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Abstract—Label noise in training data can significantly de-
grade a model’s generalization performance for supervised learn-
ing tasks. Here we focus on the problem that noisy labels are
primarily caused by mislabeled confusing samples, which tend to
be concentrated near decision boundaries rather than uniformly
distributed, and whose features should be equivocal. To address
the problem, we propose an ensemble learning method to correct
noisy labels by exploiting the local structures of feature manifolds.
Different from typical ensemble strategies that increase the
prediction diversity among sub-models via certain loss terms, our
method trains sub-models on disjoint subsets, each being a union
of randomly selected seed samples’ nearest-neighbors of the same
class on the data manifold. As a result, only a limited number of
sub-models will be affected by locally-concentrated noisy labels,
and each sub-model can learn a coarse representation of the
data manifold along with a corresponding graph. The constructed
graphs are used to suggest a set of label correction candidates,
and accordingly, our method determines label correction results
by majority decisions. Our experiments on real-world noisy label
datasets demonstrate the superiority of the proposed method over
existing state-of-the-arts.

Index Terms—Ensemble Learning, Label Noise, Data Splitting,
Graph Representation, Label Correction.

I. INTRODUCTION

Learning from noisy data is generally a vital issue in repre-
sentation learning because of two reasons. First, as revealed in
[1], given a classification model Φ(·, θ) learned by optimizing
its parameter θ via the cross-entropy loss on the predicted
label, its expected error is affected by i) the label noise, ii)
the selected learning model Φ, and iii) the model parameter θ
learned in the training process. Then, once the learning model
Φ—suitable or not—is determined, the influence brought by
Φ and θ is fixed. Hence, the only factor that may downgrade
the model performance becomes the label noise within the
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ground-truth training sample-label pairs. Second, because it
is expensive and time-consuming to collect data with reliable
clean labels, in real-world applications people usually resort
to exploiting low-cost datasets, e.g., those collected by search
engines and labeled by quick annotators or crowd-sourcing,
for training purposes. These low-cost datasets usually contain
a certain amount of noisy labels and thus are not as reliable as
professionally-labelled datasets like COCO [2] and ImageNet
[3]. Consequently, how to learn from noisy data, including how
to correct noisy data, has become a crucial task in real-world
applications.

Label noise can be roughly divided into two types: random
label noise and confusing label noise, as illustrated in Fig. 1.
The former typically involves mismatched descriptions or tags
usually due to the negligence of an annotator. For this type of
error, not only a label error may occur randomly in the sample
space, but also the erroneous label is often of another irrelevant
random class. In contrast, the latter is the main cause of noisy
labels in real-world applications and usually occurs when a
to-be-labeled sample contains confusing contents or equivocal
features. Confusing label noise often occurs on data samples
lying near decision boundaries, and such a confusing noisy
label should be corrected as one of the categories neighboring
to the current one in the feature space.

Most existing methods focused on correcting random la-
bel noise and reported promising performance on simulated
datasets with synthetic noisy labels like “noisy MNIST” [4]
and “noisy CIFAR-10” [5] obtained by randomly altering
data labels. Primarily, there are two sorts of strategies for
solving the noisy label correction problem: transition matrix-
based approaches [6]–[8] and class-prototype-based ones [9],
[10]. All these methods learn from a given noisy dataset to
correct noisy labels according to the distribution of labels
within a local neighborhood. As a result, they cannot well
cope with real-world confusing label noise robustly because
confusing labels usually lie near the decision boundaries
between categories and may be surrounded by other instances
with incorrect confusing labels. Moreover, these methods may
also give a wrong suggestion to a clean instance once it is
located in the transition area between two classes akin in the
feature domain.

In contrast, several methods resort to noise-robust loss
functions to fight against label noise [11]–[14]. Such noise-
robust loss functions work under the assumption that whether
an instance is mislabeled has nothing to do with its content.
That is to say, the distribution of noisy labels is still assumed
to be independent of that of data instances. Because this
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Fig. 1. Illustration of confusing label noise versus random label noise. Left: the t-SNE map of instance features of Clothing1M. Right: the t-SNE map of
randomly perturbed CIFAR-10. Note that the dots in different colors denote samples of different categories. In real-world applications, noisy labels (i.e., those
dots with different colors in a category) are locally concentrated near the decision boundaries, as indicated by the arrows in (A) and (B), and the synthetic
random noise shown in CIFAR-10 simulations are actually rare in real-world data, as contrasted by (B) and (C).

assumption is only valid in the case of random label noise,
these methods usually cannot perform well on real-world data
involving confusing label noise.

Still, a few label correction methods are ensemble learning-
based approaches [15]–[17]. By taking a majority decision
on predictions of multiple sub-models, ensemble learning
approaches can improve the robustness of predictions. Some
ensemble learning approaches are based on semi-supervised
learning strategies, aiming to increase the freedom of pre-
dictions via suitable data augmentation schemes [18], [19].
Nevertheless, common data augmentation schemes cannot
synthesize data distributed far more differently from that of
the original dataset, especially for those with confusing noise
labels. Therefore, these approaches usually need to collaborate
with additional loss functions to guarantee the correctness of
soft-labels predicted by different sub-networks. Although these
methods were designed to increase the uncertainty of sub-
networks’ predicted labels on noisy samples, they may also
decrease the confidence of sub-networks’ predictions on clean
instances. Hence, corrections suggested by these methods are
usually considered as soft-labels for training another student
model. A primary drawback of these methods is that they
do not take the within-neighborhood label consistency into
account, and thus the obtained soft-labels may still be noisy.

To address the above problems with confusing label noises,
we propose an ensemble-based label correction algorithm
by exploiting the local structures of the data manifold. As
illustrated in Fig. 2, our noisy label correction scheme in-
volves three iterative phases: i) k-NN based data splitting, ii)
multi-graph label propagation, and iii) confidence-guided label
correction. Because confusing label noise tend to be located
densely near decision boundaries, they may destroy the label
smoothness within some local “inter-class transition bands”
on the graph. By partitioning the source noisy dataset into
disjoint subsets using our k-NN splitting scheme, each noisy
label, along with its k-nearest-neighbors, will usually affect
only a minority of the ensemble branches. As a result, each
ensemble branch generates a graph holding its own unique
noisy local manifold structures that will be treated as outliers

during the majority decision process. To this end, we train the
ensemble branches on the corresponding disjoint subsets in-
dependently. Through this design, each sub-network can learn
not only a coarse global representation of a data manifold,
but also different local manifold structures. We then derive
label correction suggestions for each sample by propagating
labels within each disjoint subset through graphs constructed
for individual ensemble branches. Consequently, our method
suggests final label corrections by ruling out inconsistent
suggestions. Extensive experiments show the superiority of our
method over existing state-of-the-arts.

The novelty of the proposed method is threefold.
• We propose a novel iterative data splitting method to split
training samples into disjoint subsets, each preserving some
local manifold structure of source data while representing
a coarse global approximation. This design can confine the
negative influence of mislabeled instances to a minority of
ensemble branches so that such noisy labels can be corrected
through majority decisions.
• Our design contains a novel noisy-label branch that can
stably provide a correct suggestion for within-class clean
labels. Hence, this branch can boost the accuracy of label
correction results, especially for datasets primarily containing
confusing label noise.
• We adopt multi-graph label propagation, instead of a simple
nearest-neighbor strategy, to derive label correction sugges-
tions via different graph representations characterizing the
manifold of the same noisy data. Hence, our method can take
advantage of both nearest neighbors and manifold structures
with the aid of graphs.

