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Expression-Aware Face Reconstruction via a
Dual-Stream Network

Xiaoyu Chai, Jun Chen , Member, IEEE, Chao Liang , Dongshu Xu, and Chia-Wen Lin , Fellow, IEEE

Abstract—Recently, 3D face reconstruction from a single image
has achieved promising progress by adopting the 3D Morphable
Model (3DMM). However, face images taken in-the-wild usually
involve expressions with a large range of variety. This poses
difficulty to use 3DMM to represent such various facial expressions
owing to the limited expressive ability of its linear model, thereby
resulting in distortion and ambiguity in local facial regions. To
tackle this problem, we present a novel dual-stream network
composed of a geometry stream and a texture stream to deal
with expression variations. Specifically, in the geometry stream,
we propose novel Attribute Spatial Maps (ASMs) to decompose
a face into the identity and expression attributes and then
separately record the essential spatial information of the two
facial attributes in the 2D image space. This avoids the interaction
between the two attributes, thus preserving the identity information
and further improving the ability of coping with expression
variations. In the texture stream, we propose to generate facial
appearance with realistic texture and canonical layout by our
Semantic Region Stylization Mechanism (SRSM), that transfers
the style from an input face to a 3DMM albedo map in a
region-adaptive manner. Moreover, we also propose a Shared
Semantic Region Prediction Module (SSRPM) to explore the
common correspondence of semantic regions between the above
two face texture representations. Both quantitative and qualitative
evaluations on public datasets demonstrate the effectiveness of our
approach in face reconstruction under expression variations.

Index Terms—Attribute spatial map, dual-stream network,
expression-aware, face reconstruction, facial texture synthesis.

I. INTRODUCTION

MONOCULAR face reconstruction aims to recover the
corresponding 3D face model from a single image. In

Manuscript received August 17, 2020; revised November 28, 2020; accepted
December 28, 2020. Date of publication March 31, 2021; date of current version
September 24, 2021. This work was supported in part by National Nature Science
Foundation of China 62071338, U1611461, U1736206, U1903214, 61876135,
61872362, 61671336, 61801335, and 61862015, in part by Hubei Province Tech-
nological Innovation Major Project under Grants 2017AAA123, 2018AAA062,
2018CFA024, and 2019CFB472, in part by Nature Science Foundation of Hubei
Province 2018CFA024, 2019CFB472, and in part by the Ministry of Science and
Technology, Taiwan, under Grant MOST 109-2634-F-007-013. The guest editor
coordinating the review of this manuscript and approving it for publication was
Prof. Jian Zhang. (Corresponding author: Jun Chen.)

Xiaoyu Chai, Jun Chen, Chao Liang, and Dongshu Xu are with the
National Engineering Research Center for Multimedia Software, School
of Computer Science, Wuhan University, Wuhan 430072, China (e-
mail: stevenchai@whu.edu.cn; chenj.whu@gmail.com; cliang@whu.edu.cn;
xudongshu@whu.edu.cn).

Chia-Wen Lin is with the Department of Electrical Engineering and the Insti-
tute of Communications Engineering, National Tsing Hua University, Hsinchu
30013, Taiwan (e-mail: cwlin@ee.nthu.edu.tw).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TMM.2021.3068567.

Digital Object Identifier 10.1109/TMM.2021.3068567

Fig. 1. Illustrations of reconstructed face geometries and textures under large
expressions. 3DDFA [1] fails to accurately reconstruct the variations in geome-
try and details on texture. In the results of PRNet [11], the local regions around
mouth and nose are ambiguous and the textures are distorted. The method in [12]
produces geometry with slight misalignment around the jaw and face silhou-
ette. In contrast, our method produces more accurate geometries and faithful
textures.

recent years, intensive research efforts have been devoted to
this field owing to its wide range of applications, such as face
alignment [1], face editing [2], expression recognition [3], face
augmentation [4], and virtual reality (VR) [5].

However, it remains challenging to reconstruct an accurate
face geometry and recover photo-realistic textures from a single
image. One intractable difficulty is expression variability, an
attribute that humans are born with, which becomes a key issue
to tackle during 3D face reconstruction owing to its variety and
ambiguity [6].

To improve the performance of face reconstruction, many
studies have reported the remarkable progress by adopting deep
learning-based approaches. For example, the methods in [7], [8]
directly regresses the shape and texture parameters of 3DMM
from an input face image by using Convolutional Neural Net-
works (CNNs) for 3D face reconstruction. Chang et al. [9] em-
ployed an additional CNN to estimate robust expression param-
eters of faces to handle expression variations. Ferrari et al. [10]
proposed to learn a dictionary of deformations from the devia-
tions of a shape model between each 3D scan and the average
mode. However, the 3DMM-based methods suffer from an in-
herent drawback that the performance of 3DMM is restricted
by its linear assumption of PCA-based models: representing the
face geometry by the expression and identity components within
two linear sub-spaces. Human faces are, however, nonlinear in
nature, making them beyond the representation ability of linear
3DMM. As a result, the 3DMM face geometry is incapable of
accurately describing the full variety of human faces. Moreover,
the face texture can only represent low-frequency components
without sufficient details. Fig. 1 illustrates two examples that
3DMM-based 3DDFA [1] cannot well capture face geometry
variations and texture details.
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Recently, nonlinear models were proposed to capture detailed
face structures beyond the space of 3DMM. For instance, PRNet
proposed in [11] represents face geometry with a 2D UV posi-
tion map for joint 3D face reconstruction and face alignment. The
methods proposed in [13], [14] learn nonlinear spaces of shapes
and textures from face images via an encoder-decoder struc-
ture. Gecer et al. [15] adopted GAN to generate high-fidelity
face textures in an unwrapped UV space. Nevertheless, since
these methods resort to directly predicting the whole geometry
of a face without decoupling a face’s identity and expression at-
tributes, the interactions between the two attributes make these
methods vulnerable to large variations in facial expression [16].
On the other hand, synthesizing facial appearance with realistic
texture directly using a generative model is challenging since the
input face images are often affected by certain interference (e.g.,
expression, pose or illumination), thus bring about distortion and
blur effect into the results. Fig. 1 shows the 3D face reconstruc-
tion results with PRNet [11], where the face geometries and
textures are distorted by expression variations, especially in the
regions around the mouth and nose.

To decouple the identity and expression attributes of a face,
the method proposed in [17] represents face geometry as a lin-
ear combination of the identity bases and the expression bases,
which are independent of each other. The expression basis can
be calculated from the discrepancy between expression faces
and their corresponding neutral faces. The nonlinear methods
in [11], [14] have demonstrated their greater representation abil-
ity by embedding face geometry into the image space than the
linear 3DMM. It is thus feasible to replace the linear bases of
identity and expression attributes with the 2D image space to en-
hance the model ability of representing the two attributes while
avoiding the interaction between them, making it competent for
reconstructing challenging expressions. Besides, it is convenient
to deploy CNNs for generating 2D images with facial attributes,
yielding a more faithful face geometry.

