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Abstract— Stereo video retargeting aims at minimizing shape
and depth distortions with temporal coherence in resizing a
stereo video content to a desired size. Existing methods extend
stereo image retargeting schemes to stereo video retargeting
by adding additional temporal constraints that demand tem-
poral coherence in all corresponding regions. However, such
a straightforward extension incurs conflicts among multiple
requirements (i.e., shape and depth preservation and their
temporal coherence), thus failing to meet one or more of
these requirements satisfactorily. To mitigate conflicts among
depth, shape, and temporal constraints and avoid degrading
temporal coherence perceptually, we relax temporal constraints
for non-paired regions at frame boundaries, derive new temporal
constraints to improve human viewing experience of a 3D scene,
and propose an efficient grid-based implementation for stereo
video retargeting. Experimental results demonstrate that our
method achieves superior visual quality over existing methods.

Index Terms— Stereo video retargeting, shape preservation,
depth preservation, nonuniform warping, temporal coherence.

I. INTRODUCTION

THE 3D videos become popular in our daily media
consumption as they offer rich and joyful real-world

viewing experience. Content-aware stereo image editing meth-
ods have been proposed such as depth remapping for stereo
image [1]–[3], and stereo image retargeting [4]–[6]. Since the
human visual system (HVS) is not sensitive to spatial distor-
tions of different image contents [7] uniformly, content-aware
image editing methods can adopt nonuniform spatial warping
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to preserve the shapes of important objects. Nevertheless,
nonuniform spatial warping used in video retargeting often
leads to temporal inconsistency such as jittering and flickering
in retargeted video. To address this problem, state-of-the-
art 2D video retargeting methods impose strong temporal
coherence constraints which tend to resize all corresponding
regions among frames consistently [8]–[11]. Such temporal
constraints are called global temporal constraints. Although
global temporal constraints are effective in maintaining tem-
poral coherence of retargeted video, it is difficult to fulfill all
temporal and shape constraints simultaneously, thus degrading
shape preservation significantly.

In this work, we focus on perceptual-based stereo video
retargeting. It is a more challenging problem than 2D video
retargeting for several reasons. First, retargeting of the addi-
tional depth dimension has to be considered. Second, to pre-
serve the object shape, depth and temporal coherence, we need
to impose the shape, depth and temporal constraints on the
nonuniform spatial warping scheme. Third, all constraints
are resource-demanding, leading to resource contention. For
example, shape constraints preserve the shapes of important
objects at the cost of resizing unimportant regions. However,
when these unimportant regions are constrained not to be
resized by temporal/depth constraints, conflicts occur among
these constraints, as will be demonstrated in the experiments.

A straightforward generalization of 2D video retargeting
methods to stereo video often results in conflicts of multiple
requirements. To address these challenges, we will show
that the temporal coherence constraint can be relaxed to
some extent without incurring visually noticeable artifacts.
Specifically, visual contents that are more tolerant to tem-
poral inconsistent resizing should be identified. We con-
duct user study on two stimuli types to investigate human
perception on temporal incoherence against different stereo
visual contents caused by temporally inconsistent resizing
(see Fig.1 and Fig.2). Based on this new finding, we propose
a perceptual temporal incoherence-aware stereo video retar-
geting scheme that achieves high retargeting performance by
imposing effective temporal, shape and depth constraints.

As compared with our previous work in [12], our current
paper has been significantly extended in several aspects. First,
we quantitatively analyze the correlation between visual con-
tent and temporal incoherence caused by temporally incon-
sistent resizing. This analysis provides valuable insights into
content-aware stereo video editing tools (such as depth editing
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Fig. 1. Illustration of stimuli constructed of random dot stereogram: left-view frames at two time instances, denoted by I L ,t1 (top row) and I L ,t2 (bottom row),
for three reference and test stereo sequences. The red blocks mark a region in I L ,t1 and its correspondence in I L ,t2 . The region and its correspondence have
different widths in test sequences. When the scaling factors are set to 0.35, 0.75 and 0.5 for I L ,t1 and 1 for I L ,t2 , their temporal incoherence is noticeable,
visually unnoticeable and none for sequences 1, 2 and 3, respectively (see the supplementary material).