The rest of this paper is organized as follows. Some most
relevant works are surveyed in Sec. II. Sec. III presents
the proposed schemes for data splitting, multi-graph label
propagation, and confidence-guided label correction. In Sec.
IV, experimental results on public datasets with noise labels
are demonstrated. Finally, conclusions are drawn in Sec. V.
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II. RELATED WORK

A. Loss Functions

To solve noisy label correction problem, several methods
were developed by re-designing loss terms so that the learn-
ing system itself can re-weight the importance of training
instances. For example, Wang et al. [20] employed an im-
portance re-weighting strategy that enables the training on
noisy data to reflect the results of noise free environment.
Arazo et al. [21] evaluated their entropy-based per-sample
loss for label correction by controlling the confidence of
training sample via two weights. Still, some other losses, e.g.,
mean absolute error (MAE), generalized cross entropy (GCE),
and reverse cross entropy (RCE), were proposed to avoid a
biased learning system, the gradient saturation problem, or
the overfitting/under-learning problem in the presence of noisy
labels [12], [22], [23]. Nevertheless, although these methods
prevent a learning system from fitting noisy samples, they
may still be impracticable to complicated datasets due to the
ignorance of hard samples.

B. Label Correction

Most recent label correction methods work based on i)
a noise transition matrix, or ii) class prototypes. As for
the former sort of methods, they are based on an instance-
independent assumption to derive the transition probability,
which depicts how possible a clean label flipping into a noisy
one, independent to any type of data structure. However, this
assumption cannot prevent the generation of incorrect labels,
nor can it prevent the transition matrix from learning noisy
labels. Therefore, Xia et al. [8] proposed a transition revision
method to address this issue, but their method is still limited by
the fairness of the estimated initial transition matrix. Moreover,
“class prototype” methods learn to represent each class via
some class prototypes, based on which data samples can
receive corrected label information from their neighborhood
[9], [10]. Nevertheless, these methods learn prototypes from a
noisy dataset, so the quality and the accuracy of prototypes are
still affected by the original noise distribution. Both these two
types of methods learn from noisy data. Because there is no
effective mechanism to verify the corrected labels suggested
by the transition matrix or the class prototypes, the resulting
pseudo-label may be incorrect and generate a worse correction
suggestion if the class prototypes or the transition matrix
overfits noisy training labels.

C. Ensemble learning

Some other methods exploit i) ensemble learning that feeds
stochastically-augmented inputs to a number of parallel sub-
models to derive the corresponding prediction jointly with ii)
an averaging method to derive label correction suggestions
[16], [19]. These methods are based on the inconsistency
among information learned by different sub-networks. For
example, MLNT [15] randomly changes the labels of each sub-
network’s training data to enhance the difference learned by
each subnet, and DivideMix [16] uses an additional regulariza-
tion term to increase the prediction diversity among different

sub-models. However, making sub-models learn to be different
from each other cannot ensure the correctness of any sub-
model itself, and they may be worse than they are supposed to
be due to an unmatched noise distribution. For example, Yan et
al.’s method works only on uniformly distributed label noises
[24]. In real-world applications, label noise usually distributes
in some specific way rather than uniformly. Consequently, it
is still intractable for simple ensemble learning approaches to
filter out noisy labels.

D. Label Propagation

Label propagation is a graph-based semi-supervised method
for generating pseudo-labels of unlabeled data based on
given anchors [25]–[27]. Compared with the nearest-neighbor
strategy that does not take the data manifold into account,
label propagation methods can propagate labels from labeled
anchors to unlabeled samples through a graph characterizing
the manifold of the noisy dataset. For example, the method
in [28] uses an affinity matrix to derive an approximate k-NN
graph, through which it performs label propagation for a large-
scale diffusion task; and, Iscen et al. [26] proposed a trans-
ductive label propagation method to make label predictions by
using i) a nearest-neighbor graph, ii) conjugate gradient based
label propagation, and iii) a loss weighted by label certainty.
Moreover, Bontonou et al. [29] proposed a graph smoothness
loss, maximizing the distance between samples of different
classes, to derive better features and manifold representations
for classification purpose. Because this loss function takes only
distances between instances in different classes into account,
the performance of Bontonou et al.’s method is similar to
those of cross-entropy based methods. However, the graph
smoothness loss increases the robustness of a learning model
against noisy training inputs and is thus worthy to be integrated
into a noisy label correction scheme.

III. PROPOSED METHOD

A. Overview

Based on the assumption that real-world noisy labels (e.g.,
annotated via crowd-sourcing) tend to be locally concentrated
near decision boundaries, our key idea is to confine the
influence of such locally-concentrated label noise to only
a minority of sub-networks via our local-patch-based data
slitting strategy. As a result, most ensemble branches can
learn their own relatively correct approximations of the data
manifold around the noisy local patch, and a suitable label cor-
rection result can be yielded by majority decision accordingly.
Also, no matter whether label noise is locally-concentrated or
uniformly distributed in the data space, it can be effectively
mitigated by the proposed ensemble learning method. Fig. 2
illustrates the framework of the proposed noisy label correction
scheme, where each training epoch of the proposed method
can be divided into three phases, as will be elaborated in
Sec. III-B–III-D.

Let (xi, yi) denote the i-th sample-label pair in a source
noisy dataset (X ,Y), where X = {xi} is the sample set and
Y = {yi} is the corresponding noisy label set. Our ensemble
learning scheme aims to correct noisy labels by training
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Fig. 2. Framework of our ensemble-based label correction scheme. It contains primarily three branches, namely i) noisy label branch controlled by Ln, ii)
corrected label branch controlled by Lpseudo, and iii) ensemble branches controlled by LG. Our design focuses on the ensemble branches implemented in
three phases. The noisy label branch is used to perform feature embedding and also used to regulate certainty weight jointly with the corrected label branch.
Only the corrected label branch is used while deploying. The three phases of our ensemble branches are detailed in Sec. III-B–III-D.

M ensemble branches on M disjoint subsets {Sm},m =
1, 2, ...,M , derived by splitting X . After performing the data
splitting procedure described in Sec. III-B, our method first
trains the m-th classifiers Φm(·; θm) on the m-th disjoint
subset Sm through an ensemble branch. Second, by feeding all
training samples xi ∈ X into each classifier, we extract totally
M different feature vector sets, each being used to construct
one graph representation depicting the data manifold of X .
Third, based on the M different graph representations, we then
take the m-th partial label set (xmj , y

m
j ), where xmj ∈ Sm, as

an initial reference to evaluate the label correction suggestions
for sample x ∈ (X \ Sm) through label propagation. This
step results in totally M × M label correction suggestions.
Fourth, taking the corrected labels ŷm,lj of xmj ∈ Sm obtained
in the l-th training epoch as additional references, we generate
another M ×M label correction suggestions through the M
graphs. These four steps forms our second phase and will be
elaborated in Sec. III-C. Finally, we derive the most likely
labels Ȳ = {ȳi} from the total 2 × M2 label correction
suggestions via majority decision, as elaborated in Sec. III-D.