As for the face texture, our observation is that although the lin-
ear 3DMM albedo map has limited expressive power, it can still
maintain a complete face structure and is insensitive to expres-
sion variations [8], [18]. Meanwhile, the original face image may
involve distorted or incomplete regions due to expression and
pose changes [11] but the real skin color is preserved. Besides,
these two types of face texture representations belong to differ-
ent domains, but there exist some semantic correspondences in
terms of local face regions. It is, therefore, reasonable to com-
bine the advantages of 3DMM albedo map and face image for
producing facial appearance with canonical structure and faith-
ful texture by utilizing the correspondences of semantic regions
between them.

In this paper, we propose a novel dual-stream network, which
involves a geometry stream to recover an accurate face shape
and a texture stream to produce faithful facial appearance un-
der expression changes. Specifically, we propose a novel At-
tribute Spatial Map (ASM) to embed the spatial information
of decoupled identity and expression attributes into the 2D im-
age space, rather than using the entire face geometry mixing
up the two attributes. Utilizing ASMs to represent the face

attributes in an unconstrained manner, the identity information
can be preserved well. More importantly, it can improve the
ability to cope with expression variations. Further, the recon-
struction of face textures can be cast as an image style transfer
problem. We regard the 3DMM albedo map as the content input
and face image as the style input, then we conduct a flexible
stylization process on the content input with our well-designed
Semantic Region Stylization Mechanism (SRSM), which takes
an adaptive semantic-region action to transfer style information,
instead of conventional global stylization as in [19], [20], for
synthesizing more vivid face appearance with a precise struc-
ture and photo-realistic textures. The SRSM can align the mean
and variance of the content features with those of style features in
a region-adaptively manner for generating credible face appear-
ance depending on the shared semantic regions between 3DMM
albedo map and face image inferred from the Shared Semantic
Region Prediction Module (SSRPM), which is a key component
to explore the correspondence of semantic regions between the
two inputs. We further devise a fusion module to combine the
output face geometry and texture into a complete 3D face model
to conduct the self-supervised leaning scheme.

Our contributions are summarized as follows:
• We propose a novel dual-stream network model for

expression-aware 3D face reconstruction with accurate face ge-
ometry and realistic facial textures.
• For the face geometry, we introduce ASMs to represent

identity and expression attributes in an unconstrained 2D im-
age space, which effectively enhances the expressive power for
representing face geometry with expression variations.
• For the facial texture, we propose a Semantic Region Styl-

ization Mechanism (SRSM) to generate photo-realistic face
appearance in a manner of semantic region-based adaptive
stylization.
• We further devise a Shared Semantic Region Prediction

Module (SSRPM), which explores the correspondence of se-
mantic regions between the 3DMM albedo map and the original
face, to be incorporated in SRSM.

Compared with its preliminary conference version [12], this
paper has been significantly expended in the following aspects.
First, instead of synthesizing face style globally, we propose the
SRSM with high flexibility to generate realistic face textures by
transferring the style from face image to 3DMM albedo map in
a semantic region-based adaptive manner. Second, we introduce
the SSPRM, which aims to find the shared correspondence of
facial semantic regions between 3DMM albedo map and face
image, to be able to combine with SRSM. Third, we enhance
our geometry stream by improving network architecture and
applying another loss term to produce more accurate face ge-
ometry. With these newly added components, the superiority of
the proposed method is thoroughly validated through extensive
experiments.

The remainder of this paper is organized as follows. Section II
reviews related research. In Section III, we detail the proposed
dual-stream framework for face reconstruction. Section IV re-
ports the experimental results. Finally, the conclusion is drawn
in Section V.
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II. RELATED WORKS

In this section, we briefly survey the related works in the lit-
erature including linear and non-linear 3D Morphable Models,
style transfer in image generation, and conditional image syn-
thesis with normalization.

A. Linear 3D Morphable Model

In the past two decades, the most widely used method for rep-
resenting 3D faces is 3DMM [21], that adopts Principal Compo-
nent Analysis (PCA) to build a statistical 3D face model. This
seminal work facilitates representing or generating 3D facial
shapes and textures by regressing the parameters of the linear
3DMM. Previously, the methods often utilize landmarks [22]
and local features [23] to align an input face with the 3D tem-
plate, then solve the nonlinear optimization regression function
for estimating the 3DMM coefficients. With the development
of deep learning, CNNs have been adopted to predict 3DMM
parameters. For instance, Jourabloo et al. [24] and Zhu et al. [1]
proposed using cascaded CNNs to predict accurate 3DMM co-
efficients, which, however, consumes much more computational
complexity caused by iterations. Recently, the methods proposed
by Dou et al. [7] and Geneova et al. [8] directly regress the
shape and texture parameters of 3DMM for an input face image
by training a CNN. Nevertheless, the linear 3DMM has rather
limited power in describing the facial variability for images cap-
tured in the wild conditions.

B. Non-Linear 3D Morphable Model

More recently, there were several works that aimed to learn
non-linear 3DMM to enhance model representation power.
These methods use deep neural networks to represent the face
model, which consist of a CNN-based decoder to estimate
non-linear 3DMM, coupled with an image encoder. For instance,
Tewari et al. [25] proposed to learn a decoder composed of multi-
layer perceptrons to represent the shape and albedo bases which
can reconstruct arbitrary facial images. Feng [11] employed a 2D
UV position map with an encoder-decoder structure to represent
face shapes for joint 3D face reconstruction and alignment. The
approaches proposed in [13], [14] employ either fully-connected
layers or 2D convolutions to represent a facial geometry or skin
albedo map. The above-mentioned methods utilize deep neural
networks to define the non-linear 3DMM with great represen-
tation power. However, they still have difficulty in recovering
accurate local shapes and faithful textures owing to the large
variations of expression attributes and limited texture genera-
tion ability.

C. Image Transformation With Stylization

The task of image translation aims to learn the mapping be-
tween different image domains, which generally leverages con-
ditional Generative Adversarial Networks (GANs) [26] trained
on paired or unpaired data to solve this problem. Most of these
approaches adopt stochastic sampling from a latent space to syn-
thesize output images based on category labels. However, none

of these methods performs local control of synthesized images
since the absence of an explicit correspondence to the image
local style within the latent representations.

