
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 2, FEBRUARY 2018 421

CNN-Based Joint Clustering and Representation
Learning with Feature Drift Compensation

for Large-Scale Image Data
Chih-Chung Hsu, Member, IEEE, and Chia-Wen Lin , Senior Member, IEEE

Abstract—Given a large unlabeled set of images, how to
efficiently and effectively group them into clusters based on
extracted visual representations remains a challenging problem. To
address this problem, we propose a convolutional neural network
(CNN) to jointly solve clustering and representation learning in an
iterative manner. In the proposed method, given an input image set,
we first randomly pick k samples and extract their features as initial
cluster centroids using the proposed CNN with an initial model
pretrained from the ImageNet dataset. Mini-batch k-means is then
performed to assign cluster labels to individual input samples for
a mini-batch of images randomly sampled from the input image
set until all images are processed. Subsequently, the proposed
CNN simultaneously updates the parameters of the proposed CNN
and the centroids of image clusters iteratively based on stochastic
gradient descent. We also propose a feature drift compensation
scheme to mitigate the drift error caused by feature mismatch
in representation learning. Experimental results demonstrate the
proposed method outperforms start-of-the-art clustering schemes
in terms of accuracy and storage complexity on large-scale image
sets containing millions of images.

Index Terms—Convolutional neural network (CNN), deep
learning, image clustering, unsupervised learning.

I. INTRODUCTION

IMAGE clustering [1]–[16] is a fundamental problem for
many image processing and computer vision applications.

Nowadays, a huge number of images have been uploaded to
cloud for sharing or storage. How to efficiently organize such
large-scale image data is a challenging issue. In general, most
research works on large-scale image clustering were based
on feature encoding, such as hashing [17], [18], which can
largely reduce the dimensionality of image features so as to
make large-scale clustering possible. However, reducing the di-
mensionality of features is equivalent to decreasing the repre-
sentational power, leading to unsatisfactory clustering perfor-
mance. Besides, the hash-based approaches usually assume that
features are extracted before hash encoding. Different feature
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representations might lead to redesigning hash functions be-
cause of different number of dimensions or value ranges of
feature vectors [1].

Clustering methods can be roughly categorized into hierarchi-
cal clustering and centroid-based clustering. The most popular
algorithms for hierarchical clustering are agglomerative clus-
tering [3], [4]. In agglomerative clustering, initially, individual
samples in input data are considered as a cluster containing
a single sample. Then, in each iteration, the two closest clus-
ters in the raw or feature domain are merged into a cluster and
the centroid of the merged cluster is computed accordingly. By
iteratively merging the two closest clusters and updating the
associated cluster centroids each time, we finally obtain the de-
sired number of clusters and the corresponding centroids, which
is, however, computationally very expensive for a large dataset.

In contrast, centroid-based clustering (e.g., k-means and spec-
tral clustering) [6]–[11] randomly picks k samples from the in-
put data as initial cluster centroids. Then, each sample finds
its closest cluster centroid and is assigned with the correspond-
ing cluster label. As a result, the cluster centroids are updated
according to the clustering result. The clustering and centroid
updating are sequentially iterated until converging to a solu-
tion point. To further improve clustering performance, some
advanced techniques such as spectral clustering and matrix fac-
torization [6] were proposed to map visual features to another
discriminative feature space to boost clustering performance.
Such centroid-based clustering is more suitable for large-scale
data clustering than hierarchical clustering due to less memory
usage and computational power requirements. The effective-
ness of centroid-based clustering, nevertheless, highly relies on
feature representational power.

A. Deep-Learning Based Image Clustering

Recently, deep-learning-based approaches have reached a se-
ries of breakthroughs in various fields such as image classifica-
tion [19], object detection and tracking, and retrieval [20]. The
most popular network architectures for image/video applica-
tions including AlexNet [19], ResNet [21] VGG [22], Inception
module [23], and FCN [24] are all based on convolutional neu-
ral networks (CNNs). CNNs have proven to be able to learn
significantly better discriminative visual representations for im-
ages compared to traditional hand-crafted features or features
learned by shallow neural networks, given a sufficiently large
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labeled training set (usually containing millions of images like
those provided in ImageNet [25]).

Since the performance of an image clustering method highly
relies on the discriminative power of extracted features, there
have been quite a few attempts to make use of deep networks
to boost image clustering performance by feature representa-
tion learning. Nevertheless, the excellent representational power
of deep networks relies on a large and comprehensive labeled
training dataset, which is not available in unsupervised image
clustering tasks. Although a model can be pre-trained based on
existing large-scale training image sets, the pre-trained model
may not fit the characteristics of input data well.