Specifically, because real-world noisy labels tend to be
locally concentrated near decision boundaries, we devise a
data splitting strategy to partition the source dataset X into M
disjoint subsets Sm, each of which can be expected to retain
the local shapes of k randomly-selected local neighborhoods,
no matter whether it is noisy or not, as well as to ensemble
a random subset of X . As a result, by making a majority
decision on the approximate manifolds learned by the M sub-
networks, the local influences brought by noisy samples can
be effectively mitigated.

Consequently, since the noisy label branch in our design
is trained on the whole X with original noisy labels Y , i.e.,
(xi, yi), it can embed all xi ∈ X into features as common
classifiers do. Also, the corrected label branch is trained on
corrected-label pairs (xi, ȳi), where ȳi can be obtained after
every training epoch. The corrected label branch is the only
branch used for deployment.

Overall, each training epoch of our method can be divided
into three phases, as will be elaborated in Sec. III-B–III-D.

TABLE I
LIST OF SYMBOLS

M the number of ensemble branches
B the number of data packages per class per branch

(xi, yi) the i-th image sample and its label
X ,Y the sets of xi and yi, respectively

ŷm,l
j ∈ Ŷm the label correction suggestion of xj given by

the m-th ensemble branch after the l-th epoch
Sm the m-th disjoint subset after data splitting

Φm(·) the classifier learned by the m-th ensemble branch
θlm the model parameter of Φm (at the l-th epoch)

ȳi ∈ Ȳ the most likely label correction result of xi
based on per-epoch 2×M2 label suggestions

fm,l
i the feature of xi extracted by the m-th model at

the l-th epoch
Wm normalized weighted undirectional adjacency matrix

representing the graph constructed based on fm
i

(xmj , y
m
j ) sample-label pair for deriving label correction

suggestions via label propagation
(xmj , ŷ

m,l
j ) sample-correction pair for deriving label correction

suggestions via label propagation
Zm,n matrix recording soft-labels derived from the m-th

graph and reference labels for samples in Sn
ωm,n(i, :) the confidence level of Zm,n

ω̄i the normalized confidence level of ȳi defined in (6)
ω̂i the average confidence level defined in (7)
Yn N × C × 2 matrix recording two reference partial

labels, ynj and ŷn,l
j , of data samples belonging to Sn

Ŷm,n(i, :) soft-label suggested by the m-th ensemble branch

In addition, for the sake of clarity, all notations used in this
paper are summarized in Table I.

B. Phase-1: Data Splitting/Re-splitting

The first phase of each training epoch is to randomly
scatter per local neighborhood of data points on the source
data manifold, including those with noisy labels, into disjoint
subsets. Specifically, as illustrated in Fig. 3, for each selected
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xi, we pick only its k nearest-neighbors of the same class to
form a local patch around xi with k = Nc

(M ·B) , where Nc is
the number of samples within the class that xi belongs to, and
B and M are two predefined hyper-parameters: the number
of local manifolds and the number of ensemble branches,
respectively. Therefore, because each disjoint subset Sm holds
different local feature relationships of each class, we can
confine the negative influence of each locally-concentrated
noisy neighborhood to primarily one Sm and one ensemble
branch by packing every local k-nearest neighbors. This is the
main advantage of the proposed method. As a result, when
a noisy local neighborhood only contaminates a minority of
ensemble branches, our method can vote down the negative
influence of noisy labels by a majority decision. This case
leads to a performance leap with our method: the best case.
Meanwhile, in the extreme case that all noisy labels are
uniformly distributed globally, our data splitting strategy will
not alter the noise distribution so that our ensemble model
leads to a as good performance as typical random-selection
schemes: the baseline. In sum, our method can thus achieve
a performance in between the best case and the baseline.
Since real-word confusion label noise distribution tends to
be concentrated around decision boundaries, our method can
usually lead to a performance improvement.

The proposed data splitting strategy is composed of the
following three steps:
Initialization: This step determines the hyper-parameters,
including the number of ensemble branches M and the number
of data packages per class per branch B. First, we estimate
a rough yet acceptable number of clusters within the c-th
class by using conventional k-means clustering and Silhouette
analysis. Then, the number M ·B should be chosen so that the
number of clusters be an integer multiple of M · B. Finally,
we select a suitable number of ensemble branches M so that
the number of local manifold B can fall within its suitable
range, e.g. B ∈ [4, 16], as will be discussed in Sec. IV.
k-NN Packing: As illustrated in Fig. 3, for each class, we
separate samples within the class into M · B packages, each
containing a randomly selected seed sample and its k-NN
in the feature domain with k = Nc

M ·B , where Nc denotes
the number of samples in the c-th class. Note that “random
sampling without replacement” is used to guarantee that each
sample and its k-NN can be assigned into only one package.
Splitting: For each class, we randomly assign its M · B
packages into M disjoint subsets. Each subset Sm therefore
represents a coarse global approximation of the source data
manifold but also holds fine local manifold structures of
different places independently.

Moreover, we initialize each training epoch with the data
splitting process, and we name this strategy re-splitting. Re-
splitting enables each resemble branch to learn a different
coarse approximation of the data manifold to prevent itself
from overfitting and from being biased to the same training
data. Because Sm is changed at the beginning of each epoch,
we need to initialize the model parameter θlm for the m-th
ensemble branch to guarantee the fast convergence of the l-th

(a)

(b)

Fig. 3. Conceptual illustration of our data splitting strategy. For each randomly
selected seed (highlighted in yellow), we pick up only its k-NN of the same
class (highlighted in white) to form a package, where k = Nc

MḂ
, where Nc

denoting the number of instances of class-c. This figure illustrates that each
subset can be regarded as a random subset of the whole dataset if B = 1. (a)
An example of splitting “crosses” with k = 7. (b) An example of splitting
“triangles” with k = 5. Note that the dashed samples are mis-annotated ones.

training epoch by

θlm = (1− αm)θl−1
pseudo + αmθ

l−1
noisy, (1)

where αlm ∈ [0, 1] is a random value, and θl−1
pseudo and θl−1

noisy
are the model parameters of the corrected-label branch and
the noisy-label branch, respectively, learned in the previous
training epoch.

C. Phase-2: Multi-Graph Label Propagation

We then construct the m-th graph representing the data
manifold based on features fm,li = f(xi, θ

l
m) extracted by

the m-th model. Then, for each graph, we can derive M +M
label correction suggestions from two different starting partial-
labels, including i) the original sample-label pair (xmj , y

m
j ) for

xmj ∈ Sm, and ii) the sample-correction pair (xmj , ŷ
m,l
j ) for

xmj ∈ Sm obtained in the l-th training epoch, where ŷm,lj

denotes the j-th sample’s label correction suggestion given
by the m-th ensemble branch in the l-th training epoch. As a
result, our method can hence offer totally M ·(M+M) = 2M2

sets of label correction suggestions.
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Our multi-graph label propagation strategy works based
on the features extracted by classification models Φm(·; θlm)
of the M ensemble branches. The first step is to build M
normalized weighted undirectional adjacency matrices Wm,
representing the m-th graph constructed based on fmi , for the
label propagation process described in (4) [25] as follows:

Wm = D
− 1

2
m (Am +ATm)D

− 1
2

m , (2)

where Dm is a diagonal matrix used to normalize (Am+ATm),
and Am is a directional adjacency matrix whose (s,t)-th entry
is defined as follows:

Am(s, t) =

{
sim(fms , f

m
t )γ , for fms ∈ N (fmt ), s 6= t

0 , otherwise
(3)

where fms is the feature of the s-th sample extracted by the
model of the m-th branch,N (fmt ) denotes the collection of the
k-NN of fmt , sim(·, ·) ∈ [0, 1] denotes the cosine similarity
metric, and γ is a predefined hyper-parameter. Note that Am
is asymmetric, so as Wm.