Image stylization makes use of the image translation frame-
work to transfer the style of a reference image onto a content
image. Gatys et al. [27] for the first time proposed to synthe-
size style transferred images by matching global feature statis-
tics in CNN layers. Since then, numerous methods have been
proposed to improve the performance of synthesized images.
[19] and [28] introduced feed-forward style transfer approaches
which are much faster than the optimization-based alternatives.
Then, [29] and [30] demonstrated other feed-forward methods
that can transfer arbitrary styles thanks to a style swap layer
or through a meta-network. [31] utilized a color transfer ap-
proach for the color design process to the fabric images which
can generate more vivid color transfer results. Nevertheless, all
the mentioned methods can only perform global style transfer,
thus causing deformation in local structures, or have limited
local region stylization on synthesized images. Therefore, it is
desirable to adopt other strategies, for example, combining the
global and local information as in [32]–[36], to improve the final
results.

D. Normalization in Deep Learning

Normalization is crucial in learning CNNs such as the batch
normalization proposed in [37], which accelerates training con-
vergence of CNNs and makes training deep networks feasible.
The normalization aims to make the input features approx-
imately independently and identically distributed by using a
shared mean and variance. With this property, some normal-
ization variants find applications in conditional image synthesis
including style transfer which requires additional training data.
For instance, adaptive instance normalization (AdaIN) [20] and
spatially-adaptive (de)normalization (SPADE) [38] normalize
given feature maps, which are further affine transformed with
parameters learned from features or conditions from external
data. The normalization not only helps realize a flexible transfer
with arbitrary new styles controlled by affine parameters, but
also facilitates synthesizing images in a spatially-varying man-
ner, e.g., semantic mask based local style transfer. In general,
these conditional normalization methods, such as [20], [38], [39]
and [40], can promote the performance of an image transforma-
tion network to generate more flexible and plausible synthetic
images.

III. PROPOSED METHOD

In this section, we introduce our dual-stream network for
expression-aware monocular facial reconstruction. As shown
in Fig. 2, given an input face image Io, the geometry stream
extracts face shape Ig via generating identity ASM Aid and ex-
pression ASM Aexp, along with parameter set P . The texture
stream aims to synthesize facial texture Ia with image Io and
texture parameter pt. Then the fusion module combines them
into final 3D face model Fm.
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Fig. 2. Proposed dual-stream framework for expression-aware face reconstruction. The Io represents the input face image in-the-wild. The following blue block
indicates the Geometry Stream to produce the face spatial map Ig with our proposed ASMs. The parallel yellow block indicates the Texture Stream to generate
unwrapped face texture map Ia in a semantic region-based stylization manner. Finally, the fusion module, shown in the green block, concatenates the outputs of
the dual-stream together as the final 3D face model Fm to implement end-to-end training.

A. Geometry Stream

For an input face image, we propose a geometry stream based
on a modified encoder-decoder structure to generate the cor-
responding attribute spatial maps including an identity spatial
map and an expression spatial map, which carry the face spatial
information for reconstructing the 3D facial geometry.

1) Attribute Spatial Maps: Feng et al. [11] first proposed to
employ a 2D position map, which records the 3D shape of a
complete face in the UV space, to represent the face geome-
try, thereby enhancing the representation power of a face model
and can be directly regressed with a simple CNN. Nevertheless,
these methods tend to be vulnerable to extreme expressions or
large poses. Chu et al. [17] revealed that a face shape is a lin-
ear combination of identity and expression attributes, which are
two isolated bases without affecting each other. Moreover, the
expression basis can represent the offset between a face with
expression and its neutral state.

Inspired by [11], [14], we introduce Attribute Spatial Maps
(ASMs), which comprises an identity ASM and an expression
ASM, as two basic attributes to represent 3D face geometry. We
first utilize the facial structure with neutral expression as a 2D
image to obtain the identity ASM, where the spatial locations
of all vertices for representing an identity are recorded in the
R, G and B channels. Then, the offsets of spatial locations be-
tween a face expression and its neutral version are estimated as
the expression ASM, which can be obtained by subtracting the
identity ASM from the full 3D facial spatial map. An example
of the decomposed expression and identity ASMs is illustrated
in Fig. 3.

2) Face Geometry Reconstruction: From the image genera-
tion point of view, the prediction of ASMs can be regarded as

Fig. 3. Illustration of Attribute Spatial Maps (ASMs). (a) and (b) the identity
and expression ASMs, respectively. (c) the full 3D face spatial map combining (a)
and (b). The second row shows the R, G and B channels of ASMs correspond to
thex, y and z spatial dimensions. (d) the recovered face geometry corresponding
to (c) textured by normalized spatial value.

the process of image syntheses from an input face image. Natu-
rally, a deep neural network is suitable to conduct the prediction
task owing to its powerful representation ability. To this end, we
devise a novel encoder-decoder structure to generate ASMs, in
which the geometry stream is shown as the blue block of Fig. 2.

We first design a multi-task encoder (MTE) based on VGG-
Face [41] to extract the latent representation as well as predict
the parameters for Texture Stream (see Sec. III-B). Given im-
age Io, the latent representation is the feature maps extracted
from the last convolutional layers of MTE with a pooling oper-
ation. Following MTE, we design two attribute decoders (ADs)
to decompose the identity ASM and expression ASM with three
channels corresponding to the spatial dimension x, y and z of
the attribute map. To obtain faithful ASMs, we adopt the gener-
ator architecture of Pix2pix [42] with eight layers in the decoder
but change the transposed convolutions to bilinear upsampling.
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Each upsampling layer followed by convolutions, denoted as
Convolution-BatchNorm-ReLU layer, is with filter size 3, stride
1 and padding 1. The output layer employs a tanh activation to
produce the output ranging in [−1, 1]. This procedure can be
formulated as

EM (Io) = fL, (1)

Ig = Aid +Aexp = Did(fL) +Dexp(fL), (2)

where Io is the input face, EM (·) denotes MTE, fL ∈ R1×1×512

is the extracted latent representation, Ig is the full 3D face spa-
tial map, Aid and Aexp represent the identity ASM and expres-
sion ASM, respectively. Did(·) and Dexp(·) denote the ADs that
generate Aid and Aexp with fL. The generated identity ASM
and expression ASM are respectively visualized in Fig. 3(a) and
Fig. 3(b).

Besides the two ADs following MTE, there exists a branch
network, denoted as parametric sub-network (PSN), to predict
the parameters of Texture Stream. PSN consisting of two fully
connected layers utilizes the latent representations to predict the
parameters. This procedure can be formulated as

P = Fp(fL), (3)

where Fp(·) denotes the PSN, P = {pt, pl, ph} is the parameter
set predicted from fL, which contains albedo parameters pt ∈
R199, illumination model parameters pl ∈ R9, and head pose
parameters ph ∈ R3.

3) Loss Functions: We train the geometry stream to predict
the ASMs in a supervised learning manner with the following
four loss functions.

