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Maintaining Temporal Coherence in Video
Retargeting Using Mosaic-Guided Scaling
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Abstract—Video retargeting from a full-resolution video to a
lower resolution display will inevitably cause information loss.
Content-aware video retargeting techniques have been studied
to avoid critical visual information loss while resizing a video.
Maintaining the spatio-temporal coherence of a retargeted video
is very critical on visual quality. Camera motions and object
motions, however, usually make it difficult to maintain temporal
coherence using existing schemes. In this paper, we propose the
use of a panoramic mosaic to guide the scaling of corresponding
regions of video frames in a video shot to ensure good temporal
coherence. In the proposed method, after aligning video frames
in a shot to a panoramic mosaic constructed for the shot, a global
scaling map for these frames is derived from the panoramic mo-
saic. Subsequently, the local scaling maps of individual frames are
derived from the global map and is further refined according to
spatial coherence constraints. Our experimental results show that
the proposed method can effectively maintain temporal coherence
so as to achieve good visual quality even a video contains camera
motions and object motions.

Index Terms—Spatio-temporal coherence, video adaptation,
video retargeting, video scaling.

I. INTRODUCTION

W ITH the rapid growth of handheld devices and wireless
networks, sharing media content through these devices

becomes more and more popular. The display size of a hand-
held device is typically much smaller than that of a TV or of
a computer monitor. Spatial video scaling is therefore required
to adapt visual content for the display formats of these handheld
devices. However, uniform downsizing usually makes major ob-
jects too small to be recognized well. Moreover, the aspect ratio
of a film is usually different from that of the display of a TV
or a handheld device, making it necessary to scale or crop a
video to adjust the aspect ratio. Fig. 1(b)–(d) shows three typ-
ical video resizing methods, the letterboxing, uniform scaling,
and cropping methods, that are widely used in video processing
applications. No matter how the visual content is resized to an-
other lower resolution, it cannot prevent information loss from
its full-resolution version.
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Video retargeting is a structure-level video adaptation tech-
nique that resizes a video from one resolution to another lower
resolution without severely deforming major content. An ideal
video retargeting method has to preserve major visual content
and avoid critical visual information loss while resizing the vi-
sual content [1]. To address this problem, several content-aware
video retargeting methods have been proposed. According to the
granularity of processing unit, these methods can be classified
into three kinds of approaches: pixel-based approaches [2]–[5],
region/patch-based approaches [6]–[10], and object-based ap-
proaches [11], [12]. We shall introduce these methods in more
detail in Section II.

Although several content-aware image retargeting methods
[2], [13]–[15] have proven to achieve good visual quality in
resizing a single image, directly extending these image-based
retargeting methods to video applications usually causes severe
temporal incoherence artifacts. This is because the image-based
retargeting schemes deal with the resizing of video frames
separately without taking into account the temporal correlation
of neighboring frames, leading to variation of the scaling factor
of a corresponding region in neighboring frames which causes
visually annoying artifacts on the region such as stretching
(the reverse of stretching), shrinking (repeated stretching and
shrinking), and waving (repeated stretching and shrinking). Al-
though several video retargeting methods have been proposed
to address the temporal incoherence problem, camera motions
and object motions make it difficult to maintain temporal co-
herence with existing video retargeting schemes. With camera
motions, a region would move to different spatial locations of
neighboring frames. If a video retargeting method does not
properly consider the spatio-temporal relationship, the scaling
factor for the region may vary significantly in neighboring
frames. Besides, a significant object movement or deformation
in neighboring frames will puzzle video retargeting as well.
For example, in the case that a video object moves from right
to left in still background, initially, when the object stays at
the right side, a content-aware retargeting method tends to
trim the left side background at the first few video frames, but
when the object moves to the left side, the resizing operator
turns to trim the right side background. The inconsistent reduc-
tion of the background regions causes the jittery artifact and
stretching/shrinking artifact in the video.

Video retargeting has several possible application scenarios.
It can be performed at the decoder side, at the encoder side,
or at both sides in an online or offline manner. Different sce-
narios will impose different constraints on video retargeting.
For example, if the aim is to achieve online retargeting at the
receiver side, the real-time processing requirement would con-
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Fig. 1. Example of resizing (a) an original video frame from 16:9 to 4:3 by using (b) the letterboxing method, (c) the uniform scaling method, (d) the cropping
method, and (e) the proposed method.

strain the complexity of the retargeting scheme, thereby influ-
encing the output video quality. If the intended application is
based on the assumption of offline retargeting the content at
the encoder side for specific devices, then a more sophisticated
scheme can be used to provide better visual quality, compared
to the online approaches. However, the offline nature would re-
duce the flexibility/adaptivity of the output resolution. For re-
targeting a prestored video, one hybrid approach is to first per-
form some offline processing (e.g., feature extraction, saliency
detection, frame registration and mosaicking) on the video at
the encoder side, and then store the resulting output as meta-
data. The metadata are subsequently used to significantly reduce
computation while performing online retargeting at the encoder/
decoder, thereby relaxing the complexity constraint as well as
achieving a good tradeoff between visual quality, format flexi-
bility, and online complexity. Our method is aimed at enhancing
the quality of retargeted video for applications that allow offline
processing at the encoder side.