Next, we propagate the label information of i) the sample-
label pairs (xmj , y

m
j ) in the m-th disjoint subset Sm and ii) the

sample-correction pairs (xmj , ŷ
m,l
j ) in turn through each of the

M graphs to obtain totally 2M2 label correction suggestions,
i.e., partial-labels, for each data sample. We adopt such a strat-
egy because of the following two concerns. First, when using
only original noisy labels ymj to derive the label propagation
result, the obtained labels are probably contaminated, making
the accuracy of obtained labels limited. Second, when using
only corrected labels ŷm,lj , the propagation result may overfit
the corrected labels, thereby misleading the label correction
process. Therefore, we exploit both the original noisy labels
ymj and corrected labels ŷm,lj in our label propagation process.

Let Zm,j denote the label correction suggestion. The label
propagation process [25] is expressed by

Zm,n = (I− αWm)−1Yn, (4)

where Yn is an N × C × 2 matrix that records the asso-
ciated reference labels with the data samples belonging to
the n-th disjoint subset Sn, Wm is the normalized weighted
undirectional adjacency matrix defined in (2), and N and C
respectively denote the cardinality of the original dataset X
and the number of total classes in Y . Note that the third
dimension of Yn contains two partial-labels: the original noisy
one ynj and the corrected suggestion ŷn,lj .

Finally, the soft-label suggested by the m-th ensemble
branch based on the partial-label information of Sn becomes

Ŷm,n(i, :) = argmax
c
Zm,n(i, c, :), (5)

where Zm,n is an N × C × 2 matrix, where Zm,n(i, c, :)
indicates how possible the i-th sample belongs to the c-th class.
After obtaining 2M2 different label suggestions Ŷm,n, it turns
to Phase-3 to derive the final correction result.

D. Phase-3: Confidence-Guided Label Correction

Although it is straightforward to select the most frequent
category among all label suggestions Ŷm,n(i, :) via a majority

decision as the final label correction result ȳi at the end of
the first training epoch, we still need a measure to describe
the confidence of the correction result and then to guide the
training process of the next epoch. Hence, we devise this
Phase-3 process to evaluate the confidence of ȳi at the end
of each training epoch.

To guide the label correction, we propose a normalized
average confidence level to devise our loss function. The
normalized average confidence level ω̄i of the final label
correction result ȳi is defined as

ω̄i =
ω̂i −min{ω̂i}

max{ω̂i} −min{ω̂i}
, (6)

where
ω̂i =

1

2M2

∑
(m,n,q)∈Ωi

ωm,n(i, q). (7)

where ωm,n(i, q), defined later in (8), is the confidence level
assessed based on the certainty weight described in [26], and
Ωi = {(m,n, q) | ȳi = Ŷm,n(i, q)} means that only those
samples, whose label correction suggestions Ŷm,n(i, q) are
identical to the final corrected label ȳi, are used to calculate
the normalized average confidence level. Therefore, ω̄i can
be maximized when i) the predictions have a high confidence
level, which implies a relatively low entropy, or ii) the i-th
corrected labels suggested by all graphs indicate the same
class.

The confidence level ωm,n(i) of the label propagation result
Zm,n is assessed based on the certainty weight described in
[26]. That is,

ωm,n(i, :) = 1− H(Z̄m,n(i, c, :))

log(C)
, (8)

where
Z̄m,n(i, c, :) =

Zm,n(i, c, :)∑
k Zm,n(i, k, :)

,

and

H(Z̄m,n(i, c, :)) = −
C∑
c=1

Z̄m,n(i, c, :) log(Z̄m,n(i, c, :)),

where Z̄m,n records the normalized occurrence frequency
of each label in the label propagation result matrix Zm,n,
and H(·) denotes the entropy. Therefore, a large ωm,n(i, q)
implies a label Ŷm,n(i, q) with high confidence (i.e., lower
uncertainty).

After normalizing the final weights described in (6), we use
i) the corrected labels and ii) the weighted cross entropy loss
to train the next-epoch ensemble branches and the next-epoch
corrected label branch. The loss functions used to train our
ensemble model are detailed below.

E. Loss Functions

We adopt the following weighted cross-entropy to measure
the loss of corrected (pseudo) labels branch:

Lpseudo = −
∑
i

ω̄i ȳi log(ppseudo(i, ȳi))), (9)
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where ȳi is the pseudo (corrected) label of xi derived from
our label correction process in the current training epoch, and
ppseudo(i, ȳi) denotes the probability, predicted by the softmax
layer of the corrected (pseudo) label branch, of xi belonging
to class ȳi.

Then, the noisy label branch is trained via the weighted
cross-entropy loss. That is,

Lnoisy = −
∑
i

`noisy(i), (10)

where

`noisy(i) =

{
ω̄i yi log(pnoisy(i, c)) , if c = ȳi
(1− ω̄i) yi log(pnoisy(i, c)) , otherwise.

where pnoisy denotes the probability predicted by the softmax
layer of the noisy label branch. This loss means that if the label
of the i-th sample xi is corrected, we give it a complementary
confidence level 1− ω̄i to highlight its low confidence.

Moreover, because the M ensemble branches are mainly
designed to construct the M graphs rather than predicting
the classification probability of each sample, we exploit a
graph smoothness loss modified from [29] to derive a set of
graph embedding so as to maximize the inter-class distances,
similar to the concept described in [30]. This loss uses radial
basis functions to measure the weighted distance between the
features of two different-class samples. Because two samples
may come from different Sm, this loss encourages a large
enough between-class margin on all graphs. That is,

LG =
∑
(s,t)

√
ω̄sω̄t exp

{
− α‖pI(s)

s − p
I(t)
t ‖2

}
, (11)

where (s, t) ∈ {(s, t) | ȳ(s) 6= ȳ(t)}, I(s) is an indicator
function that returns the index of the disjoint subset containing
the s-th sample, and p

I(s)
s denotes the s-th sample’s probabil-

ity vector generated by the softmax layer of the subnetwork
trained on the I(s)-th subset.

In (11), LG has an additional weighting factor
√
w̄sw̄t

that gives a lower weight to an instance pair with a lower
confidence level to alleviate possible negative effects brought
by the instance pair. Note, LG is different from typical cross-
entropy loss and triplet loss [31] designs because LG aims
to map instances of different classes into feature clusters far
away from each other. On the contrary, both cross-entropy loss
and triplet loss encourage the network to map instances of the
same class into the similar features. Consequently, LG can
assist our model to produce distinguishable features for label
correction.