The parametric loss (Lp) is measured by the Euclidean dis-
tance between the predicted parameters and their ground-truths,
with a regularization term on the 3DMM albedo coefficients to
prevent degeneration. Lp is defined as

Lp = ‖P − P̂‖22 + τ‖pt‖22, (4)

where P̂ denotes the ground-truth parameters containing p̂t, p̂l,
and p̂h. τ is the weight factor for the regularization term and
empirically set to 5× 10−2.

The ASM loss (Lasm) is defined as the Mean Squared Er-
ror (MSE) between the predicted ASM and their ground-truths.
Besides, we apply a facial weight mask W on identity ASM,
as suggested in [11], to emphasize the discriminative semantic
locations. The ASM loss functions is defined as

Lasm=
∑
m,n

‖Aid(m,n)− Âid(m,n)‖22 · W(m,n)

+
∑
m,n

‖Aexp(m,n)− Âexp(m,n)‖22, (5)

where A(m,n) and Â(m,n) represent the generated ASM and
ground-truth ASM, respectively. W(m,n) denotes the facial
weight mask, and (m,n) represents the pixel coordinates.

The symmetry loss (Lsym) is used to ensure a plausible iden-
tity since the facial identity ASM without expression is symme-
try. We utilize a horizontal image flip operation Fh(·) to imple-
ment this constraint as

Lsym = ‖Aid −Fh (Aid)‖1 . (6)

The regularization term (Lreg) is used to encourage local
smoothness, as in [25] and [14], by adding Laplacian regular-
ization on the vertex locations for the set of all vertices:

Lreg =
1

N

∑
vmn
i ∈Â

∥∥∥∥∥∥Â (vmn
i )− 1

|Ni|
∑

vmn
j ∈Ni

Â
(
vmn
j

)∥∥∥∥∥∥
2

2

(7)

where Â = Âid + Âexp represents the full 3D face spatial map
as shown in Fig. 3(c), N is the number of vertices, vmn is the
projection of v onto the ASM space with location (m,n), and
Ni is the 1-ring neighborhood of the ith vertex.

The total loss of geometry stream becomes

Lgs = ηpLp + ηaLasm + ηsLsym + ηrLreg, (8)

where ηp, ηa, ηs and ηr are the weights for different terms to
scale their values to similar magnitudes. We empirically set them
to 5× 10−1, 1, 5× 10−1, and 1× 10−3, respectively.

B. Texture Stream

The texture stream aims to generate an expression and pose in-
variant facial appearance with photo-realistic style learned from
arbitrary face photos in-the-wild by our well-designed Semantic
Region Stylization Mechanism (SRSM), the pipeline of texture
stream is illustrated in the yellow block of Fig. 2.

A high-fidelity synthetic facial appearance should maintain
the consistency of the spatial structure and the texture with the
original input face. However, the face images in-the-wild are
often disturbed by some factors (e.g., expression, pose or illu-
mination), making the generated face albedo maps distorted and
blurred by a conventional encoder-decoder network trained on
such face images. To tackle these problems, we propose to gener-
ate facial appearance with a more flexible style transfer manner
by our SRSM, which combines the advantages of both the input
face with realistic texture and the unwrapped albedo map with
a canonical content structure.

The key towards fulfilling this goal is the proposed Shared
Semantic Region Prediction Module (SSRPM), that takes the
features of the original input image and unwrapped texture map
derived from the albedo coefficients pt to predict face semantic
region maps sharing the same spatial locations between them.

1) Shared Semantic Region Prediction Module: Generally,
a face is composed of different regions such as eyes, nose or
mouth. However, instead of directly using these physiologically
defined hard regions, we use n soft semantic regions within the
feature maps to establish the correspondences between Io and
Iu. We assume each feature map represents a certain facial region
corresponding to one of n semantic locations in both Io and Iu.
As a result, we can synthesize the final face texture from Iu
under the guidance of the spatial information derived from Io.
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Fig. 4. Illustration of Shared Semantic Region Prediction Module (SSRPM).
Xu and Xo are mid-level features extracted from Iu and Io, respectively.
Fs(X

′) means the n semantic regions, which are transformed from the fused
feature mapsX′. The orange block represents the landmark-branch to regularize
the learning process by offering a reasonable initial region guidance Xa with
landmark locations. Xs is the final shared semantic region maps.

Given n initial desired soft semantic regions, we define their
correspondence to the feature maps of input images as their in-
ner product. The semantic representations for these soft regions
are learned through back-propagation during training. In order
to establish the correspondence between Iu and Io sharing the
same locations, we first align their mid-level features, denoted
as Xu and Xo, using two groups of filters, to produce X′

u and
X′

o, and then add them to obtain X′. Then, we employ a convo-
lutional layer with n filters to extract semantic regions from X′

as soft regions. This operation transforms the joint feature maps
X′ into a new feature spaceFs(X

′) ∈ Rh×w×n. Generally, more
accurate region scope and sufficient semantic information can
be learned with a larger n value, which, however, increase the
computational cost as well. To achieve a good trade-off between
accuracy and complexity, we adopt n = 16 in our implementa-
tion. The structure of SSRPM is illustrated in Fig. 4.

Nevertheless, it may not be reliable to adopt this structure to
generate reasonable results since it tends to assign all feature
maps to a single certain region. This is due to the lack of ef-
fective guidance which leads to model performance degradation
and insufficient learning of the distinctions between different
semantic regions.

To address this problem, we introduce a landmark-guided
semantic regions branch to regularize the learning process of
SSRPM. As shown in the orange block in Fig. 4, the landmark-
guided branch aims to provide reasonable initial semantic re-
gions. It first utilizes a 3D-based face landmark detection
method [43], with a stacked hour-glass architecture [44], to pro-
duce 68 channels, one for each landmark location. Then, these
landmark channels are concatenated with the input face image
Io to aggregate to the n-channel feature maps, acting as the al-
ternatives for the semantic facial regions. This procedure can be
formulated as

Xa = Fa[K(Io), Io], (9)

where K(·) is a pre-trained landmark detection model, which
produces 68 channels with locations in K(Io), Fa(·) aims to
generate Xa ∈ Rh×w×n that represents initial semantic regions.

The final shared semantic regions maps are obtained by adding
Fs(X

′) to the scaled Xa, followed by a softmax operation as:

X′
s = Fs(X

′) + kXa, (10)

Xsj =
exp

(
X′

sj

)
∑n

i=1 exp
(
X′

si

) , (11)

where k is a scaling factor initialized as 1× 10−2, i and j are
the indices of feature channels. Each channel in Xs reflects the
probability of every feature pixel belonging to one of the n se-
mantic regions.