Fig. 2. Illustrations of stimuli constructed of orientation-specific textures: left-view frames I L ,t1 (top) and I L ,t2 (bottom) at two time instances. The
orientation angles of video sequences 4, 5 and 6 are set to 90◦, 4◦ and 0◦, respectively. The red blocks mark a region in I L ,t1 and its correspondence in
I L ,t2 . The scaling factors for the marked regions are 0.5 and 1 in I L ,t1 and I L ,t2 , respectively, in test sequences. The temporal incoherence is noticeable,
visually unnoticeable and none, in test video 4, 5 and 6, respectively (see the supplementary material).

and video stabilization) with respect to temporal coherence.
Second, we propose a non-paired region detection algorithm
that detects non-paired region in frame boundaries (especially
texture-less regions) effectively. This further improves the
performance of the proposed retargeting algorithm. Third,
more qualitative and quantitative tests (additional subjective
user study, combination of warping and cropping, etc) are
conducted in the experiment section, where video shots from
movies are collected as test videos. The superiority of the
proposed method is extensively validated. Fourth, a keyframe-
based optimization approach is proposed to significantly
improve the computation efficiency of the proposed method
without sacrificing the retargeting quality. Fifth, we quantify
and better explain the conflicts among shape, depth, and tem-
poral constraints, and more clearly showing the effectiveness
of our method in mitigating such conflicts. We also quantita-
tively analyze the gain of our proposed temporal constraints
on depth distortion.

There are three main contributions of our research as
summarized below.

• We are among the first to explore perceptual temporal
incoherence to guide stereo video retargeting so as to
mitigate conflicts among multiple constraints (e.g., pre-
serving the shape, the depth and their temporal coherence)
effectively.

• In contrast with existing schemes that enforce consistent
resizing on all temporal corresponding regions, we pro-
pose novel temporal constraints that allow non-paired
boundary regions to undergo inconsistent resizing opera-
tions temporally.

• A grid warping framework with key-frame-based
optimization is presented to implement stereo video
retargeting efficiently.

The rest of this paper is organized as follows. Sec. II gives a
brief survey of related 2D and 3D image and video retargeting
methods. Then, the effect of temporal incoherence resulted
from different visual contents on human perception is studied
in Sec. III. The perceptual temporal incoherence-aware stereo
video retargeting scheme is proposed in Sec. IV. Experimental
results are given in Sec. V. Finally, concluding remarks are
drawn in Sec. VII.

II. RELATED WORK

A. Stereo Image Retargeting

By following [13], we classify content-aware retargeting
methods into discrete and continuous two categories. Dis-
crete methods iteratively remove or insert a group of pix-
els (e.g., seams) to resize image, while continuous methods
warp pixels/regions non-uniformly. For stereo images, discrete
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methods [4], [14] resize a stereo image pair by removing seams
from its left and right images. However, the method in [14]
cannot preserve the depth information well due to the lack of
depth preserving constraints. The method in [4] can preserve
the depth information well by requiring that carved seams
do not cross non-paired regions. Due to the discrete nature,
these methods often introduce shape deformation to structural
objects. Most continuous methods [5], [15]–[18] extended
warping-based 2D image retargeting methods (e.g. [19]–[21])
to stereo image retargeting. Depth-preserving constraints that
enforce the disparity of a few correspondences to be consistent
with their original values were proposed in [5], [15], [16].
However, these constraints cannot preserve the depth of the
whole 3D scene. In contrast, the method in [17] can faithfully
preserve the scene depth by maintaining widths of individ-
ual non-paired regions and consistently warping each paired
region and its correspondence.

B. Video Retargeting

2D video retargeting is more challenging than 2D image
retargeting due to camera and object motions. Applying a
2D image retargeting method to each frame independently
introduces temporal incoherence. To address it, 2D video
retargeting methods exploit the temporal information to resize
a retargeted frame based on 2D image retargeting methods.
Based on developed temporal constraints, 2D video retar-
geting methods can be categorized into local and global
approaches [22]. Local methods [23]–[26] imposes the con-
straint on a frame and a local time window of neighboring
frames to ensure a coherent transformation. For example,
temporally adjacent pixels are constrained to transform a lim-
ited number of neighboring frames consistently in [23]–[25].
Niu et al. [3] resized a frame sequentially, where the retar-
geting result of the current frame is propagated to the next
one based on estimated camera motion. Local methods are
more efficient computationally since only a few frames are
processed at each time. However, local methods are not
able to maintain temporal coherence if the duration of cam-
era/object motions is longer than the local time window.
Global methods [8]–[11], [22], [27] exploit the temporal
information of the entire video. For example, methods in
[9]–[11] employ the motion estimation algorithm to align
corresponding grids/regions between frames and, then, demand
these grids to be coherently resized throughout the entire
video. Global methods achieve better temporal coherence than
local methods since they adopt a longer time window.

C. Stereo Video Retargeting
Stereo video retargeting is challenging due to mul-

tiple requirements, including temporal coherence, shape
preservation and depth preservation. There is little previous
work. Li et al. [28] proposed effective spatio-temporal depth
constraints by preserving spatial depth magnitude and tempo-
ral depth changes of key-points on 3 D objects. Lin et al. [29]
and Kopf et al. [30] extended a grid-based 2D video retargeting
method to stereo video since stereo video consisting of two 2D
video sequences. Severe depth distortions are often observed
in retargeted stereo videos since they do not consider depth

preservation explicitly. To ensure temporal coherence, they
directly employ the temporal coherence constraints derived
from 2D video retargeting. However, the above methods ignore
the fact that different video contents have different perceptual
characteristics in the temporal dimension. For video with
large motions, the imposed temporal constraints tend to have
a severe conflict with the shape and the depth preservation
constraints.