Finally, the total loss of the proposed model is

Ltotal = ξ1LG + ξ2Lpseudo + ξ3Ln, (12)

where we set ξ1 = ξ2 = ξ3 = 1 empirically.

IV. EXPERIMENTAL RESULTS

A. Datasets
We evaluate the proposed method on i) simulated noisy

datasets based on CIFAR-10/100 and ii) two other real-world
noisy datasets: Clothing1M [32] and Food101-N [33]. The
properties of Clothing1M and Food101-N are described below.

First, Clothing1M contains images with 14 categories of
fashion clothes. The data in Clothing1M are collected from
the Internet, and their category labels are generated based
on the surrounding texts, which leads to a label noise rate
of 38.46%. Clothing1M also provides a small clean set with
labels corrected by human annotators. The numbers of images
in Clothing1M’s clean-label training, validation, and testing
sets, and the noisy-label set are about 47.5k, 14.3k, 10.5k, and
1M, respectively. In the four sets, only the 1M noisy-label set
contains noisy labels. We use the noisy-label set to train our
model to evaluate its performance, and then we conduct the
ablation study jointly on the noisy-label set and the human-
annotated clean testing set.

Second, Food101-N contains about 310K food images of
101 categories. The images in Food101-N are collected from
the Internet with a noisy label rate of 20%. To evaluate the
performance of our method, we apply it on Food101-N and
derive a label correction result first, and then we train a
classifier on the label-corrected dataset and conduct testing
on Food-101’s testing set [34] that contains 55K images with
clean labels.

B. Experiment Settings

We summarize our experiment settings into the following
four points. First, after the data splitting phase of each training
epoch, we resize training images xmi ∈ Sm to 256× 256, and
then cropped them randomly into 224 × 224 patches. Hence,
training samples for each training epoch are different variants
of the source data, which improves the diversity of training
samples for each epoch. Second, the optimizer is SGD, and the
momentum value is 0.9. The initial learning rate is 0.01, and
it is reduced by a factor of 1

10 every 5 epochs. The maximum
training epoch is set to be 15, and the batch size is 64. We
also adopt ridge (L2) regularization weighted by 5 × 10−3.
Third, the number of branches is M = 5, and the number
of data packages per class in each branch is B = 4. Fourth,
the features of all training samples are extracted initially by a
ResNet-50 [35] pretrained on ImageNet. After the first training
epoch, the features used for our data (re-)splitting phase are
derived by the latest network model trained in the noisy-label
branch.

C. Experiments on Clothing1M

We evaluate our model’s performance on Clothing1M in
two different scenarios. The first scenario is to train our model
and the compared state-of-the-arts on only noisy-label datasets
without any additional supervision. In the second scenario, all
models are trained on the same hybrid set consisting of i)
the noisy-label set and ii) the clean set consisting of 50K
human-annotated images, and then the obtained models are
further fine-tuned on the 50K-image clean dataset via the
cross-entropy loss. The results of the first and second scenarios
are shown respectively in Tables II and III. Note that in
the second scenario, the labels of the clean dataset are kept
unchanged, and their certainty weight are set to be 1. Table II
demonstrates that our method achieves the best accuracy of
75.17% compared with the other methods. Meanwhile, in the
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TABLE II
CLASSIFICATION ACCURACY OF DIFFERENT METHODS ON THE

NOISY-LABEL SET OF CLOTHING1M

Method Accuracy (%)
CrossEntropy 69.21
MLNT [15] 73.47
T-Revision [8] 74.18
Self-Learning [10] 74.45
MetaCleaner [36] 72.50
DivideMix [16] 74.76
NoiseRank [9] 73.82
ELR [37] 74.81
Ours 75.17

second scenario, our method still outperforms all compared
state-of-the-arts without any fine-tuning and is comparable to
Self-Learning [10] after fine-tuning with the 50K clean set.

Note that in this experiment, Self-Learning achieve the best
result based on the “additional supervision” provided by the
50K clean set. However, our method can achieve the state-
of-the-art performance without the need of such additional
supervision, making it more practical and generalizable than
Self-Learning, as will be discussed in Sec. IV-E.

TABLE III
CLASSIFICATION ACCURACY OF DIFFERENT METHODS ON A

HYBRID SET OF THE NOISY SET AND THE CLEAN SET,
CONTAINING 50K IMAGES, OF CLOTHING1M

Method Accuracy (%) Fine-tuning
CrossEntropy 75.67 x
DataCoef [38] 77.21 x
Ours 78.01 x
CrossEntropy 80.32 o
Forward [6] 80.38 o
MetaCleaner [36] 80.78 o
CleanNet [33] 79.90 o
Self-Learning [10] 81.16 o
Ours 81.13 o

D. Experiments on Food101-N

Table IV shows that the classifier, trained on the data
corrected by our method, achieves the second best accuracy of
85.13% on Food101-N, comparable to the best performance
of 85.79% achieved by NoiseRank [9]. Note, typical data
cleaning methods like NoiseRank [9] require both a fine-
tuning dataset and the information of class prototypes as
additional supervision to clean/remove mis-labeled data. The
50K “known clean set” used in this experiment in Table IV
exactly matches this presumption of NoiseRank, making it
performs slightly better than our method that does not rely
on such additional supervision. Nevertheless, data cleaning
methods tend to remove hard samples simultaneously, leading
to irreversible information loss. Consequently, our method
works much better than NoiseRank on Clothing1M, a dataset
containing no anomalies.

Fig. 4. Images samples of three multi-category images and one anomaly (the
rightmost) in Food101-N. The left three images all contains multiple food
categories, but only one of the categories is labeled for each image, making
their labels ambiguous semantically. The rightmost shows a shopfront photo
containing no food but mislabeled as “fish & chips”.

Fig. 5. Image samples with semantic ambiguity in clothing1M. From left
to right: i) a multi-category image with one single label, ii) a person too far
away and unsure about his clothes, iii) an image containing no clothes but
being attributed to a clothes category, and iv) an image of clothing tag and
barcode.

E. Comparison of Model Performances on Real-world Data

Clothing1M and Food101-N are very challenging datasets.
They at least involve i) confusing labels around decision
boundaries rather than typical random noises, and ii) multi-
category images with a single label, e.g. photos with multiple
food categories but with only one of the categories annotated
as illustrated in Fig. 4 (the first three images) and Fig. 5
(the first image), and iii) anomalies, e.g. a shopfront photo
labeled as “fish and chips” (the fourth image of Fig. 4), an
image containing no clothes but being annotated as a clothes
category (the third image of Fig. 5), and an image of clothing
tag and barcode (the fourth image of Fig. 5). Because the
datasets contain numerous semantically ambiguous labels, the
accuracy values of the state-of-the-art methods are distributed
in a small range as shown in Tables II, III, and IV. Therefore,
a performance improvement of 1–2% accuracy is considered
significant for these challenging datasets. Note, there is no
effective way so far to tackle the semantic ambiguity caused
by the second type (multi-category images with a single label)
and third type (anomalies) without data cleaning or additional
information. Our method therefore focuses on dealing with
confusing label noise around decision boundaries. The results
show that our approach indeed achieves notable improvements
stably over the previous state-of-the-arts under such a diversity
of confusions.