The first deep-learning-based image clustering work adopts
AutoEncoder to learn visual representations followed by con-
ventional k-means to obtain final clusters [26]. However, com-
pared to CNN-based architectures, AutoEncoder usually cannot
learn representative features well from high-dimensional data
such as images. The CNN with Connection Matrix (CNN-CM)
method in [27] proposed a connection matrix that allows feeding
in additional side information to assist learning discriminative
representations for clustering. A full-set k-means is then per-
formed to group all images into their corresponding clusters
based on the learned features. The complexity of full-set k-
means will, however, grow drastically when the size of image
set becomes large, making large-scale clustering impractical.
The CNN with Re-running Clustering (CNN-RC) method in
[28] proposed to learn feature representations and cluster im-
ages jointly: hierarchical image clustering is performed in the
forward pass, while representations are learned in the back-
ward pass. In the hierarchical clustering, image samples are
regarded as initial centroids, and then reliable label information
is extracted from an undirected affinity/similarity matrix estab-
lished from the input image set. The network parameters are
iteratively updated towards obtaining better feature represen-
tations by minimizing a predefined loss metric. Nevertheless,
constructing an undirected affinity matrix consumes high com-
putation and memory complexity when the training set becomes
large. The memory cost can hardly be reduced since it is not a
sparse matrix.

B. Contribution of Proposed Method

Although CNNs have been shown to achieve good perfor-
mances in supervised learning-based image/video applications
such as visual object localization, tracking, and categorization,
existing CNNs cannot well tackle large-scale image clustering
as there usually do not exist enough labeled data for feature
representation learning of CNNs. To efficiently address the
problems of learning representative features from unlabeled
input images for large-scale image clustering, we propose
a clustering CNN (CCNN) to achieve joint clustering and
representation learning. The key idea behind our method is that
learning better feature representations of input images leads to
better clustering results. Meanwhile, better image clustering
will benefit the feature learning of the proposed CNN as well.
To reduce computation and memory costs, we incorporate mini-
batch k-means into the CNN-based clustering framework. The

main contribution of this paper is three-fold: i) We are among the
first to propose a framework that integrates mini-batch k-means
with state-of-the-art CNNs to efficiently address the large-scale
image clustering problem; ii) we propose a novel iterative
centroid updating method that can avoid drift error caused by
the feature mismatch between successive iterations of repre-
sentation learning with mini-batch k-means, which was never
studied and addressed before; and iii) the proposed framework
can be easily integrated into existing CNN-based networks.

The rest of this paper is organized as follows. Section II
overviews the proposed CCNN architecture. Section III presents
the proposed joint clustering and representation learning frame-
work. In Section IV, experimental results are demonstrated.
Finally, Section V concludes this paper.

II. PROPOSED CLUSTERING CNN ARCHITECTURE

Most deep-learning-based image clustering approaches esti-
mate the label of an image by passing a whole image through
a deep network (e.g., AutoEncoder or CNN) [26]–[28], which
tends to extract the global features for the image [19]. Neverthe-
less, people usually group image clusters according to images’
salient features [29]. To extract local salient features from an
image, instead of a traditional CNN with several fully con-
nected layers, we propose a CCNN to better capture the salient
part of an image without the need of providing any bounding-
box in the training stage. As illustrated in Fig. 1, the proposed
CCNN is composed of five convolutional layers Conv1–Conv5
adopted from the first five convolutional layers of AlexNet [19],
followed by three adaptation layers (Conv6–8) with channel
numbers 6144, 2048, and k, respectively, that replace the fully
connected layers in AlexNet. The adaptation layers involve three
convolutional layers, Conv6−Conv8, all with 3× 3 kernels fol-
lowed by a global max-pooling that finds the maximum value
for each channel of Conv8 so that the size of the output of the
global max-pooling is 1× k, where k is the number of clusters.
In the proposed CCNN, the salient region can be roughly lo-
calized by Conv8, as reported in [29]. As a result, the proposed
CCNN extracts features merely from the salient regions of an
image. Note, Conv1–Conv5 of CCNN can also be replaced with
other stacked convolutional layers adopted from ResNet [21],
VGG [22], or Inception modules [23] to build a more effective
CCNN.