2) Face Texture Generation: The Texture Stream takes
albedo parameter pt and original face image Io as inputs to syn-
thesize facial albedo map Ia with realistic texture, this process
can be formulated as

Ia = Gt(Iu, Io), (12)

where Gt(·) is the texture generation network. Iu is the un-
wrapped face albedo map derived from pt as in [14]. To im-
prove the faithfulness of the synthesized facial texture, we in-
corporate the Semantic Region Stylization Mechanism (SRSM)
into the generator network for semantic region-based adaptive
stylization.

Our texture stream is mainly an image translation network that
receives Iu with unreal texture and synthesizes Ia with faithful
appearance. This divergence focuses on the style change be-
tween the input and output, but both of them share the same
content structure. To this end, existing methods [45]–[47] em-
ploy an encoder-decoder network [48], in which the features
first pass through a series of progressively downsampling layers
until reaching a bottleneck layer, then the process is reversed.
However, these methods tend to produce blurry images.

In order to overcome the difficulty, our Gt(·) adopts a modi-
fied version of U-Net structure to synthesize the facial texture,
where skip-connections are added to better preserve low-level
information shared between the input and output. Specifically,
the whole network has totally h layers where skip-connections
are added in between layer l and layer h − l . Each skip con-
nection simply adds all channels at layer l with those at layer
h − l. We then integrate the SRSM into Gt(·) in the mid-level
layers to import the style from Io with a faithful appearance to
Iu possessing a canonical layout.

Specifically, SRSM receives the extracted mid-level feature
maps Xm

u and Xm
o of Iu and Io, respectively, and the semantic

region maps Xs from SSRPM. It first calculates the correspond-
ing activation maps Xs

u and Xs
o with respect to Xm

u and Xm
o .

Then, each semantic region in Xm
u with corresponding mean

and variance are normalized as an instance. The style of the
shared semantic regions in Xs

ui
are controlled by αi and βi ex-

tracted from Xs
oi

by two convolutional layers. The process can
be formulated as

Xs
ui

= Xm
u �Xsi ,X

s
oi

= Xm
o �Xsi , (13)

Xs
r =

n∑
i=1

(
Xm

u − μ
(
Xs

ui

)
σ
(
Xs

ui

)
+ ε

× βi + αi

)
�Xsi , (14)
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where � denotes Hadamard product, μ(·) and σ(·) are the mean
and standard deviation of Xs

ui
computed in the way of instance

normalization (IN) [28]. αi and βi are the learnable modulation
parameters of the transformation, which depend on Xs

oi
. ε is a

small constant added to the variance for numerical stability. The
final Xs

r guided by the semantic-region-based style information
from Xm

o maintains the spatial structure of the original face.
3) Loss Functions: The learning objective of our texture

stream consists of the following three loss terms.
The pixel reconstruction loss (Lrec) enforces the generated

face albedo map to be consistent with the real unwrapped face
by measuring the discrepancy of the dense pixel values between
the two texture representations as defined below:

Lrec =
1

WHC

∑
‖Ia− Îa‖22, (15)

where Ia and Îa represent the generated albedo map and the
ground-truth, respectively. W , H and C refer to the size of im-
ages in texture stream.

However, solely relying on Lrec with pixel-wise L2-norm
tends to preserve low-frequency information, but miss high-
frequency details. To alleviate this, we use adversarial loss
(Ladv) based on a discriminator, which aims to distinguish be-
tween the generated Ia and real Îa. Specially, we employ patch-
GAN [49] in our discriminator to produce high-quality textures
with local high-frequency details. Ladv is formulated as

Ladv = logD(Îa) + log (1−D (Ia))) , (16)

where D(·) denotes the discriminator of patchGAN.
To further encourage the generated Ia to fit the appearances

of the semantically corresponding regions in Îa, we employ the
contextual loss Lcon proposed in [50] to match the statistics
between the two faces as defined by

Lcon = − log
[
CX

(
φl
p(Ia), φ

l
q(Îa)

)]
, (17)

where p and q index the feature map of layer φl that contains nl

features, which relies on pre-trained VGG features. CX(X,Y )
denotes the similarity between features X and Y as in [50].
Lcon uses relu2−2 up to relu5−2 layers since low-level features
capture richer style information (e.g., color or texture) useful for
transferring the real appearance.

To sum up, the overall loss term in texture stream is

Lts = ωrLrec + ωcLcon + ωaLadv, (18)

whereωr,ωc andωa are the trade-off weights for different terms
to have similar magnitudes. We set them as follows: 1× 10−1,
3 and 2× 10−1, respectively.

C. Fusion Module

From the geometry stream and texture stream, we receive
expression-aware ASMs and faithful albedo maps, respectively.
But it is difficult to achieve high quality reconstruction by in-
dependently training these two streams in a supervised manner
since the available high-precision face datasets used for 3D tasks
are far from enough. Thus, it is vital to find a way of making use
of large amounts of off-the-shelf face datasets.

To this end, we design a Fusion Module, which incorporates
Ig and Ia into the complete 3D faceFm according to pre-defined
topology and pixel coordinates, to conduct unsupervised train-
ing, as shown in the green block of Fig. 2. Our implementation
first recovers the coordinates and albedo values of each vertex
on the surface, which has the same mesh topology as defined
in 3DMM [21], in the way of [14]. Then, we use a differen-
tiable renderer R [8] to rebuild the input face IR. The renderer
is essentially a differentiable rasterizer based on a deferred shad-
ing model, which generates triangle IDs and barycentric coordi-
nates for each pixel on the image plane. The rendering procedure
adopts full perspective, the illumination and position parameters
are also computed in the pipeline. Finally, the rendered face im-
age IR is formulated as:

IR = R(Ig, Ia, pl, ph), (19)

In this stage, we employ three loss terms in a way that empha-
sizes the collaboration of the whole framework instead of each
independent sub-network. Firstly, the occlusion-aware pixel loss
(Lpix) aims to keep the photometric consistency between Io and
IR with a visibility maskM, which is estimated from a face seg-
mentation method [52]. Secondly, the identity-preserving loss
(Lid) is to facilitate the similarity of faces in Io and IR by calcu-
lating the cosine distance between the identity features. At last,
the alignment loss (Lali) calculates the Euclidean distances be-
tween detected face landmark locations of Io and IR extracted
by a face alignment network [53]. Since the face pose is more
vulnerable to degrade result quality before an accurate geome-
try estimation [51]. The above loss functions are formulated as
follows

Lpix =
1

WH

W∑
x=1

H∑
y=1

‖Io − IR‖1 �M, (20)

Lid = 1− Fid (Io) · Fid (IR)

‖Fid (Io)‖2 ‖Fid (IR)‖2
, (21)

Lali =
1

K

K∑
k=1

‖H(Io)−H(IR)‖2 (22)

whereM is the visibility mask,� is the Hadamard product oper-
ation,W andH are the width and height of an image, and Fid(·)
is a face recognition network [54]. H(·) is the face alignment
network [53], and k represents the number of landmarks.