Next, because the testing data of the experiment sets shown
in Tables III and IV match the technical presumption of Self-
Learning [17] and NoiseRank [9], our method seems to be only
comparable with them. Specifically, taking Self-Learning in
Tables III and IV for example, it first finds clean cluster centers
based on the clean images in the hybrid training set containing
a “known clean subset” of images, and then takes these
clean clusters as prior information for noise label correction.
Hence, with a known clean training subset, Self-Learning
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TABLE IV
CLASSIFICATION ACCURACY OF DIFFERENT METHODS ON
FOOD101-N DATASET WITH ADDITIONAL 50K CLEAN SET.

Method Accuracy (%)
CrossEntropy 81.97
CleanNet [33] 83.95
MetaCleaner [36] 85.05
Self-Learning [10] 85.11
NoiseRank [9] 85.79
Ours 85.13

becomes a semi-supervised method, and its performance is
improved accordingly. However, if a training dataset does not
provide “known clean labels” (e.g., Clothing1M without clean-
label samples), the performance of Self-Learning would be
degraded as demonstrated in Table II. Similarly, NoiseRank
requires both a fine-tuned dataset and the information of class
prototypes to achieve its best performance. The 50K clean set
used in the experiments shown in Table IV exactly matches
this presumption of NoiseRank, making the performance
of NoiseRank (85.79% accuracy) slightly better than ours
(85.13% accuracy). However, the performance of NoiseRank is
significantly degraded on noisy-label Clothing1M in Table II.
By contrast, our method does not rely on such additional
supervision while achieving the state-of-the-art performance.
Therefore, our method is more practical and generalizable
for real-world applications compared with Self-Learning and
NoiseRank.

Moreover, since MLNT [15] and DivideMix [16] shown
in Table II are two representative ensemble-based methods
without any data splitting strategy, the superior performance
of our method over them demonstrates that the proposed data
splitting strategy is effective in fighting against real-world
noisy dataset like Clothing1M.

F. Analyses and Discussions

In this subsection, we discuss the effects of individual hyper-
parameters, including i) the number of local manifolds B, ii)
the number of ensemble branches M , iii) the settings of LG,
iv) the data re-splitting process, and v) the certainty weight.
• Number of local manifolds B

Fig. 6 shows that when M = 5, our method achieves
the best accuracy 75.17% on the noisy set of Clothing1M
when B = 4. In addition, B = 1 and B = 2, 048 are two
extreme conditions,. The former represents that each disjoint
subset Sm contains one large local patch, and therefore it
is impossible for each subset to approximate the global data
manifold. On the contrary, the latter denotes a strategy similar
to random sampling, implying that each subset can coarsely
approximate the whole data manifold yet loses the ability to
retain the local information. When B = 2, 048, the proposed
ensemble learning strategy has no advantage in coping with
noisy labels because data in all disjoint subsets follow the
same distribution.
• Number of Ensemble Branches M

The number of ensemble branches, M , is also a key hyper-

Fig. 6. Test accuracy (%) for different numbers of local manifolds (B) with
M = 5.

Fig. 7. (a) Average cosine similarity in each adjacency matrix with epoch
from 1 to 15 in training process. (b) Test accuracy (%) with epoch from 1
to 15 in training process. The line denote different setting of M and all the
model use same B = 4.

parameter in our method. To evaluate the impact of M , we
conduct experiments by fixing B = 4. As shown in Fig.
7(a), the ensemble branches are beneficial for estimating data
manifold because the cosine similarities in the adjacency
matrices of derived graphs roughly increases with the number
of ensemble branches. However, Fig. 7(b) shows that the
testing accuracy tends to be saturated when M ≥ 5. This
implies that when M ≥ 5, some ensemble branches may
learn nearly the same coarse approximation of data manifold,
and such information might be redundant thus cannot further
improve the generalization performance. Therefore, we set
B = 4 by default.

Moreover, Fig. 7 provides another interpretation. By check-
ing the average cosine similarity values in adjacency matrices
derived by different ensemble branches during training, we
find that the final ensemble model performs the best when
the average cosine similarity is in between 0.7 and 0.8. When
the average cosine similarity reaches 0.9, the model becomes
overfitted because the testing accuracy of the ensemble model
decreases, slightly though.
• Combinations of (M,B)

Fixing the number of local patches per class, i.e., M ·B, we
here discuss the influence brought by different combinations of
M and B. The experiments demonstrated in Fig. 8 are derived
by setting M ·B = 40 and M ·B = 20. For M ×B = 20, we
conduct experiments on (M,B) = (2, 10), (4, 5), (5, 4), and
(10, 2). As for M × B = 40, we examine (M,B) = (2, 20),
(4, 10), (5, 4), and (10, 2) in turn. Based on these results, we
have two observations. First, (M,B) = (4, 5) achieves the
best accuracy of 75.15%, whereas (M,B) = (8, 5) reaches
about 75.05%. Second, M is far more critical than B, and a
suitable M should range from 4 to 10. This is because once
a too large M is used, the source noisy data will be divided
into too small disjoint subsets, and such small subsets cannot
retain the shape of the entire data manifold.
• Data Re-splitting
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Fig. 8. (a) Test accuracy (%) with different combinations of [M,B] and
MB = 20. (b) Test accuracy (%) with different combinations of [M,B] and
MB = 40.

TABLE V
CLASSIFICATION ACCURACY OF DIFFERENT GRAPH SMOOTHNESS

LOSS LG ON CLOTHING1M.

Method Accuracy (%)
CrossEntropy 74.08
L̃G + Feature + L2 74.47
L̃G + Softmax + L2 75.15
LG + Softmax + L2 75.17
LG + Softmax + KL 74.92
LG + Softmax + JS 74.98

Our experiment shows that the data re-splitting process
described in Sec. III-B can on average increase the accuracy
by about 0.04%. Specifically, data re-splitting improves the
average accuracy from 75.13% to 75.17%. This experiment
verifies the idea that re-splitting can assist ensemble branches
to learn different combination of local patches and also prevent
them from overfitting.

We validate the data re-splitting process in the following
two steps. First, we extract the feature vectors of images in the
to-be-corrected noisy dataset by using a ResNet-50 pretrained
on Clothing1M via cross entropy. Second, with the obtained
features, we split the to-be-corrected noisy dataset into M
disjoint subsets and then apply our method for label correction
without data re-splitting.
• Weighted Graph Smoothness Loss LG

Our LG described in (11) is measured based on a weighting
factor and the L2 distance between the probability vectors
p
I(s)
s produced by the softmax layers of individual ensemble

branches. This design encourages different sub-networks to
produce the same classification results rather than obtaining
similar feature vectors. To verify the effectiveness, we run
experiments via JS-divergence, KL-divergence, and feature
vectors for comparisons, as shown in Table V. First, the ex-
periments show that both LG and L̃G (an unweighted version)
are more effective than the cross-entropy loss because cross-
entropy tends to make all instances in the same class have
features of the same kind but LG and L̃G do not. Second, by
simply using the L2 distance between probability vectors, i.e.,
L̃G+Softmax+L2, rather than the L2 distance between feature
vectors, i.e., L̃G+Feature+L2, the accuracy of our model can
be boosted from 74.47% to 75.15%. Third, no matter which
of L2 distance, KL-divergence, and JS-divergence is adopted,
the softmax output can consistently boost the model accuracy
up to 75.17%. This proves the effectiveness of LG and the
usage of softmax output.
• Certainty weight

TABLE VI
NOISE RATE VERSUS WEIGHTING FACTORS FOR ALTERNATIVE LOSS

TERMS USED IN OUR ABLATION STUDY.