Our primary goal is to solve the temporal incoherence
problem in a systematic way, rather than resorting to numerous
temporal coherence constraints which are usually content
dependent and are difficult to draw a unified set of constraints
which are suitable for all types of videos. To ensure good
temporal coherence, our proposed method first constructs a
panoramic mosaic for a video shot and then uses it to derive
a global scaling map for the frames of the shot. This global
scaling map then serves as a guideline for deriving local scaling
maps of individual video frames in the shot so as to ensure in
the resized video the coherence of the scaling factors for each
corresponding region in neighboring frames. The local scaling
maps are further refined subject to a set of spatial coherence
constraints to avoid spatial geometric distortions.

The rest of this paper is organized as follows. Section II sum-
marizes the state-of-the-art content-aware video retargeting ap-
proaches. Section III gives a general formulation of non-homo-
geneous video resizing based on a spatio-temporal optimization
framework. Our proposed mosaic-guided scaling method is pre-
sented in Section IV. Section V reports and discusses the exper-
imental results. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

Several content-aware video retargeting methods have
been proposed in recent years. These methods mainly aim
to retain as much human interested regions as possible in a
spatially downscaled video by trimming unimportant content,
thereby preserving in the resized video the main concept in-
side the source video. The video retargeting methods can be

classified into three kinds, namely, pixel-based approaches,
region/patch-based approaches, and object-based approaches.
Generally, a content-aware video retargeting method consists
of two parts: energy function and resizing algorithm. The
energy function which, in most existing works, is constituted
of low-level perceptual features (e.g., gradient, color, and mo-
tion) to discover visually important regions of a video frame.
Accrodingly, the resizing algorithm trims video frames non-ho-
mogeneously based on the energy values of pixels, patches,
regions, or objects.

The pixel-based approaches resize video frames in the pixel
domain. The seam-carving-based methods are among the most
representative pixel-based approaches [2], [3]. Based on an en-
ergy function, the methods continuously remove a spatio-tem-
poral surface until reaching the desired video resolution. Sev-
eral variants of seam carving have been proposed to improve
the visual quality by finding suitable low-energy spatio-tem-
poral cubes to discard, or to reduce computational complexity
[16]–[18]. However, with complex camera and object motions,
finding a surface that does not disturb important video content
becomes difficult.

Several warping-based video retargeting schemes [4], [5],
[19] also belong to the pixel-based class. Wolf et al. [4] for-
mulated video retargeting as solving a least squares problem
with sparse linear system equations. As a result, each pixel of
low importance is mapped to be relatively close to its neigh-
boring pixels, whereas the distances of an important pixel to its
neighboring pixels is retained. However, this method is only
optimized at a desired resolution. It needs to recompute the
shrinkability of each pixel when imposing another resolution
constraint, making it impractical for real-time applications that
require resolution change. To address this problem, Zhang et al.
[19] improved the method by defining a per-pixel cumulative
shrinkability map to scale each frame. The shrinkability map
describes how close a pixel can approach to its neighboring
pixels. In the method, it is not necessary to perform full com-
putation when resizing a video to another video resolution,
thereby achieving computation saving. To improve temporal
coherence, Krähenbühl et al. [5] proposed to take into account
the influence of scene change and object motion in a video. The
method first uses a scene cut detector to detect discontinuities
in the video and then computes bilateral temporal coherence
energy accordingly for warp computation. Besides, it uses tem-
poral filtering of per-frame saliency maps over a time window
to account for the future changes of salient regions.

The region/patch-based approaches divide each video frame
into many regions/patches. The scaling factor (or sampling rate)
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of each region/patch is determined by a spatio-temporal opti-
mization process. Kim et al. [6] proposed to split an image into
many strips. The optimal scale of each strip is then determined
based on the Fourier analysis. In this method, a video sequence
is treated as a spatio-temporal cube. The cube is subsequently di-
vided into many individual regions and the corresponding sam-
pling rate for each region is determined according to the region’s
importance. In [7], Shi et al. proposed a context-assisted video
retargeting scheme that combines the high-level visual concepts
and visual attention into a spatio-temporal importance map. The
importance map is then incorporated with their proposed 3-D
rectilinear grid resizing scheme. The performance of the method
was evaluated on sports and advertisement videos. The crop-
ping-based methods proposed in [8] and [9] define a target re-
gion that includes the most important part of the original video.
The target region must have the same size of the expected res-
olution. The cropping-based method also needs to maintain the
temporal coherence of the cropped regions to prevent the jittery
artifact. The main weakness of cropping-based method is that
the discarded regions often still contain important information.