All the loss functions in the fusion module for end-to-end
training can be expressed as:

Lfm = λ1Lpix + λ2Lid + λ3Lali, (23)

where λ1, λ2 and λ3 are the weights to balance the loss terms,
which set as 1× 10−1, 2 and 1× 10−2.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the datasets and the training
strategies of our experiments. Then we demonstrate and discuss
the improvements of our dual-stream network via extensive ex-
periments and comparison with other approaches. We further
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analyze the contribution of key components in our framework
through ablation studies.

A. Datasets.

The training datasets mainly include 300W-LP [1],
CelebA [55], and two additional synthetic datasets generated
based on 300W-LP. To train the geometry stream, we first utilize
the annotated coefficients in 300W-LP to generate face spatial
maps with expressions and their corresponding identity ASMs.
Then, the difference maps between the face spatial maps and
their corresponding identity ASMs are taken as their expression
ASMs. Totally, 60 000 ASM training face images including Âid

and Âexp are used to form the ASM Dataset (ASMD). To train
the texture stream, we construct a Facial Texture Dataset (FTD)
by first selecting face images from 300W-LP with rare occlusion
and normal lighting conditions denoted Îo. Then, each corre-
sponding annotated coefficient vector p̂t is transformed to the
unwrapped face texture map, denoted as Îu. The texture of the
input face image is extracted as the ground-truth albedo map Îa
with realistic texture. We totally collect 40 000 texture images
consist of Îo, Îu, and Îa in the FTD. All the images are cropped
and resized to 256× 256.

For face geometry evaluation, we adopt two 3D face datasets
as follows. The MICC Florence 3D Faces dataset [58] provides
ground-truth scans of 53 subjects with the neutral expression
along with their short video footage under three settings: ‘co-
operative’, ‘indoor’ and ‘outdoor’. The BU-3DFE (Binghamton
University 3D Facial Expression) dataset [59] contains a large
range of facial expressions, in which all images are rendered with
frontal views to facilitate observing the influence of expression
components.

B. Training Strategies

We adopt the facial mesh topology defined in the Basel Face
Model (BFM) [60] and remove the regions of ears and neck, then
record the 2D locations of individual vertices on the 3D mesh.
In the training process, we set all the batch size to 8 and employ
the Adam Optimizer [61]. To stabilize the training process of the
network, and make it easier to converge, we gradually train each
part in the whole network with the following three steps. First,
we utilize the annotated parameters in 300W-LP [1] to train the
multi-task encoder with its parametric sub-network, then train
the whole geometry stream on the ASMD. The learning rate is
set as 2× 10−4. Second, we train the texture stream on FTD in
the manner suggested in [42] with a learning rate of 1× 10−4

for both the generator and discriminator. Finally, after the above
two sub-networks have converged, we combine the dual-stream
outputs with the fusion module to conduct self-supervised train-
ing and fine-tune the entire network on CelebA. We set a lower
learning rate as 5× 10−5 in this stage.

C. Face Geometry Evaluation

In this part, we evaluate the performance of our geome-
try stream on 3D shape reconstruction against the linear and

Fig. 5. Illustration of Semantic Region Stylization Mechanism (SRSM). Xm
u

and Xm
o are the features extracted from Iu and Io, respectively. Xs

u and Xs
o are

the features with shared semantic regions calculated by Xs. αi and βi represent
the affine parameters of style in semantic regions from Xs

o. And Xs
r is the final

region-based stylization features.

nonlinear methods. We also conduct quantitative comparisons
of reconstruction error to verify the effectiveness of our method.

We first visually compare our geometry results with two linear
3DMM-based approaches, 3DDFA+ [51] and ExpNet [9], that
reconstruct the face geometry using 228-d and 128-d shape co-
efficients, respectively. To evaluate the accuracy of predictions,
we visualize the reconstruction error using heatmaps. Since the
geometry of different methods and ground-truth may have dis-
tinct mesh topologies, we first use the ICP algorithm [62] to
align the predicted results with their ground-truth, then calcu-
late the point-to-plane distance, rather than the point-to-point
distances, as in [8], to measure the face reconstruction error.
As demonstrated in Fig. 6, 3DDFA+ fails to capture some ex-
treme expressions, e.g., opening or pouting mouth, whereas Ex-
pNet leads to ambiguous in local regions description around the
mouth and face contour shape, especially for those faces with
head pose involving yaw and roll angles. Fig. 6 shows that our
proposed method and its preliminary version [12] using ASMs
can faithfully recover the face geometry with a large range of
expressions. In particular, compared with its preliminary ver-
sion in [12], our method can capture more accurate local details
of the geometry around mouth and eyes, thanks to the newly
introduced symmetry loss and alignment loss.

We also present the visual comparisons with several nonlinear
model-based methods: VRN [56], PRNet [11], N-3DMM [13],
and CMD [57], as shown in Fig. 7. VRN using a volumetric rep-
resentation for a face, but the surface is non-smooth and does not
preserve local details. PRNet and N-3DMM both use a position
map to represent the whole face shape without considering the
decomposition of attributes. CMD is the most recent method that
adopts mesh convolutions to model face shapes. By decompos-
ing the facial attributes into identity and expression parts with
the proposed ASMs, our method can better reconstruct face ge-
ometry under a large range of expression changes. Especially
from the close-up views, we can observe that, by utilizing the
symmetry loss and alignment loss as supervision for the forma-
tion of face geometry, our method can produce finer local details
to cover the facial silhouette of the input face, compared with
the preliminary version [12].

We further conduct a user study to verify the effectiveness of
our proposed method. In the experiment, We first randomly pick
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Fig. 6. Visualization of reconstruction and error comparison of face geometry with linear 3DMM-based approaches for face images with challenging expressions
and various poses. The performance of 3DDFA+ [51] and ExpNet [9] are confined by the linear 3DMM basis, which can hardly reconstruct precise face shape
owing to its limited representation ability. In contrast, our preliminary version [12] and this method using ASMs can faithfully recover the face geometry in terms
of expression and local region reconstruction. We remove the regions about neck and ears in the heatmap for better visualization.