As shown in Fig. 2, to address the complexity issue in large-
scale image clustering, we propose to incorporate mini-batch
k-means clustering into the proposed CCNN network in which
the image clustering and feature learning are jointly solved and
updated by mini-batch stochastic gradient descent (SGD), mak-
ing the large-scale image clustering feasible. In our clustering
method, at first k samples are randomly picked from input data
as initial cluster centroids. We then extract the features of in-
put samples using CCNN. For each mini-batch, we perform
mini-batch k-means to assign cluster labels to individual input
samples based on the extracted features, followed by SGD to
update the parameters of CCNN. As a result, new features are
extracted based on the updated network parameters and then
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Fig. 1. Network architecture of the proposed FCNN, that is composed of five concatenated convolutional layers (Conv1−Conv5) adopted from AlexNet, followed
by three convolutional layers (Conv6−Conv8), one fully connected layer (FC9), and one softmax layer.

Fig. 2. Block diagram of the proposed CCNN for joint image clustering and representation learning.

used to re-cluster the input images. The process is iterated until
the clustering result converges to a stable point.

III. JOINT CLUSTERING AND REPRESENTATION LEARNING

BASED ON MINI-BATCH K-MEANS

Let I = {I1 , I2 , . . . , INx
} denote the input image set

containing Nx images. The goal is to group Nx images into k
clusters C = {c1 , c2 , . . . , ck}. Since, when Nx is large, clus-
tering the whole large image set at one time would lead to high

computation and memory costs, we propose to divide the input
image set into mini-batches of a small and fixed size, and then
perform clustering for individual mini-batches. Given a mini-
batch containing Nm images randomly sampled from I, the
mini-batch’s feature set H = {h1 ,h2 , . . . ,hNm

} is extracted
from the FC9 layer of CCNN using filters hi = f(WFC9 |Ii),
where WFC9 represents the set of parameters (weights) of FC9.

The proposed scheme for iterative image clustering and rep-
resentation learning is illustrated in Fig. 2. We first initialize
the parameters of the CCNN by a pre-trained model (will be
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elaborated later) for speeding up the convergence of iterations.
We then randomly pick k images Ic from the input image set
and extract their features Hc using the pre-trained CCNN as
the initial cluster centroids C. After the initialization, we divide
the input image set into mini-batches, and for the b-th mini-
batch, perform mini-batch k-means [29] to assign cluster labels
to features h(b)

i = f(W|I(b)
i ) ∈ H(I(b)) extracted from indi-

vidual images of the mini-batch. Based on the assigned labels
to the feature set of the b-th mini-batch, we can update the pa-
rameters of the CCNN using SGD. Then, features h(b)

i of the
b-th mini-batch are used to update their corresponding centroids
using SGD. Since W will be updated after each iteration, the
extracted feature h(b)

i will also be updated as well, resulting in a
possible mismatch between the features extracted in successive
iterations. In this case, the centroid updating based on SGD may
become unstable and unpredictable since the feature mismatch
will lead to gradient drift error in SGD. To overcome this prob-
lem, we analyze the gradient drift error between two successive
iterations and compensate for the drift error by tracking back-
ward the features extracted in two successive iterations to ensure
their consistency. Finally, the proposed method updates the ex-
tracted feature h, centroids C, and parameters W iteratively to
mitigate such drift error. The details of the proposed method are
elaborated in the following subsections.

A. Initialization of CCNN

To accelerate the training process, in the proposed CCNN,
since Conv1–Conv5 are part of AlexNet [19], we directly pre-
train the parameters of Conv1–Conv5 in the AlexNet network
based on the ILSVRC12 training set of ImageNet [25]. After
the pre-training of Conv1–Conv5, we concatenate the remaining
layers (i.e., Conv6–Conv8, FC9, and Softmax) of the CCNN with
Conv1–Conv5. During the pre-training process, data argumenta-
tion is used to increase sample diversity. After the initialization,
the pre-trained set of parameters is then used as an initial model
for all image clustering tasks.

B. Representation Learning

In this work, we extract local salient features from the output
of layer Conv8 [29], and then feed the features into FC9 to
generate the features for clustering. To learn the parameters of
FC9 and Softmax of the proposed CCNN, we use a standard
SGD process [31] as illustrated in Fig. 3, where parameter sets
WFC9 = {wmi} and WSMax = {wij} represent the weights of
FC9 and Softmax, respectively. In order to learn the weights of
FC9 and Softmax, we first define the following sum of squared
errors (SSE) objective function:

E =
1
2

k∑

j=1

(yj − tj )
2 (1)

where k is the number of clusters, yj is the j-th cluster label
predicted using the CCNN model, and tj is the j-th cluster label
predicted using mini-batch k-means that is used as a pseudo
ground-truth to guide the update of the CCNN model. Then we
calculate the gradients of objective function E with respect to