The object-based approaches segment a video frame into
foreground objects and background [11], [12]. The objects and
background are then resized by different resizing techniques.
The object-based schemes rely on accurate object segmenta-
tion to extract all possible objects. With the foreground and
background masks, individual objects are recomposed to the
desired video sizes. However, inaccurate object segmentation
will cause perceptually unpleasant artifacts along the boundary
of an object.

A few video retargeting methods use image registration tech-
niques to mitigate the negative impact of object and camera
motions on temporal coherence [18], [10]. Image registration
aligns video frames by fitting a camera motion model between
consecutive frames. The geometrical correspondence between
every two consecutive frames is then established based on the
estimated camera motion. Kopf et al. [18] proposed to con-
struct a panoramic mosaic to track the (local) object motions and
(global) camera motions. Based on the concept of spatio-tem-
poral cube, the panoramic mosaic is used to identify robust
seams to remove so as to preserve temporal coherence. How-
ever, when the object movement covers a large portion of a
frame, only few robust seams can be found for video resizing.
Wang et al. [10] proposed a method of achieving motion-aware
temporal coherence for video retargeting. The method also uses
frame alignment to tackle the problem of camera and object
motions. In order to track important content across neighboring
frames, frame alignment is performed to blend the importance
(saliency) map. The estimated camera motions are subsequently
used to constrain the object and camera motions as well as to
prevent content deformation. However, it may produce false
camera motion due to an insufficient number of frames used to
blend the importance map.

Different from the existing schemes, our proposed
mosiac-guided scaling scheme is a hybrid approach. Our
scheme first constructs a panoramic mosaic from a spatio-tem-
poral cube (e.g., a video shot) to record the object and camera
motions. The panoramic mosaic is then used to derive the
shot-level global scaling map. The local scaling map of each

TABLE I
NOTATION

frame is first extracted from the global scaling map after
aligning the frame to the mosaic, and is further refined subject
to predefined spatial coherence constraints. Each frame is
resized according to its local scaling map. The proposed mo-
saic-guided retargeting approach gracefully maintains temporal
coherence by making global decision of scaling factors so as to
mitigate the influence of object and camera motions.

III. FORMULATION OF NON-HOMOGENEOUS VIDEO RESIZING

The symbols used in this paper are listed in Table I. Assume
we resize a video from resolution to to , where

and are the width and height of the original video, and
and are the width and height of the resized video. Sup-

pose that a spatio-temporal cube (e.g., a video shot) consists of
frames which are denoted as and the cor-

responding resized frames are denoted as .
Video retargeting is to find a transform which
can preserve in the resized frame the most important content
while maintaining spatio-temporal coherence.

Generally, the video retargeting can be formulated as an op-
timization problem by which the optimal retargeted video
can be obtained as

(1)

where denotes the spatio-temporal dis-
tortion, denotes the information loss, and is
a weighting factor.
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Fig. 2. Flow diagram of the proposed method.

The information loss after resizing a frame can be measured
by the energy distortion between the original frame and the re-
sized one as follows:

(2)

where and

denote the total energy values
of the original and resized frame, respectively. and

, respectively, represent the energy
value and the scaling factor of pixel in a video frame.

The spatio-temporal distortion can be
further divided into two terms:

(3)
where and denote the spatial
and temporal incoherence distortions, respectively.

Let the spatial structural value of a pixel be defined as the sum
of the distances between the pixel and its neighborhood (e.g.,
the right, left, upper, and lower pixels). The spatial incoherence
distortion [4] can be measured by the spatial structural deforma-
tion defined as the sum of the difference of the spatial structural
values of individual pixels in the original frame and
of their corresponding pixels in the resized frame ,
weighted by the pixels’ energy values as follows:

(4)

where denotes the coordinate of a pixel/patch of the
original frame, is the pixel’s corresponding energy value,
which is nonnegative (will be explained in (6)),
denotes the corresponding coordinate of in the resized
frame, and and represent the neighborhoods of

and , respectively. The metric denotes
the Euclidean distance between and . For simplicity,
the time index is omitted in (4). Note, in video downscaling,

and . Therefore, is
nonnegative.

The temporal incoherence distortion can be measured by the
geometrical distortion between two consecutive resized frames:

(5)

where denotes the geometrical coordinate mapping
from the th frame to the th frame.