CIFAR-10
Noise Rate 20 50 80 90 asym 40%
Len ce 1 1 1 1 1
Len mae 0 0 1 1 0
Lcor ce 1 1 1 1 1
Lcor mse 0 1 10 10 1

CIFAR-100 Clothing1M
Noise Rate 20 50 80 90
Len ce 2.5 2.5 2.5 2.5 1
Len mae 0 1 1 1 1
Lcor ce 1 1 1 1 1
Lcor mse 10 40 80 80 1

Fig. 9 illustrates how certainty weight varies with the pro-
gression of training epochs. The certainty weight described in
(6) represents the confidence of the correctness of a corrected
label. These three figures jointly show that our system design
is valid because the number of samples with larger certainty
weights increases with the progression of training epochs.

G. Ablation Study

In this section, we examine our system architecture design
and examine the effects brought by different combinations
of loss terms and system components for all variants of
the proposed method. Fig. 10 illustrates the t-SNE maps of
three datasets used in this subsection, including Clothing1M,
CIFAR-10 with 50% symmetric noise, and CIFAR-10 with
40% symmetric noise. It is obvious that noisy labels of Cloth-
ing1M generally locate near class boundaries, and noisy labels
of two CIFAR-10 with synthetic label noise almost distributed
uniformly in the sample space. Here, we first examine the
performance of each variant of our model on Clothing1M and
two Person Re-ID datasets, including DukeMTMC [39] and
Market-1501 [40], as demonstrated in Table VII.

Since the labels of the two Person-ReID datasets are clean,
we conduct our experiments by intentionally injecting 20%
confusing noise to the two Person-ReID datasets as follows.
i) For each clean ReID dataset, we train a classifier to obtain
each image’s softmaxed probability vector; ii) we sort the
probability vectors of samples by the difference of the top-
2 values of their softmaxed probability vector, and pick those
samples with the 20% smallest top-2 probability differences,
i.e., which are likely to have confusing labels, as candidates;
iii) for each candidate, if its ground-truth label is among
the two top-2 probability categories, we replace its class
with the other of the top-2 categories. Through this way, we
can simulate confusing label noise; iv) we apply our label
correction method and its variants to correct the noisy labels
of the two datasets, and then train a classifier on each corrected
training set for performance measurement. Moreover, because
the training set and the testing set of each person-ReID dataset
contain none-overlapping IDs, we measure the label correction
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Fig. 9. Distribution of corrected labels and certainty weights on CIFAR-10 with 80% symmetric noise at (a) the 10-th epoch, (b) the 100-th epoch, and (c)
the 200-th epoch. Note that the horizontal axis denotes the value of certainty weight, and the vertical axis represents the data amount.

Fig. 10. t-SNE maps of clean datasets and to-be-corrected noisy datasets. (a) clean Clothing1M. (b) Clothing1M with 38.36% noise rate. (c) clean CIFAR-10.
(d) CIFAR-10 with 50% symmetric noise. (e) CIFAR-10 with 40% asymmetric noise. Note that, in (e), only five of the ten classes are affected by the
asymmetric noise, as indicated by the black arrows, and the remaining classes are noise free, as pointed by the red arrow.

performance using the Top-1 score, rather than the accuracy
used for the Clothing1M dataset.

Table VII shows the ablation study of our method compared
with its two variants, each lacking either of the two key
components (noisy branches and data splitting). It lists the
numbers of total injected wrong labels at class boundaries,
i.e., 3305 for DukeMTMC and 2588 for Market-1501, and
the numbers of samples corrected by our method and its
two variants. Our method successfully corrects 2769 out of
3305 wrong labels for DukeMTMC and 1811 out of 2588
wrong labels for Market-1501, clearly validating its efficacy
in label denoising. Moreover, our method also significantly
outperforms its two variants, demonstrating the necessity of
our two key components, noisy branch and data splitting
stage, in fighting against real-world confusing label noises in
Clothing1M and the simulated confusing label noises in the
two person-ReID datasets: DukeMTMC and Market-1501.1

Next, we examine the performance of each of our model
variants on CIFAR-10 contaminated by synthetic symmetric
noises.

1The MATLAB code for synthesizing confusing labels is available for
download in [41].

This experiment set also verifies i) the necessity of noisy
label branch in our method, ii) the impact of Mixup [42]
used for data augmentation, and iii) the effects brought
by different loss terms used in the ensemble branches.
Mixup is a procedure developed for data augmentation for
semi-supervised learning, that enables the obtained model to
produce linear prediction results for sample pairs. Hence, it
can yield more smooth and robust pseudo labels and also
avoid the overfitting problems. We summarize the comparison
among different loss term designs as follows:

• Ensemble branch
Although the graph smoothness loss described in (11) is
beneficial for deriving a better adjacency matrix, this loss
may overfit wrongly-labelled samples easily. Hence, in our
default setting, we measure this loss only on samples, whose
labels remain unchanged after our correction procedure.
However, such setting may reduce the effectiveness of this
loss. It is because that the amount of uncorrected samples
involved in the computation of the graph smoothness loss
may become too small when the loss rate is high. As a result,
we measure the weighted sum of i) the MAE (mean absolute
error) Len mae between 1 and the classification probability
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TABLE VII
ABLATION STUDY: TEST ACCURACY (%) WITH OUR METHOD AND IT TWO VARIANTS ON (A) CLOTHING1M, (B) DUKEMTMC [39], AND (C)

MARKET-1501 [40], WHERE EACH ROW CORRESPONDS TO A DIFFERENT SYSTEM ARCHITECTURE.

Dataset
Clothing1M DukeMTMC Market-1501

Accuracy Top-1 number of Top-1 number of
(%) score (%) wrong labels score (%) wrong labels

CrossEntropy 69.21 47.54 3305 (20%) 63.42 2588 (20%)

Ours 75.17 62.65 536 (3.24%) 69.18 777 (6.00%)
(full-set) (2,769 corrected) (1,811 corrected)
Ours 73.91 57.13 1,270 (7.69%) 67.57 1,025 (7.92%)
(w/o noisy branch) (2,035 corrected) (1,563 corrected)
Ours 73.07 58.30 1,476 (8.93%) 66.24 1,758 (13.59%)
(w/o data splitting) (1,829 corrected) (830 corrected)

of corrected samples, and ii) the cross entropy Len ce of
uncorrected samples as an alternative of the loss term for
ensemble branches. We then compare this alternative design
with our default setting LG described in (11).