Fig. 3. Illustration of updating the parameters of the FC9 and Softmax layers
of CCNN.

wmi and to wij , respectively. We start with the gradient with
respect to wij by using the chain rule as follows:

∂E

∂wij
=

∂E

∂yj
· ∂yj

∂uj
· ∂uj

∂wij
(2)

where uj is the activation function of the j-th ReLU [35]. The
derivative of E with respect to yj is

∂E

∂yj
= yj − tj (3)

and the derivative of ReLU with respect to its input u is

∂yj

∂uj
= max (yj , 0) . (4)

The derivative of uj =
∑k

i=1 wijhi with respect to wij is

∂uj

∂wij
= hi. (5)

As a result, wij can be updated in the t-th iteration by

w
(t+1)
ij = w

(t)
ij − η · (yj − tj ) ·max (yj , 0) · hi (6)

where η is the learning rate. Similarly, we can calculate ∂E
∂wm i

by the chain rule

∂E

∂wmi
=

k∑

j=1

(
∂E

∂yj
· ∂yj

∂uj
· ∂uj

∂hi

)
· ∂hi

∂ui
· ∂ui

∂wmi
(7)

where ∂uj

∂hi
= (∂

∑ k
i = 1 wi j hi )
(∂hi )

= wij . The remaining derivative

terms of ∂E
∂wm i

include ∂hi

∂ui
and ∂ui

∂wm i
, where the derivative of

ReLU hi with respect to ui is

∂hi

∂ui
= max (hi, 0) (8)

and ∂ui

∂wm i
is

∂ui

∂wmi
=

∂
∑k

m=1 wmixm

∂wmi
= xm . (9)
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Consequently, wmi can be iteratively updated by

w
(t+1)
mi = w

(t)
mi − η

k∑

j=1

[(yj − tj ) ·max (yj , 0) · wij ]

·max (hi, 0) · xm

= w
(t)
mi − ηΔw

(t)
mi. (10)

Finally, the full gradient for updating the weights of FC9 can
be calculated by (10).

C. Cluster Centroid Updating

Assume that the size of a mini-batch is Nm , we randomly
sample Nm images from the input image set I to form a
mini-batch. Initially, we randomly pick k features H(0)

c =
{h(0)

1 ,h(0)
2 , . . . ,h(0)

k } from I as initial centroids C, where h(0)
j

denotes the feature of the j-th image in the first iteration (i.e.,
t = 0). To effectively initialize the cluster centroids, we follow
the centroid seeds selection strategy proposed in [34] to maxi-
mize the diversity among initial centroids. Mini-batch k-means
is then performed to assign individual samples of each mini-
batch to their corresponding clusters. Based on the mini-batch
clustering result, the centroids of those clusters that are assigned
to the mini-batch’s samples are updated based on SGD [31]. In
iteration t, the i-th centroid c(t)

i that is assigned to a new sample
is updated by the weighted average of the features of the (t− 1)-
th centroid and the features of the newly assigned sample h

(t)
new

as follows:

c
(t)
i = (1− γi) c

(t−1)
i + γih

(t)
new (11)

where h
(t)
new represents the extracted features of the sample in

mini-batch Hc that is newly assigned to its nearest neighbor
centroid ci . We follow [31] to use per-centroid learning rates γi

for the i-th centroid as determined by

γi = 1/count (ci) (12)

where count(ci) is the number of samples assigned to ci .

D. Compensation of Feature Drift

Note, in the t-th iteration, the feature vector of the j-th image
h(t)

j = f(w(t)
FC9 |Ij ) is extracted based on the filter coefficients

w
(t)
mi of FC9. However, w

(t)
mi is updated along time during rep-

resentation learning, thereby making h(t)
j vary along time as

well. The time-varying nature of h(t)
j leads to the inconsistency

between the features extracted from the same image in two suc-
cessive iterations. For example, h(t)

j = f(W(t)
FC9 |Ij ) extracted

in iteration t is different from h(t−1)
j = f(W(t−1)

FC9 |Ij ) in itera-

tion t− 1, as W(t)
FC9 and W(t−1)

FC9 are different due to param-
eter updating. This makes centroid updating in (11) unreliable
since h