IV. PROPOSED VIDEO RETARGETING SCHEME

As illustrated in Fig. 2, the proposed mosaic-guided scaling
scheme consists of five major operations: the proposed mosaic-
guided scaling scheme consists of five major operations: en-
ergy map generation, shot-level panoramic mosaic construc-
tion, global scaling map generation, local scaling map genera-
tion, and frame resizing. In the energy map generation unit, the
frame-level energy map, that indicates the visual importance of
individual pixels, is obtained by using the energy function de-
rived from the perceptual-quality significance map (PQSM) [20]
and pixel gradients. Based on the energy map, a frame’s initial
local scaling map is obtained by maximizing the energy pre-
served in a resized frame subject to a set of spatial constraints.
We use a linear programming solver to solve the constrained op-
timization problem to obtain the initial local scaling map. The
shot-level panoramic mosaicking unit performs camera motion
estimation and frame alignment to build a panoramic mosaic to
record the geometrical structure in a video shot. Based on the
panoramic mosaic and the initial local scaling maps of the shot,
a global scaling map is derived to provide a global reference for
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Fig. 3. Flow diagram of generating the energy map, where a saliency map derived from gradient values and PQSM [20] is used as the energy map. A pixel in dark
red in (b) to (d) indicates that human eyes are more sensitive to the pixels.

achieving temporal coherence in the video shot. The final local
scaling maps of the shot’s individual frames are first extracted
from the global scaling map and are then refined by imposing
predefined spatial coherence constraints in an iterative manner.
Consequently, the video frames are resized according to their
corresponding local scaling map. The detailed operations of the
proposed retargeting scheme are elaborated below.

A. Initialization

The proposed mosaic-guided scaling method needs three
kinds of maps for resizing a video shot: the frame-level en-
ergy maps, the initial local scaling maps, and the shot-level
panoramic mosaic.

1) Frame-Level Energy Maps: The energy function, which
is used to represent the visual importance (saliency) of a pixel
in each video frame, plays an important role in content-aware
image/video retargeting. With an appropriate energy function,
one is able to apply optimization techniques to minimize the
energy loss caused by the removal of image content. Salient
regions can be detected based on top-down and/or bottom-up
visual attention models [21]. A top-down visual attention
model is a goal-driven model which is related to cognitive
psychology. On the other hand, a bottom-up visual attention
model is a stimuli-driven model based on low-level features
(e.g., colors, gradients, motion). For example, in [3] the gra-
dient energy is used to localize visually important regions
to preserve the spatial structure of an image. However, the
gradient energy cannot fully capture the eye-sensitive regions.
Besides the gradient energy, the method proposed in [4] utilizes
more visual attention features, e.g., facial feature and motion
feature, to improve the detection accuracy. In [6], Kim et al.
used frequency domain features to localize human interested
regions. In [15], the image-level saliency detection method
proposed in [21] was adopted.

As shown in Fig. 3, the proposed method adopts the PQSM
model [20] to generate the saliency map. PQSM consists of three
steps, including visual attention features integration, post-pro-
cessing, and motion suppression, to generate a visual sensitivity
map. The saliency map generated by PQSM provides fairly ac-
curate locations, whereas the detected region boundaries are
not sharp enough, leading to difficulty in preserving the con-
tent structure. Therefore, we propose using an energy fusion
function to combine the gradient energy and the PQSM-based
saliency map as

(6)

where represents the energy value of the th pixel.
The values of and are both nor-
malized to [0, 1] using the min-max normalization. The two
weights, and are both set as 0.5. Therefore, the energy
value ranges within [0, 1].

2) Initial Local Scaling Maps: In frame resizing, a frame
needs a local scaling map to determine how to scale a pixel (or a
patch) non-homogeneously. Our method uses an energy-based
frame resizing approach. The local scaling map of a frame is
obtained by solving a constrained energy-preserving optimiza-
tion problem that is to maximize the energy retained in a resized
frame while maintaining the spatial coherence in the frame by

(7)



2344 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 8, AUGUST 2011

where represents the optimal initial local scaling map,
denotes the energy magnitude at the th pixel of the

saliency map, denotes the initial local scaling factor
for pixel in the th frame, where , and

is the target width. The threshold for the imposed spatial
constraint for all input videos.

As a result, the frame resizing method determines for each
pixel an appropriate scaling factor under the spatial coherence
constraints. Note that, using the frame-level scaling maps to re-
size individual frames cannot avoid temporal incoherence ar-
tifacts. We thus only use the scaling maps obtained by (7) as
initial maps to derive a global shot-level scaling map, and then
use the global scaling map to obtain the final local scaling maps
that can ensure temporal coherence by an iterative optimization
approach.

3) Shot-Level Panoramic Mosaic: Typically, a panoramic
mosaic is generated by using three steps: feature points detec-
tion, camera motion estimation, and frame registration. Our
method uses SIFT [22] to select feature points in each video
frame, because SIFT is robust to scaling change (e.g., zoom-in
and zoom-out manipulations). Camera motion estimation has
been extensively studied and there exist several sophisticated
models [23]. For the sake of simplicity, we use a simplified
affine model with only scaling and translation parameters.
Although it cannot characterize all possible camera motions,
our experiments show that the simplified model achieves rea-
sonably good accuracy in constructing a panoramic mosaic for
a video shot.