• Corrected label branch
Similarly, we adopt the sum of i) MAE Lcor mae and ii) cross
entropy Lcor ce as an alternative loss design for the corrected
label branch. We use the soft-label, which is estimated as
a convex combination, weighted by the certainty weight ω̄
depicted in (6), of the prediction result derived by the corrected
label branch and that derived the ensemble branches, to com-
pute both Lcor mae and the Lcor ce. A larger ω̄ will produce a
soft-label closer to the label suggested by the corrected label
branch. In addition, the weighting factors for loss terms used
in our ablation study are listed in Table VI.

Tables VIII and IX show that by removing the noisy label
branch, changing the loss functions, or using soft-labels, our
method can better correcting CIFAR-10/CIFAR-100 datasets
with synthetic random label noises. However, such modifica-
tions degrade our system performance for real-world applica-
tions, e.g. Clothing1M, whose data are contaminated largely
by confusing label noises, as shown in Fig. VII. Hence,
we finally choose to adopt our default architecture and loss
settings because this combination is most beneficial for real-
world applications.

We would like to emphasize that it is difficult to combat
against different types of label noise using a single approach.
Therefore, it is worthy to combine our method into some
toolbox with other designs for noisy label correction. As
already shown in Tables VIII and IX, our method can deal with
synthetic random symmetric/asymmetric noises as well as real-
world noisy labels, when collaborating with other strategies
such as Mixup and Soft-label.
• Data Splitting Stage
Here we verify the efficacy of the data splitting stage via
Tables VII, VIII, and IX. First, these three tables all show
that the removal of data splitting stage degrades our model’s
performance on Clothing1M, CIFAR-10 with random noise,
and CIFAR-100 with random noise, evidencing the effective-
ness of the data splitting stage. Second, the data splitting stage

TABLE VIII
TEST ACCURACY (%) OF EXPERIMENTS ON CIFAR-10 WITH SYMMETRIC

AND ASYMMETRIC NOISES. FOR SYMMETRIC NOISES, THE NOTE RATE
WAS SET TO BE 20%, 50%, 80%, AND 90% IN TURN, WHEREAS THE

NOISE RATE OF THE EXPERIMENT ON ASYMMETRIC NOISE IS FIXED TO BE
40%. NOTE THAT VALUES IN LAST ROWS ARE THE MEAN TEST

ACCURACY VALUES DERIVED BY MODELS OF LAST 10 TRAINING EPOCHS.

Noise Level (%) 20 50 80 90 asym
Cross Entropy Best 86.8 79.4 62.9 42.7 85.0

Last 82.7 57.9 26.1 16.8 72.3
Mixup [42] Best 95.6 87.1 71.6 52.2 –

Last 92.3 77.6 46.7 43.9 –
P-correction [43] Best 92.4 89.1 77.5 58.9 88.5

Last 92.0 88.7 76.5 58.2 88.3
Meta-Learning [15] Best 92.9 89.3 77.4 58.7 89.2

Last 92.0 88.8 76.1 58.3 88.6
M-correction [21] Best 94.0 92.0 86.8 69.1 87.4

Last 93.8 91.9 86.8 68.7 86.3
DivideMix [16] Best 96.1 94.6 93.2 76.0 93.4

Last 95.7 94.4 92.9 75.4 92.2
Ours Best 90.1 81.8 64.4 46.2 88.6
(default) Last 88.8 81.6 56.1 39.8 88.4
Ours Best 93.3 91.1 77.1 52.2 91.2
(w/o noisy branch) Last 93.1 90.8 76.5 45.6 90.9
Ours Best 88.1 79.1 53.3 37.4 87.4
(w/o data splitting) Last 83.7 76.6 47.3 33.2 84.9
Ours (w/o data splitting) Best 95.6 93.9 91.0 70.6 87.9
+ Mixup + Soft Label Last 95.5 93.8 90.8 70.3 87.7
Ours (w/o noisy branch) Best 93.9 91.8 81.3 61.6 92.1
+ Mixup Last 93.4 91.2 80.4 59.8 91.8
Ours (w/o noisy branch) Best 94.2 93.9 92.5 76.2 92.3
+ Mixup + Soft Label Last 94.0 93.7 92.3 73.6 92.1

can stabilize our model performance since there is an obvious
performance gap between the best value and the last value (the
mean accuracy with a model learned in the last 10 epochs) in
each experiment where data splitting is removed, as shown
in Tables VIII and IX. Consequently, the data splitting stage
is indispensable in our design, especially in real-world noisy
label correction applications.

V. CONCLUSION

We proposed an ensemble learning method for noisy label
correction by using local patches of feature manifold. Based
on the facts that most real-world noisy labels come from
confusing label noises, we have proposed a nearest-neighbor-
based data splitting scheme to tackle noisy labels locally-
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TABLE IX
TEST ACCURACY (%) OF EXPERIMENTS ON CIFAR-100 WITH SYMMETRIC

NOISE. NOTE THAT 20%, 50%, 80%, AND 90% DENOTE NOISE RATES;
AND, VALUES IN LAST ROWS ARE THE MEAN TEST ACCURACY VALUES

DERIVED BY MODELS OF LAST 10 TRAINING EPOCHS.

Noise Level (%) 20 50 80 90
Cross Entropy Best 62.0 46.7 19.9 10.1

Last 61.8 37.3 8.8 3.5
Mixup [42] Best 67.8 57.3 30.8 14.6

Last 66.0 46.6 17.6 8.1
P-correction [43] Best 69.4 57.5 31.1 15.3

Last 68.1 56.4 20.7 8.8
Meta-Learning [15] Best 68.5 59.2 42.4 19.5

Last 67.7 58.0 40.1 14.3
M-correction [21] Best 73.9 66.1 48.2 24.3

Last 73.4 65.4 47.6 20.5
DivideMix [16] Best 77.3 74.6 60.2 31.5

Last 76.9 74.2 59.6 31.0
Ours Best 65.6 50.3 23.1 10.4
(default) Last 65.0 49.8 21.6 8.2
Ours Best 74.1 65.9 40.8 15.2
(w/o noisy branch) Last 73.8 65.5 40.3 13.2
Ours Best 58.7 48.1 19.5 9.5
(w/o data splitting) Last 56.8 46.0 17.3 8.5
Ours (w/o data splitting) Best 75.0 71.9 56.3 20.4
+ Mixup + Soft Label Last 74.8 71.6 55.4 20.2
Ours (w/o noisy branch) Best 76.1 70.2 45.3 21.8
+ Mixup Last 75.9 69.8 44.6 19.9
Ours (w/o noisy branch) Best 76.6 73.9 57.2 28.6
+ Mixup + Soft Label Last 76.4 73.1 56.9 28.4

concentrated near decision boundaries by capturing the local
structures of data manifolds. Hence, each sub-model can learn
a coarse representation of the feature manifold, and only a
few sub-models will be affected by locally-dense noisy labels.
We have also proposed a multi-graph label propagation algo-
rithm to derive reasonable label correction suggestions, and
a confidence-guided label correction mechanism to determine
proper label from the correction suggestions via majority deci-
sion. Our contribution is not only to design a label correction
scheme based on data splitting and ensemble learning, but
also to deal with confusing label noise that has not been
addressed in previous literature. Extensive experiments and in-
depth analyses on real-world datasets evidently demonstrate
the superiority of the proposed method over existing noisy
label correction strategies.
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