(t)
j is time varying, which can significantly degrade the

performance of image clustering as will be demonstrated in
Section IV. To address this mismatch problem, we propose an
approach to ensure feature consistency between two successive
iterations. In iteration t, we have c(t)

i = (1− γi)c
(t−1)
i + γih

(t)
j

and w
(t)
mi = w

(t−1)
mi − ηΔw

(t−1)
mi , ∀m, i. As a result, the feature

extracted in the (t− 1)-th iteration can be backward tracked
from the weight obtained in iteration t by

h(t−1)
j = f

((
w(t)

FC9 + ηΔw(t−1)
FC9

)
|Ij

)
. (13)

To maintain the consistency between the features used in
two successive iterations, we replace the features h

(t)
new in (11)

with the backward tracked features in (13), and reformulate the
centroid updating as follows:

c(t)
i = (1− γi) c

(t−1)
i + γif

((
w(t)

FC9 + ηΔw(t−1)
FC9

)
|Ij

)
.

(14)
In this way, the cluster centroids can be properly updated. Af-

ter iterating for several epochs with the proposed framework, the
cluster labels of images will converge to their final values more
reliably. Besides, the iteratively fine-tuned network parameters
can be used to extract successively improved visual represen-
tations for image clustering. Furthermore, the proposed mini-
batch-based scheme can deal with large-scale image clustering
on a single personal computer with reasonable computational
and memory complexity as will be shown in the experiment
section.

E. Top-km Based Parameter Updating

Since the predicted cluster labels of the samples in a mini-
batch may not be all reliable because the network parameters of
CCNN may be inaccurate, we only pick from a mini-batch the
top-km samples with the smallest distances to their correspond-
ing centroids to update the network parameters of CCNN. In this
way, we update the parameters of CCNN once when collecting
Nm samples from every Nm /km times of mini-batch cluster-
ing, where Nm is the size of a mini-batch. Note, the higher the
km value is, the faster the parameter updating process will be,
but the lower the performance of clustering due to the lower
representational power of the parameters of CCNN. In contrast,
a much smaller km value, though achieving better clustering
performance, would result in a drastically increased number of
updating processes and long training time. In our experiments,
km is empirically set to be 10. The proposed algorithm is sum-
marized in Table I.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

1) Comparison Schemes: To evaluate the performance of the
proposed method, we test our method against three state-
of-the-art deep-learning-based image clustering schemes
including the AutoEncoder-based Deep Embedding Clus-
tering (DEC) scheme proposed in [26], the CNN with
Connection Matrix (CNN-CM) method proposed in [27],
and the CNN with Re-running Clustering (CNN-RC) [28].
Note, as explained above, these three deep-learning-based
schemes cannot deal with large-scale image sets consist-
ing of millions of images on a personal computer equipped
with a commercial GPU(s) like Titan X. Therefore, be-
sides the three methods, we also implemented three base-
line schemes for performance evaluation: 1) Baseline-I: the
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TABLE I
PROPOSED JOINT REPRESENTATION LEARNING AND CLUSTERING ALGORITHM

1. Given: k, mini-batch size Nm , max iteration no. T, Image dataset I
2. Randomly sample k samples from I as entroids ci ∈ C
3. Extract image features from the initial centroids
4. v ← 0
5. For t = 1 to T do:
6. M ← Nm images features picked randomly from I
7. For m ∈M do:
8. y, γ(m), d = N (m, C)
9. //find label y, distance d, and learning rate

10. End For
11. M’, y’← k-NN(d, M, C, km )
12. // Assign top- km samples & labels to set M’ & y’
13. If (size(M’) = b) fo
14. Finetune(CCNN, M’, y’, km )
16. //Use the predicted labels to fine tune CCNN
17. For m ∈M do:
18. Update the centroid by (14) //Adaptive centroid updating
19. End For
20. End If
21. End For

proposed method without feature mismatch compensation,
that is, using (11) instead of (14) to update cluster cen-
troids; 2) Baseline-II: mini-batch k-means clustering based
on the pre-trained model described in Section III-A without
iterative representation learning; 3) Baseline-III: full-set k-
means clustering based on the pre-trained model described
in Section III-A without iterative representation learning.

2) Datasets for Pre-training and Testing: We selected two
large-scale image datasets, ILSVRC12 in ImageNet [25]
and Places2 [32], for clustering performance evaluation.
ILSVRC12 consists of 1.2 million training images and
50,000 validation images collected from 1,000 object cate-
gories, and Places2 consists of 1.6 million training images
and 18,250 validation images collected from 356 scene
categories. Since, for fast convergence, the parameters of
CCNN were pre-trained from the ILSVRC12 training set
(denoted “ILSVRC-Train”), we did not evaluate the per-
formances of the clustering methods on the ILSVRC12
training set for fairness. Instead, we conducted performance
evaluation on the Places2 training (denoted “Places-Train”)
and validation (denoted “Places-Val”) sets, and also on the
ILSVRC12 validation set (denoted “ILSVRC-Val”). For
the Places2 training and validation sets, the channel num-
ber to Conv8 and the number of neurons of Softmax in
the proposed CCNN were both set to 365, whereas for the
ILSVRC12 validation set the number of channels to Conv8
and number of neurons of Softmax were both set to 1000.
Similar to [7], all test images were cropped to 256 × 256
center-surrounding images.