Camera motion estimation and frame registration are essen-
tial steps of constructing a panoramic mosaic. We use RANSAC
[24] to estimate camera motion between neighboring frames.
Although RANSAC can prevent false model fitting from ill-
featured correspondences, when most part of a frame is oc-
cupied with foreground regions, the chosen feature correspon-
dence set is probably taken from the foreground regions, leading
to frame misalignment and a polluted panoramic mosaic. To
avoid the problem, we filter out those ill-featured correspon-
dences of foreground regions by resorting to the saliency map.
If the saliency value of a feature correspondence is larger than
a predefined threshold that will be defined in (14), it is likely
to be an object point and therefore should be removed from the
RANSAC computation. In the frame registration in a shot, the
panoramic mosaic is generated by using the estimated camera
motions of the frames.

B. Mosaic-Guided Video Retargeting

As mentioned in (5), the scaling factor change between the
resized frames and should be constrained by fitting
the mapping model . To this end, a shot-level panoramic
mosaic is used to maintain the temporal coherence of video re-
sizing under camera and object motions. A shot-level scaling
map is derived from the panoramic mosaic. The local scaling
maps of individual frames are extracted from the global scaling
map, and are further refined by imposing a few predefined spa-
tial constraints in an iterative manner. In this section, we first
introduce the method of generating the global scaling map and

then present the iterative process of refining the scaling factors
of individual frames.

1) Global Scaling Map: Directly extending an image retar-
geting method to video retargeting usually leads to temporal in-
coherence artifacts, especially when a video contains camera
motions or large object motions. Due to the camera or object
motions, the correspondence (a patch or a pixel) in neighboring
frames may have different spatial locations, sizes, and shapes,
thereby being scaled differently. Such inconsistent scaling for a
corresponding patch/pixel in neighboring frames results in tem-
poral incoherence artifacts such as stretching, shrinking, and
waving of object or background. To prevent such temporal ar-
tifacts, the scaling factors of the same visual content should be
kept as consistent as possible in neighboring frames. Besides,
the aspect ratios of a foreground object in neighboring frames
should be kept consistent as well.

After constructing a panoramic mosaic for a video shot, a
global scaling map is derived to synchronize the scaling of a
corresponding pixel/patch in different frames of the shot. Let

denote the projective transform of the th frame,
the coordinate of the th pixel in the th original frame, and

the projected coordinate of in the mosaic after
frame alignment. Then, the projection of a coordinate is given
by . The global scaling map is simply
obtained as the union of scaling factors after the transformation,
as expressed by

(8)

where denotes the initial local scaling factor of pixel
of a video frame as obtained from (7), and

represents a set of scaling factors corresponding to pixel
of the panoramic mosaic, as the union operation in (8) is a
many-to-one mapping, that is, may correspond to the
scaling factors from different video frames and different pixels
of the original video.

To obtain a single-valued mapping, we choose the maximum
scaling factor in the set defined in (8) as the scaling factor for
pixel of the global scaling factor map as follows:

(9)

2) Global Map Constraint: After deriving the global scaling
map, the first-round local scaling maps are extracted from the
global scaling map by

(10)

The mosaic-derived local scaling maps themselves are
temporally coherent since a corresponding pixel/patch of
neighboring frames has consistent scaling factors, but may not
preserve spatial coherence well. We therefore propose an itera-
tive optimization scheme which uses the mosaic-derived local
scaling maps as a start-point to obtain the final local scaling
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maps subject to spatial coherence constraints. Therefore, the
first-round local scaling maps are set as

(11)

To ensure the temporal coherence offered by the mosaic-de-
rived local scaling maps, we use the first-round maps to con-
strain the iterated local scaling maps by introducing the fol-
lowing distortion cost:

(12)

where denotes the th round scaling factor of the
th pixel in the th frame. The distance function in (12)

is defined as

(13)

where is a small positive value to avoid the division-by-zero
error when .

3) Spatial Coherence Constraints: In the optimization
process, we impose the following constraints to prevent the
spatial incoherence distortion.

a) Regions-of-Interest (ROI) Deformation Constraint: In
order to maintain spatial coherence, the scaling factors of the
pixels/patches of visually important foregrounds/backgrounds
should be made consistent. To do so, we define a set ROI con-
sisting of pixels/patches that belong to ROI, and Non-ROI con-
sisting of the pixels/patches that are not ROI. To separate ROIs,
we define a threshold, , that is empirically set to be 0.6
for all sequences, for the classification

if
otherwise

(14)

where the energy value of the th pixel (or patch) is
calculated by (6).

