEG-4 stream), or due to a damaged hard-
ware component (e.g., a hard disk or an optical disk). Since
we have the ground-truth of the missing object in this case, we
can evaluate the performance of our object completion method
based on the ground-truth. First, we observe that the virtual
contours of the missing objects, constructed by combining the
completed spatio-temporal slices [shown in Fig. 12(b)], retain
most of the objects’ posture information. This verifies that the
virtual contour of a missing object provides a fairly good ini-
tial estimate for finding the best-matched available posture to
complete the missing object. Fig. 12(c) show that the objects
completed frame-by-frame by the proposed posture mapping
scheme conform to the ground-truths very well. Moreover, the
scheme maintains the temporal continuity of object motion even
if the object is lost completely in several consecutive frames.

Test sequence #2, shown in Fig. 13(a), simulates a common
real-life situation that occurs in home videos, i.e., two people
walking toward each other. In this scenario, one person is oc-
cluded by the other, which is not desirable. This case is sim-
ilar to the situation where a moving object is occluded by a sta-
tionary object. After removing the unwanted object, we use the
proposed method to restore the partially/completely occluded
object. Fig. 13(b) shows, once again, that the virtual contours
of damaged objects provide reasonably good estimates of the
objects’ postures. We do not have a ground-truth for this test
sequence. However, Fig. 13(c) shows that the restored person
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Fig. 14. Test sequence #3 containing two people walking toward each other
(with a long occlusion period). (a) Original video frames. (b) Virtual contours
(on the left) and the corresponding best-match postures (on the right) without
including synthetic postures. (c) Virtual contours (on the left) and the corre-
sponding best-match postures (on the right) with the additional synthetic key-
postures. (d) Completed frames (on the left) using the original key-postures and
the additional synthetic postures and the corresponding frames composed from
the completed 2-D slices (on the right).

moves with rather natural and continuous postures. Besides, our
method maintains the temporal motion continuity of the object
well. Note, the occluded girl turns her body a bit (i.e., the pose
angle is changed) during the occlusion period. Since the pose
angles of available postures are slightly different from the actual
ones, the occluded objects are replaced with the available pos-
tures with similar silhouette information but different pose an-
gles, leading to some artifact during the transition of pose angle
(see the video in [30]). Such pose angle change problem has not
yet been addressed in this work.

Test sequence #3 [Fig. 14(a)] is similar to test sequence #2,
except that the person is occluded for a significantly longer pe-
riod than in sequence #2. The longer occlusion period made it
difficult to complete the occluded object because only a small
number of available non-occluded postures were available in
the sequence. In other words, the key-postures selected from
the available postures were not sufficiently comprehensive, so
we could not find a good match among the key-postures for the
occluded object. Fig. 14(b) shows the virtual contours of the
occluded object and its corresponding matched postures. The
postures matched with the set of insufficient available postures
appear to be incorrect in the hands and legs, leading to visu-
ally unpleasant artifacts in the completed video. Recall that our

Fig. 15. Test sequence #4. (a) Some snapshots of the original video. (b) Cor-
responding best-match postures. (c) Result derived by the proposed method.

TABLE I
RUN-TIME ANALYSIS OF KEY OPERATIONS IN THE PROPOSED METHOD

scheme minimizes the effect of insufficient available postures
by adding synthetic postures to the available posture database
to enrich the choice of postures, as shown in Fig. 14(c) and (d).

Test sequence #4, shown in Fig. 15(a), also shows two people
walking toward each other, where the subject moves both hor-
izontally and vertically. Moreover, the subject changes direc-
tion leading to nonlinear motion and change of object size. In
this scenario, we perform posture alignment/normalization prior
to sampling the 2-D spatio-temporal slices. After removing the
unwanted object, we use the proposed method to restore the oc-
cluded object. Fig. 15(c) shows that, even with nonpure hor-
izontal motion and nonlinear motion, the proposed method is
still effective in maintaining the spatial consistency and tem-
poral continuity.
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The proposed system was implemented on a PC equipped
with Intel Core2 Duo CPU 2.83 GHz and 3.5 GB system
memory. The codes (implemented in MATLAB) for
patch-based image inpainting and skeleton generation are
obtained from [16] and [28], respectively. The remaining codes
are all implemented in C++. The run time of each step for each
test sequence is listed in Table I. In the four test sequences,
the number of available postures in sequence #3 is not rich
enough to achieve satisfactory object inpainting performance.
Therefore, the synthetic posture generation process is used to
improve the performance.

V. CONCLUSION AND DISCUSSION

To resolve a number of problems related to video completion,
we have proposed a novel method that treats the completion
of objects and completion of the background separately. The
method is comprised of three steps: virtual contour construc-
tion, key posture-based sequence retrieval, and synthetic posture
generation. We have also proposed an efficient posture mapping
method that uses key posture selection, indexing, and coding
operations to convert the posture sequence retrieval problem
into a substring matching problem. In addition, we have devel-
oped a synthetic posture generation scheme that enhances the
variety of postures available in the database. For background
inpainting, we use a background mosaic-based scheme and cor-
respondence maps to complete missing background segments.
Our experiment results show that the proposed method gener-
ates completed objects with good subjective quality in terms of
the objects’ spatial consistency and temporal motion continuity.
It also avoids over-smoothing artifacts and compensates for in-
sufficient available postures.

The proposed method still has a few constraints. First, if an
object moves nonlinearly during an occlusion period, the vir-
tual contour construction may not compose sufficiently accurate
postures. But should there be enough non-occluded portion of
the object, the linear motion constraint may be relaxed. Second,
currently the proposed method does not deal with the illumina-
tion change problem that occurs if lighting is not uniform across
the scene. Third, the synthetic posture generation method can
only deal with objects that can be explicitly decomposed into
constituent components (e.g., a walking person), but may not
synthesize complex postures.
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