Fig. 7. Examples of face geometry reconstructions on CelebA [55]. VRN [56] is prone to lost facial structure shape with volumetric representations. PRNet [11]
and N-3DMM [13] do not consider attribute decomposition, making the accurate expression variations hard to recover. CMD [57] is the recent work that using mesh
convolutions to model face geometry. Compared with our preliminary work in [12] that only decouples face attributes, this method further utilizes the symmetry
loss and alignment loss so that the predicted geometry can more accurately match the contours of face image. To better visualize the differences of these methods,
we present the close-up views in different colors to indicate different meanings (yellow: the overlap between the geometry and face region, red: the part of the
geometry stretched outside the face silhouette, green: the part of the geometry shrunk inside the face region).

a set of face geometry results (e.g., see the three examples in the
first column of Fig. 7) produced by the aforementioned nonlin-
ear approaches. We then ask 50 subjects to rate from “1” (the
worst) to “6” (the best) the results reconstructed by six methods
in terms of how well the geometry reflects the original facial
shape subjectively. The rating distributions of the six methods
illustrated in Fig. 8 show that our results receive a higher per-
centage of preference scores compared to the others.

We then conduct quantitative comparisons to evaluate the
accuracy of the reconstructed face geometry on two datasets,
MICC [58] and BU-3DFE [59], containing 3D face scans. Ta-
ble I shows the results on MICC [58] dataset for identity preser-
vation evaluation since it excludes the influence of expression

Fig. 8. Rating distributions of the perceptual user study on the quality of face
geometries reconstructed by the six methods (see the horizontal axis) compared
in Fig. 7. The vertical axis indicates the percentages of rating scores from 6 (the
best) to 1 (the worst) received from 50 subjects.
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TABLE I
FACIAL GEOMETRY ACCURACY COMPARISON ON MICC [58] WITH NEUTRAL

EXPRESSION SCANS. OUR METHOD ACHIEVES LOWER AVERAGE ERROR

AND VARIANCE MEASURED BY THE POINT-TO-PLANE DISTANCE UNDER

DIFFERENT CONDITIONS

Fig. 9. Normalized geometry reconstruction error for faces in BU-3DFE in-
volving seven expressions. Our method leads to lower error than VRN [56]
and PRNet [11]. From left to right: Neutral, Anger, Disgust, Fear, Happy, Sad,
Surprise.

components. We adopt the ICP algorithm [62] to align the re-
constructed geometry with the ground-truths to calculate the
point-to-plane distance as the reconstruction error similar to [8].
Our method outperforms the two compared methods proposed
in [18] and [8] under different conditions in terms of the mean
and standard deviation of reconstruction error. We also evaluate
our method on BU-3DFE [59], Fig. 9 compares the normalized
geometry reconstruction errors of our method, VRN [56], and
PRNet [11] for faces with seven different expressions.

D. Face Texture Evaluation

In this part, we compare the performances of various meth-
ods on texture generation to validate the effectiveness of
the proposed texture stream in synthesizing faithful facial
appearances.

Fig. 10 compares the face textures generated by the meth-
ods in [14] and ours. Given an original image Io, as shown in
Fig. 10(a), [14] directly adopts an encoder-decoder structure to
generate the face albedo, and predicts the lighting condition,
then combines them as the final face texture, as shown from
Fig. 10(b) to Fig. 10(d), respectively. In contrast, our texture
stream first generates the 3DMM albedo map with texture coef-
ficient pt. Then, the real texture in Io is transferred to the albedo
map using our SRSM. Subsequently, the environmental illumi-
nation of the input image is simulated and merged with the face
texture to synthesize the final faithful facial appearance. From
Fig. 10(e) to Fig. 10(h), we show the results of our preliminary
version [12], while the last four columns demonstrate the results
of our present method, where the colors of final face textures are
more consistent with the input faces than the other two methods.

Fig. 11 compares some facial textures synthesized using our
methods and three state-of-the-art methods. Shu et al. [63]
proposed an unsupervised intrinsic decomposition scheme to

TABLE II
COMPARISON OF FACE TEXTURE RECONSTRUCTION ERRORS

synthesize faces. The method proposed in [64] uses high-
resolution data to train networks for synthesizing textures. Gecer
et al. [15] proposed a progressively growing GAN to generate
high-fidelity face textures. To evaluate the performances of these
approaches, we compute the photometric error measured by the
difference between an input face and the associated rendered
texture asEpho = ‖Rs � (Io − Ir)‖22/Np, whereRs represents
the same common face regions across all the rendered images
for a fair comparison, Np is the total number of pixels inRs, and
� means the Hadamard product operation. The results in Fig. 11
demonstrate that, compared with the three stat-of-the-arts, the
facial textures generated by our method are visually clearer and
their colors are more consistent with those of the input faces.
Moreover, the generated face textures of the present method,
thanks to the proposed SRSM, have lower photometric error
value than that of our previous version [12].

We further quantify the performance gain of our texture
stream by evaluating the Mean Absolute Error (MAE) between
the input face and the rendered facial appearance using our
method, a linear method in pt, and a non-linear method in [13],
as shown in Table II.

E. Ablation Study

In this part, we conduct ablation studies to evaluate the effec-
tiveness of the key components in our framework.

1) Attribute Spatial Maps (ASMs) in Geometry Stream: Our
proposed ASM facilitates the geometry stream to handle extreme
expression variations by separating an identity from his/her ex-
pression attributes by using the associated ASMs in an uncon-
strained manner. Here, we study the effects of expression ASMs
on face images with various expressions. For a fair comparison,
we design a non-expression ASM structure, which eliminates
the expression ASM and only uses one spatial map to represent
the whole face shape, while keeping the remaining configura-
tions to train the network. Fig. 12 compares the generated face
geometry with and without the expression ASM. For the various
expressions in face images, the non-expression ASM structure
fails in some extreme conditions, such as a wide open-mouth,
which causes a distinct mismatch in the view of the overlay.
In contrast, owing to its strong expressive power, the complete
structure with ASMs demonstrates its superiority to faithfully
reconstruct face geometries with various expressions.

2) Loss Functions in Geometry Stream: In our geometry
stream, it mainly contains three loss terms to promote the gen-
eration of expression-aware face spatial maps. The ASM loss
contains the MSE term weighted by the facial weight mask W,
which imposes constraints on the global and local discriminative
regions, respectively. The symmetry loss imposes a constraint
on the identity ASM since the non-expression spatial map is hor-
izontally symmetric. The regularization term used to suppress
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Fig. 10. Comparison of facial texture of our methods with a state-of-the-art [14]. The final texture is composed of pure albedo and scene illumination, which
constitutes a high-fidelity appearance. (a) the input images. (b) to (d) the results in [14]. (e) to (h) the results of our preliminary method in [12]. (i) to (l) the results
of our present method.

Fig. 11. Comparison with three state-of-the-art methods by overlaying the texture on the input images. The method in [63] produces blurry face image, whereas
the GAN-based methods in [64] and [15] recover more faithful face textures. Our method outperforms [64] and [15] in both skin color and illumination. We
calculate the photometric error for the face regions to better demonstrate the difference between the inputs and the generated textures.