To maintain the consistency of foreground object size, the
following spatial scaling inconsistency should be minimized:

(15)

where indicates the pixel/patch belonging
to ROI, for horizontal resizing and
for vertical resizing. The distortion function is defined
in (13).

b) Spatial Smoothness Constraint: If two vertically (or
horizontally) adjacent pixels/patches are resized in different fac-
tors, the vertical (or horizontal) structures will be distorted. To
avoid such spatial structural distortion, we need to constrain
the difference between the scaling factors of two spatially ad-
jacent pixels/patches. Assuming an image is downscaled in the

horizontal dimension, we limit the sum of the differences be-
tween the scaling factors of every two vertically adjacent pixels/
patches on a line not to exceed a threshold as follows:

(16)

4) Iterative Optimization Procedure: After obtaining the first
round local scaling map , an iterative optimization
procedure is performed to find a converged solution
subject to three smoothness constraints: (12), (15), and (16).
The final refined scaling maps of individual frames are derived
iteratively from (17) using an iterative optimization solver:

(17)

where and are the weighting factor for and ,
respectively. In our implementation, we set , and

equally important (i.e., ). The threshold for
spatial constraint , similar to the case in (7), is set to be
0.06.

To solve (17), we use the interior-point solver [25] that is
designed for solving a large-scale optimization problem. The
solver has proven to be capable of solving a wide range of prob-
lems, even when ill-conditioning and non-convexity is present.
However, the solution might become trapped in a local min-
imum as it is a gradient-descent based approach. On the other
hand, only full search can guarantee to reach a global minimum,
whereas its complexity is much higher. To reduce computation,
in our implementation, the distortions (12), (15), and (16) are
evaluated in a patch rather than in a pixel. The iterative proce-
dure is summarized in Table II.

5) Frame Resizing Based on Local Scaling Maps: After ob-
taining the final local scaling maps, the resized frame is gen-
erated by the pixel fusion based image downscaling proposed
in [14]. The method is summarized below. First, after resizing,
each pixel in the image is treated as a component whose width is
scaled from unity (the original pixel) to a fractional number (i.e.,
the scaling factor), assuming the resizing is performed horizon-
tally. The value of a resized pixel (i.e., a unit width of the joined
pixels) is obtained by the linear combination of the values of the
pixels that compose the unit width weighted by the widths of the
component pixels. As shown in Fig. 4 [14], when mapping the

th pixel and the th pixel to the corresponding
locations of the resized frame (as indicated by the gray dashed
lines), the th pixel value of the resized frame is fused from
three regions. The first region contains the th pixel value
of the input frame and its length is . The second region is
contributed by the linear combination of pixels and its
length is . The third is from the th pixel value of
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TABLE II
ITERATIVE ALGORITHM FOR COMPUTING THE LOCAL SCALING MAPS

Fig. 4. Mapping of the �� � ��th pixel and the �� � �� ��th pixel of the output
frame to the corresponding locations of the resized frame.

the input frame and its length is . The th pixel value of
the resized frame is computed by

(18)

In this paper, we only consider spatial resizing in one dimen-
sion. Two-dimensional scaling can be performed by two sepa-
rable one-dimensional scaling operations. The process is to first
obtain the shot-level panoramic mosaic, and then to use the mo-
saic to generate two global scaling maps: one for horizontal re-

sizing and the other for vertical resizing based on the two sets
of initial local scaling maps for horizontal and vertical down-
scaling, respectively. The two global maps are then used to gen-
erate two sets of refined local maps separately using the itera-
tive optimization. As a result, the two-dimensional scaling can
be done along one direction followed by the other. Note, there
could be some spatial inconsistency of scaling for an object in
the two directions, as the two directions are resized separately.
Such inconsistency is not serious as long as the energy value of
a foreground/background object does not vary significantly in
the two directions.

V. EXPERIMENTS AND DISCUSSION

To evaluate the performance of our proposed method, we
select test sequences that involve rich types of camera and
object motions from cinema, drama, and animation videos. In
the experimental settings, each test video is resized to the half
size of the original width. We compare the proposed method
with four exiting schemes including the uniform scaling, the
seam-carving-based video resizing [3], the warping-based video
retargeting [4], and the resizing scheme with motion-aware
temporal coherence [10]. For subjective performance compar-
ison, readers can obtain the complete set of test results from
our project website [26].

A. Performance Evaluation

Fig. 5 shows some snapshots of three videos with different
types of camera and object motions resized with the proposed
method. The corresponding scaling maps of the nine video
frames are shown on the right-hand side. The higher the scaling
factor of a pixel, the more visual importance of the pixel.
The top row of Fig. 5 shows a video shot with both local
(object) and global (camera) motions. The proposed method
preserves the foreground object well, and the deformation on
the boundary between the object and background regions are
visually negligible. This is accomplished because the proposed
mosaic-based global scaling map can effectively mitigate the
effect of camera motion and object motion.