Besides the large-scale datasets, we also evaluated the per-
formances of the clustering methods on a smaller scale image
dataset MNIST, which contains 60,000 greyscale images of size
28 × 28. Since the size of MNIST handwriting images is small,
the images were not cropped.
3) Computation Platform: We implemented the proposed

method on top of TensorFlow [36] on an Intel Core i7-4770
PC with 32 GB RAM which is equipped with an NVIDIA
Titan X GPU with 12 GB GPU RAM.

TABLE II
NMI PERFORMANCE COMPARISON BETWEEN THE PROPOSED SCHEME

AND STATE-OF-THE-ART SCHEMES FOR THREE IMAGE DATASETS

Evaluated methods ILSVRC-Val Places-Val Places-Train

DEC [26] 0.155 0.113 N.A.

CNN-CM [27] 0.137 (Ran.)
0.225 (Pre.)

0.198 (Ran.)
0.237 (Pre.)

N.A.

CNN-RC [28] 0.295 (Ran.)
0.369 (Pre.)

0.213 (Ran.)
0.310 (Pre.)

N.A.

Baseline-I 0.181 (Pre.) 0.153 (Pre.) 0.047 (Pre.)

Baseline-II 0.231 (Pre.) 0.177 (Pre.) 0.045 (Pre.)

Baseline-III 0.293 (Pre.) 0.201 (Pre.) N.A.

Proposed 0.314 (Ran.)
0.375 (Pre.)

0.219 (Ran.)
0.307 (Pre.)

0.166 (Ran.)
0.187 (Pre.)

B. Performance Evaluation

To evaluate the objective clustering performances of the pro-
posed method and the compared methods, we adopt the widely
used metric: Normalized Mutual Information (NMI) [33] as de-
fined below:

NMI (t,y) =
I (t, y)√

H (t) H (y)
(15)

where H(·) stands for the entropy, and I(t, y) = H(t)−
H(t|y) denotes the mutual information. The higher the NMI
is, the more reliable the clustering result becomes.

Table II compares the NMI performances of the proposed
method, DEC [26], CNN-CM [27], CNN-RC [28] and the three
baseline methods for three image sets. For the CNN-based meth-
ods including the proposed CCNN, CNN-CM, and CNN-RC, we
compare the performances of these methods with a pre-trained
model learned from the ILSVRC-Train set (denoted “Pre.”) and
with random initialization (denoted “Ran.”). As for the three
baseline methods, we only compare the performances with a
pre-trained model. As shown in Table II, with the pre-trained
model, the proposed method achieves comparable NMI perfor-
mances with CNN-RC and significantly outperforms CNN-CM
and DCC for ILSVRC-Val and Places-Val. As for the large-
scale image dataset Places-Train which contains millions of
images, only the proposed CCNN can successfully cluster such
a large-scale image dataset on a personal computer equipped
with a commercial GPU card, whereas DEC, CNN-CM, and
CNN-RC, and Baseline-III all cannot handle large-scale image
clustering due to their high complexity as will be explained
later. Compared with Baseline-I, we can observe that the fea-
ture mismatch in mini-batch-based centroid updating leads to
significant drifting error which degrades the NMI performance
by 0.14–0.19. Compared with the direct combination of a pre-
trained model with mini-batch k-means (Baseline-II) and full-
set k-means (Baseline-III), the proposed joint optimization of
clustering and parameter learning leads to performance im-
provement in NMI by 0.13–0.14 and 0.08–0.10, respectively.