Fig. 12. Comparison of face geometry generation with and without the ex-
pression ASM. The non-expression ASM structure fails in some extreme ex-
pressions, leading to the distortions on the mouths in the view of the over-
lay. The complete structure with ASMs demonstrates its superiority in recon-
structing the geometry under various expressions. Please zoom in for better
observation.

TABLE III
ABLATION STUDY OF OUR METHOD ON AFLW2000

noise by imposing a local smoothness constraint. To analyze the
effects of these terms, we compare our complete model with two
partial variants: one only adopts the MSE term without the fa-
cial weight mask and the regularization and the other utilizes the
standard ASM loss which excludes the regularization term. Ta-
ble III compares the NME performances of different variants on
AFLW2000 [1], where the NME values are calculated between
the generated and ground-truth shapes as the per-vertex mean
error. It shows that the three terms in loss functions significantly
reduce the reconstruction error of the generated face geometry.
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Fig. 13. Comparison of our model with a conventional encoder-decoder model
for generating facial textures. The encoder-decoder approach tends to produce
blurry face appearances with local spatial deformation, especially around the
mouth and nose. Our approach generates more faithful face texture map. Please
zoom in for better observation.

Fig. 14. Visualization the correspondence relations and shared semantic re-
gions between input face image and unwrapped texture map. The first row
demonstrates the Sparse Correspondence (S-C) using circles with the same
color. The second to fourth rows further visualize the shared semantic re-
gions by choosing some activation maps to demonstrate the function of
SSRPM.

3) Generator Architecture in Texture Stream: The generator
architecture of our texture stream is a U-Net based network,
which utilizes skip-connections between the mirror layers to
preserve the local spatial information in the original face image
thus producing high-fidelity texture map. To verify the ability
of the generator structure, we compare our model against an
encoder-decoder version without skip-connections on face tex-
ture map generation in Fig. 13.

4) Semantic Region Stylization in Texture Stream: The core
function of texture stream is to stylize semantic regions using
our SSRPM, that establishes a soft correspondence of shared se-
mantic regions between the input face and its unwrapped texture
map. These relations can be utilized to synthesize realistic fa-
cial appearance with the semantic region-based stylization rather
than the global manner. Fig. 14 shows the correspondence re-
lations in SSRPM, where circles with the same color are used
to illustrate some correspondences between the two images, as
shown in the first row. We then visualize the shared semantic
regions, as in [65] to illustrate the locations of a case in an im-
age, with activation maps from Xs

r each representing a semantic
region shared between them. The 1st, 4th, 7th, 9th, 11th, 15th ac-
tivation maps are randomly chosen to show some regions, such
as mouth, eyes, cheek, and jaw.

Fig. 15. Visualization of semantic regions and their corresponding feature
statistics. (a) The original face images without indicating semantic regions. (b)
to (d) randomly chosen activation maps to respectively illustrate the semantic
regions they focus on. Above the images are the corresponding mean and stan-
dard values for the feature maps, calculated from the whole images in (a), and
only from the highlighted regions in (b), (c), and (d).

Fig. 16. Stylization ability comparison. The first column shows the input
face images. The first group presents face textures, generated by 3DMM,
AdaIN [20] and our previous method [12], which are global-based methods
and cause color inconsistency with the inputs. The second group shows our
semantic-region-based stylization facial textures with different n values in SS-
RPM. When the value of n increases, more regions can establish their cor-
respondence, hence the generated face texture gets closer to the original face
texture. The photometric error indicates below each generated face texture fur-
ther demonstrates the performance of synthetic face textures and the superiority
of our semantic-region-based method.

The learned semantic regions by SSRPM inXs
r indicate those

regions with high correlation in semantics. As shown in Fig. 15,
we randomly select several activation maps to highlight the se-
mantic areas (from Fig. 15(b) to Fig. 15(d)) of the correspond-
ing face images (Fig. 15(a)). Then the statistics, including the
mean and standard deviation, computed from diverse regions
are different from others, which represent specific style feature
information within one semantic region.

Fig. 16 verifies the effectiveness of SSRPM with different
stylization manners for face texture generation. We divide all the
methods into two groups: one only using global-based methods
and the other adopting semantic-region-based manner with dif-
ferent settings. In group one, we first show the initial face appear-
ance by directly using the 3DMM texture parameter pt. Then we
adopt AdaIN [20] to perform style transfer from the input face
to the 3DMM texture map. Since the affine parameters α and
β of AdaIN represent the global style information in the source
style image, AdaIN cannot well stylize local regions, thereby
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Fig. 17. Illustrations of the contributions of individual loss terms of our method
with the leave-one-out ablation study. The results demonstrate the necessity
of each component, which makes a significant contribution towards a good
reconstruction. Please zoom in for better observation.

introducing local color inconsistency artifacts. We also present
the results of our preliminary version [12] that uses the transfor-
mation network (TN) to directly synthesize the face texture map
without considering the semantic regions on faces. In group two,
we demonstrate the results of our proposed SSRPM with differ-
ent n values. A small value of n (e.g., n = 8) causes insufficient
stylization since some regions lack adequate correspondences.
In contrast, n = 16, or n = 32 achieves higher-quality recon-
struction. The photometric error are further computed to eval-
uate the performance of different settings. Finally, we choose
n = 16 as it reaches a good trade-off between performance and
computational cost.

5) Other Loss Terms: Here, we conduct an ablation study on
our method to verify the full model can reconstruct the input face
better than its variants. Specifically, we adopt the leave-one-out
strategy for loss terms related to the final facial appearance to
investigate the individual contributions of them. As shown in
Fig. 17, each of our components significantly contributes to-
wards a good face reconstruction. Fig. 17(a) and Fig. 17(b) show
the input face and the final rendered version. Fig. 17(c) shows
that the adversarial loss effectively avoids hazy effects and faith-
fully recovers the details of texture. Fig. 17(d) shows the identity
terms contributes to identity preservation. Moreover, the pixel
intensity constraint can promote color consistency as shown in
Fig. 17(e). Finally, Fig. 17(f) demonstrates the content loss can
better capture the albedo and illumination.

V. CONCLUSION

In this paper, we proposed a dual-stream network, involving
a geometry stream and a texture stream, to achieve expression-
ware monocular face reconstruction. In the geometry stream, we
recover accurate geometries under various expressions by learn-
ing decoupled attribute spatial maps for both identity and expres-
sion. In the texture stream, we synthesize realistic facial appear-
ances by using a semantic region-based stylization method by
combining the advantages of 3DMM albedo map and original
face image. Quantitative and qualitative results demonstrate the
effectiveness of our method in handling challenging expressions.
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