In the second row of Fig. 5, the test video contains large
camera motions. Camera motion is a major factor that causes
spatio-temporal incoherence in a resized video. In the en-
ergy-based retargeting methods [3], [4], the content scaling
is mainly guided by an energy map, but the map is easily
influenced by camera motions. Significant camera motions
usually lead to large fluctuations between the energy maps
of neighboring frames. With large fluctuations in the energy
maps, it becomes difficult for the energy-based schemes to
maintain the spatio-temporal coherence as the energy values of
patches/pixels in objects and background will vary largely as
well. The proposed global scaling map serves as a global-mo-
tion-compensated temporal filter to smooth out the temporal
fluctuation of object size. As shown in Fig. 5, the proposed
method generates very smooth, both spatially and temporally,
local scaling maps for the three frames even under large camera
motions, thereby ensuring the spatio-temporal coherence. Fig. 6
shows the panoramic mosaic of the sequence in the second row
of Fig. 5 and the corresponding global scaling map of the mo-
saic. In the example shown in the bottom row of Fig. 5, the man
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Fig. 5. Snapshots of three videos with different types of camera and object motions resized with the proposed method. The examples show that our method
generates smooth scaling maps (shown on the right-hand side) thereby ensuring good spatio-temporal coherence.

Fig. 6. Panoramic mosaic (shown on the left-hand side) of the sequence in the second row of Fig. 5 and the global scaling map (shown on the right-hand side) of
the mosaic.

who appears by the bushes also causes large fluctuations on
the corresponding energy maps. Such large fluctuations on the
energy maps make traditional saliency-guided resizing schemes
fail to effectively maintain the spatio-temporal coherence even
by imposing strong spatio-temporal coherence constraints. The
proposed method again gracefully maintains the spatio-tem-
poral coherence as it is not sensitive to the fluctuations in the
energy maps.

Besides, our proposed mosaic-based method can be easily
combined with state-of-the-art image-based retargeting
schemes to achieve temporal coherence which the image-based
retargeting schemes usually cannot achieve by their own. This
is accomplished by using the image-based retargeting method
to generate the initial local scaling maps [i.e., to replace the
method described in (7)]. The initial scaling maps are then
used to generate the global scaling map so as to derive the
final local scaling maps. Since the scaling factors of the global
scaling map themselves are temporally consistent, the resulting

final local scaling maps derived from the global map are also
temporally consistent. The temporal coherence can therefore be
achieved systematically without the need of introducing con-
tent-dependent temporal constraints while solving the scaling
allocation problem. For example, we conducted an experiment
to integrate the sampling-based method proposed in [6] into
our proposed method. To serve this purpose, we first converted
the sampling rates of the strips in the sampling-based method
into the initial local scaling maps . The initial local maps
are then fed into the proposed mosaic construction method
to generate the global scaling map and the final local scaling
maps are obtained accordingly using the process described in
Section IV. Fig. 7 compares the performance of the method in
[6] with the combination of the method in [6] with the proposed
global scaling control method. As illustrated in Fig. 7(a), the
sampling-based method obviously leads to inconsistent sizes
and shapes of the two foreground objects (the bird and kid) in
neighboring frames. The corresponding scaling maps are not
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Fig. 7. Performance comparison between the sampling based retargeting method [6] and the combination of the method in [6] with the proposed global scaling
control method. From (a), the method in [6] severely distorts the foreground objects. However, after integrating the proposed method, in (b), the retargeting result
nicely maintains the temporal coherence and preserves the important content very well.

smooth both temporally and spatially, thereby leading to un-
pleasant artifacts such as foreground/background deformation
and stretching, shrinking, and waving on foreground/back-
ground as illustrated in Fig. 7(a) and also in the videos shown in
[26]. As can be observed from Fig. 7(b), the proposed method
successfully helps the sampling-based method to improve the
temporal coherence of the foreground objects.

In Fig. 8, we compare our method with the uniform scaling,
seam-carving-based resizing [3], warping-based resizing [4],
and Wang et al.’s approach [10]. Obviously, uniform scaling
is immune to spatio-temporal incoherence distortion caused by
any types of camera and object motions. It, however, results
in small sized objects and background in important regions.
The seam-carving-based video resizing [3] continuously re-
moves a spatio-temporal surface from the video. However,
with complex camera and object motions, it is difficult to
find low-energy spatio-temporal surfaces that can be removed
without significantly distorting the structures of object and
background. Therefore the resizing usually causes annoying
artifacts. To preserve temporal coherence, the warping-based
resizing method [4] constrains the changes of corresponding
pixels’ positions between neighboring frames. However, it may
cause significant visual artifacts when a video contains camera
motion or large object motion [see Fig. 8(2d)]. In addition,
it also introduces discontinuity when there is an unimportant
region in between two important regions. For example, as
shown in Fig. 8(3d), the man’s hand and the woman’s hand
are classified as salient regions. The warping-based resizing

method, however, introduces severe deformation distortions
along the woman’s hand.