Table III compares the memory and run-time costs for three
image sets, where we set the number of epochs for parameter up-
dating to 10. The run-time is proportional to the size of image set
and the number of clustering iterations. The comparison shows
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TABLE III
COMPARISON OF RUN-TIME AND MEMORY COSTS BETWEEN THE PROPOSED

SCHEME AND STATE-OF-THE-ART SCHEMES FOR THREE IMAGE DATASETS

Evaluated methods ILSVRC-Val Places-Val Places-Train

DEC [26] 0.9 hr/16 GB 0.75 hr/14 GB N.A.
CNN-CM [27] 3 hr/ 7 GB 1.8 hr/5 GB N.A.
CNN-RC [28] 5.1 hr/10 GB 4.6 hr/7 GB N.A.
Baseline-I 1.1 hr/8 GB 0.5 hr/8 GB 40 hr/8 GB
Baseline-II 0.9 hr/22 GB 0.45 hr/19 GB 36 hr/8 GB
Baseline-III 4.28 hr/22 GB 3.68 hr/19 GB N.A.
Proposed 1.2 hr/8 GB 0.5 hr/8 GB 43 hr/8 GB

Fig. 4. Simplified CCNN for the MNIST dataset.

that, for mini-batch size Nm = 50, our method consumed about
8 GB GPU memory and 43 hours to obtain the clustering result
of the Places-Train image set on Titan X, whereas DEC, CNN-
CM, and CNN-RC all failed in this clustering task. DEC [26]
learns feature representations from a training set based on Au-
toEncoder. However, it has been shown that the representation
learning performance of an AutoEncoder-based network is gen-
erally unsatisfactory for high-dimensional data (e.g., images) in
terms of computation and clustering performance [7]. Although
CNN-based networks have proven to achieve good representa-
tional power, both CNN-CM [27] and Baseline-III perform full-
set k-means clustering which needs to extract the features of all
images and compare the distances between features, leading to
huge computation/memory requirement and making large-scale
clustering infeasible on a single general-purpose PC equipped
with a GPU graphic card. Similarly, CNN-RC [28] relies on
constructing an Nx ×Nx affinity matrix, making the clustering
process unsolvable when the size of dataset Nx is large. In-
stead of using computation/memory demanding operations like
full-set k-means and affinity matrix construction, the proposed
mini-batch-based method with feature drift compensation can
efficiently and reliably address the problem of large-scale joint
representation learning and clustering.

We also evaluated the effectiveness of the proposed method
on the MNIST dataset. Because the image resolution of MNIST
is much smaller than that of ImageNet, we built a simplified
version of CCNN by removing some convolution layers to fit
the data type, as depicted in Fig. 4. As shown in Table IV, the
performance of the proposed method significantly outperforms
k-means. Compared to the state-of-the-art CNN-based meth-
ods CNN-SF/CNN-RC in [28], where CNN-SF is a simplified
version of CNN-RC, our method achieves comparable perfor-
mance on MNIST. More results about the comparison with other

TABLE IV
NMI PERFORMANCE COMPARISON OF THE PROPOSED METHOD,
K-MEANS, AND CNN-SF/CNN-RC FOR MNIST IMAGE SETS

Evaluated methods MNIST-Train MINST-Test

k-means 0.500 0.528
CNN-SF [28] 0.906 0.876
CNN-RC [28] 0.913 0.915
Proposed 0.876 0.916

TABLE V
NMI PERFORMANCE COMPARISON OF DIFFERENT CLUSTERING METHODS

ON TOP OF THE NETWORK ARCHITECTURES OF CCNN AND ALEXNET [7]

Evaluated methods ILSVRC-Val Places-Val

Baseline-II with AlexNet 0.220 0.168
Baseline-II with CCNN 0.231 0.177
Baseline-III with AlexNet 0.279 0.194
Baseline-III with CCNN 0.293 0.201
Proposed with AlexNet 0.346 0.291
Proposed with CCNN 0.375 0.307

Fig. 5. Visualized feature maps of Conv8 using global average pooling show-
ing that the objects (motorcycles) can be roughly localized.

typical clustering methods can be found in [28] which show that
CNN-SF/CNN-RC outperformed many other schemes. All the
results show that the proposed CCNN performs well for image
datasets of various scales.

As suggested in [29], localizing salient objects in an image can
benefit the categorization of the image. To this end, the network
architecture of CCNN is mainly modified from AlexNet [7] by
replacing the fully-connected layers of AlexNet with the adap-
tation layer that consists of three convolutional layers (Conv5–
Conv8). To evaluate the effectiveness of the proposed network
structure of CCNN, we compare the performances of three clus-
tering schemes: the project joint clustering and parameter up-
dating, and the Baseline II and Baseline III schemes described
in Section IV-A on top of the network architectures of CCNN
and AlexNet on the ILSVRC-Val and Places-Val datasets. As
shown in Table V, the proposed CCNN architecture achieves
better performances for all the three clustering schemes com-
pared to AlexNet. As shown in Fig. 5, the visualized feature
maps of Conv8 using global average pooling all illustrate that
the proposed architecture can roughly localize salient regions,
making the following layers (i.e., FC9 and Softmax) learn the
feature representations from salient regions only. It is one rea-
son that the proposed method outperforms the others in image
clustering.
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Fig. 6. Comparison of NMI performance of the proposed method with differ-
ent km settings for the ILSVRC-Val dataset.