Wang et al. [10] proposed to impose a set of temporal
constraints to retain the original object and camera motions
as well as to prevent content deformation. Their method
blends the aligned saliency map within a sliding window to
localize the moving area of an object in the blended saliency
map so that the object’s size in the moving area can be kept
consistent. In this method, the window size cannot be large;
otherwise, the blended saliency map will be mostly occupied
by moving objects, thereby making it degenerate to the uni-
form scaling method. However, due to the limited window
size for the blended saliency map, the temporal information
of video content collected by the method may be too few
to generate temporally coherent scaling allocation. As a re-
sult, the method may render false camera motion (i.e., shows
camera-motion-like effect but there is no camera motion in the
original video). Figs. 8(5e) and (6e) show a sequence for that
the method proposed in [10] generates the false camera motion
artifact (refer to [26]). Furthermore, the method in [10] does
not consider the coherence of scaling factors of neighboring
patches, which leads to the structure deformation artifact. As
shown in Figs. 8(1e) and (2e) where the backgrounds contain
several quads, the inconsistent allocation of scaling factors to
the quads introduces obvious structure deformations.

Our method was implemented on a personal computer with
Duo Core Intel 2.33-GHz CPU and 3-GB memory. Scaling
a 320 160 video to 160 160 resolution takes around 0.15
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Fig. 8. Subjective comparison of the proposed method with the uniform scaling, the seam-carving-based scaling [3], the warping-based scaling [4], and the
video resizing with motion-aware temporal coherence [10]. Our proposed method gracefully preserves the temporal coherence and retains the region-of-interest
information.

s/frame to obtain an initial local scaling map (does not include
the time of mosaicking) and 2 s/frame to obtain the final local
scaling map. Because the shot-level mosaicking consumes
the most memory, the memory requirement is dependent on
the length of a video shot used for constructing a panoramic
mosaic.

B. Limitations

Our method also has its limitations. Like most existing
methods, our proposed method will degenerate into the uniform
scaling when the frame is mostly occupied with visually impor-
tant regions (e.g., large-sized objects and complex background),
that is, there is very few redundant content that can be removed.
Besides, the accuracy of frame alignment will influence the
accuracy of global and local scaling maps. In our method, the
frame alignment is based on 2-D camera motion estimation
which does not consider the distances of feature points to the
camera. The simple method may cause misalignment of frames
for feature points of different depths. Patch-based schemes are
less sensitive to inaccurate frame alignment since a patch’s
scaling factor is the average of the scaling factors of all pixels

in the patch. Because the proposed method can be implemented
either in a pixel-based or in a patch-based manner, the require-
ment on the accuracy of frame alignment can be relaxed when
the proposed method is implemented in a patch-based manner.

Currently, our method is more suitable for applications that
allow offline processing at the encoder side (e.g., retargeting
a prestored video) since its computational complexity is still
too high to be used in online video retargeting applications that
require real-time processing. Besides, existing mosaicking and
foreground/background segmentation tools are still not very ma-
ture and reliable for online video processing. However, with of-
fline processing at the encoder side, the constraints would be
significantly relaxed. For example, a few interactive video ob-
ject extraction tools [27], [28] have proven to achieve fairly
good and reliable performance for many realistic videos based
on user provided rough scribbles labeling the regions of inter-
ests. These tools can usually do a good job in offline object seg-
mentation. With successful object segmentation, the difficulty
of frame alignment and mosaicking in typical videos would be
significantly reduced as well, as long as the background con-
tains enough distinct feature points.
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VI. CONCLUSION

To tackle the spatio-temporal incoherence problem which
often occurs in video retargeting, we proposed a novel con-
tent-aware video retargeting method for structure-level video
adaptation. The proposed method, that is suitable for appli-
cations that allow offline processing at the encoder side, is
comprised of five major operations: saliency map generation,
shot-based panoramic mosaic construction, global scaling map
generation, local scaling map generation, and frame resizing.
We have presented a constrained energy-preserving optimiza-
tion method to generate initial frame-level scaling maps based
on pixel-wise saliency maps. In addition, we have proposed
a mosaic-based global scaling mapping scheme which can
systematically maintain temporal coherence of a resized video.
The spatial coherence in a frame is further ensured by imposing
spatial coherence constraints on the local scaling map of the
frame using an iterative optimization manner. Our experimental
results show that the proposed method achieves good energy
preservation and high spatio-temporal coherence while resizing
a video, thereby ensuring good subjective visual quality of the
resized video, even when the video contains significant camera
motions and object motions. Thanks to its systematic mo-
saic-based global mapping mechanism, the proposed method
can also be easily integrated with other energy-based frame
resizing schemes to benefit from the power of existing or new
frame resizing tools.
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