Fig. 7. Comparison of NMI performances of the proposed approach with
random initial and pre-trained model for three test datasets (ILSVRC12-Val,
Places-Train, and Places-Val) versus the number of training epochs.

C. Impacts of km and the Number of Epochs

As mentioned in Section III-E, we only pick top km samples
to update the network parameters of CCNN in each mini-batch.
Fig. 6 shows the impact of different km values on the clus-
tering performance for the ImageNet validation set (ILSVRC-
Val). It shows that the km = 1 achieves the best NMI perfor-
mance, which, however, consumes the longest fine-tuning time
for learning the network parameters. To achieve a good trade-
off between performance and complexity, the combination of
Nm = 50 and km = 10 seems to be a reasonable choice that
leads to a slightly lower NMI performance but much fewer com-
putation compared with km = 1. Note, when the mini-batch size
equals to the size of image set and km = 1, this extreme case is
similar to CNN-RC [28] but in a mini-batch optimization form.
Compared to CNN-RC, the main advantage of CCNN is that the
mini-batch optimization form can deal with large-scale image
clustering problems.

Since the clustering performance and computational com-
plexity of our mini-batch-based CCNN basically increase with
the number of epochs for parameters updating, we also eval-
uated the performance of CCNN on the three image datasets
with different numbers of epochs. Fig. 7 compares the pro-
posed approach with random initialization and with a pre-trained

model for three test data sets (ILSVRC12-Val, Places-Train, and
Places-Val) versus the number of epochs of training. As illus-
trated in Fig. 7, the NMI performance of the CCNN with a
pre-trained model becomes saturated after 14 epochs for all test
image sets, whereas that of the CCNN with random initializa-
tion becomes saturated after about 30 epochs. With Nm = 50
and km = 10, all samples in the input image set can be picked
at least one time every five epochs of the iterative updating pro-
cess. We therefore suggest setting the number of epochs to be 10
or less than 10 for the parameter fine-tuning process of CCNN
to achieve a good tradeoff between clustering performance and
computational complexity.

D. Convergence Analysis of CCNN

Although k-means clustering is guaranteed to converge, there
is no theoretical guarantee for the convergence of mini-batch k-
means based clustering approaches. Nevertheless, many recent
studies in deep CNN models based on mini-batch training have
shown that, with a reasonable initial model pre-trained from a
comprehensive data set (e.g., ImageNet), deep CNNs can usu-
ally converge reliably in the training process. Since our mini-
batch k-means clustering method adopts an initial model pre-
trained from ImageNet to estimate cluster labels, it can usually
lead to reliable convergence performance. To evaluate the con-
vergence performance of our method with a pre-trained model,
in our experiments shown in Fig. 7, we adopt a pre-trained
model learned from ImageNet and then use it to cluster images
of a different dataset (e.g., Places2) for fair comparison. Be-
sides, we also conduct experiments to evaluate the convergence
performance of our method with random initialization empiri-
cally. Fig. 7 shows that the clustering performances of our ap-
proach with random initialization of parameters for the three test
datasets are lower than that with a pre-trained model. However,
we can also observe that the NMI performances of CCNN with a
pre-trained model and with a random initial model both increase
with the number of training epochs, implying that both models
make CCNN converge steadily. Therefore, although there is no
theoretical guarantee of convergence (same with other existing
deep CNN models based on mini-batch training) for a large-
scale dataset, our experiments show that our method can achieve
a reasonable convergence performance with a pre-trained model
or with random initialization.

V. CONCLUSION

In this paper, we proposed a clustering convolution neural net-
work (CCNN) architecture, which can extract salient features
to benefit image clustering. On top of CCNN, we also proposed
a mini-batch-based iterative representation learning and cluster
centroid updating approach for efficient large-scale image clus-
tering involving up to millions of images at reasonable memory
and computation costs. While the mini-batch iterative updating
strategy offers good scalability to the proposed CCNN, we have
also proposed a feature drift compensation scheme to avoid the
performance degradation due to feature drifting in the mini-
batch based iterative process. Our experimental results demon-
strate the superior performance and scalability of our method
on several public image datasets.
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