III. PERCEPTUAL TEMPORAL INCOHERENCE

Our hypothesis is that, given a non-paired region in a stereo
video frame, the region and its temporal correspondences
in neighboring frames can be inconsistently resized to some
extent without introducing visually noticeable temporal inco-
herence artifacts. To validate our hypothesis, we design stimuli
and conduct the following user studies.

A. Impact of Non-Paired Regions on Depth Construction

A non-paired region (also called a half-occluded region) in
one view of a stereo video pair is a region that cannot find
its correspondence in the other view, as illustrated in Fig. 3.
As revealed in the literature, non-paired regions play an
important role in depth construction. With the existence of
non-paired regions in a stereo image/video, paired regions and
their correspondences can together constitute the disparities
in the stereo pair, thereby forming 3D objects with various
depths in the perceived 3D scene. Hence, existing stereo image
retargeting methods [4], [22] pointed out the importance of
building additional constraints for non-paired regions, in order
to faithfully maintain the depths of 3D objects.

On the other hand, HVS is non-uniformly sensitive to differ-
ent visual fields. According to the studies in the psychological
literature, peripheral acuity is worse than fovea acuity [31].
As a result, the speed of a moving object is perceived slower
in the periphery than in the fovea [32]. When one watches a
3D video, some 3D objects in the scene are fixed by his/her
eyes and lie in the fovea, while the non-paired regions at the
frame boundaries lie in the periphery. In other words, HVS
is less sensitive to non-paired regions at frame boundaries,
compared with fixed 3D objects (see Fig. 3). Hence, we argue
that some sorts of non-paired regions at frame boundaries can
be inconsistently resized to some extent without introducing
noticeable distortions to human eyes.

B. Stimuli

We design stimuli by taking into account the following
factors.

1) Visual Content: The stimuli include two types:
one is random dot stereogram (RDS) and the other is
orientation-specific textures. Random dot stereogram is widely
used in literatures on stereo perception. As for the random
dot stereogram, the size and density of dots vary among
videos to reflect various cues of visual contents. Besides,
we put an additional small square as a foreground object
in the videos for subjects to fix on (see Fig.1). This square
is to simulate a salient object in content-aware retargeting.
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Fig. 3. Illustration of non-paired boundary regions that are colored red in (b). The left and right frames are shown in the top and bottom rows of (a) and
(b). (c) gives the HVS view fields, where the 3D object monkey lies in the central field of view (the fovea) while non-paired boundary regions lie in the
peripheral visual field.

Therefore, the model that generates a random-dot stimuli is
given as follows:

rds = f (aF , σF , aB, σB ) (1)

where aF and σF respectively denote the size and density
of dots in the foreground regions, and aB and σB are the
size and density of dots in the background regions. In this
paper, we mainly explore the relationship between temporal
incoherence and the resizing of background regions. Therefore,
for foreground regions, both aF and σF are set to be the same
value in all stimuli videos, where aF = 8 and σF = 0.7.

Compared with random dots, orientation-specific textures
offer additional higher level structure information. In the
orientation-specific textures, the orientation of lines also alters
among videos (see Fig.2), where the range of line angle
is [0◦, 90◦]. We also put an additional small square as a
foreground object in all stimuli videos.

2) Motion: we simulate camera motions in a stimulus
that change a non-paired/paired region to a paired/non-paired
region from frame to frame. The speed of camera motions also
varies in the stimuli.

3) Depth: Since a too large depth range would usually cause
uncomfortable 3D experience, we limit the disparity of stimuli
to fall in the range of [0 20], such that the perceptual depth
does not exceed the comfort zone of HVS for most viewers.

4) Temporal Incoherence: The vision test was conducted
to study whether subjects can perceive temporal incoher-
ence artifacts caused by temporally inconsistent warping of
corresponding regions in a stereo video. However, tempo-
ral incoherence cannot be directly obtained by comparing a
resized video with its original version, because temporally
inconsistent warping changes not only temporal information,
but also other factors such as the shape and size of an object.
As a result, those subjects who are not experts in image/video
processing are likely to wrongly classify shape distortions as
temporal incoherence. Hence, in the user study we should
avoid the interference from other factors, such that subjects
can focus on evaluating temporal incoherence artifacts. We
therefore employ a full-reference quality assessment manner
to evaluate temporal incoherence artifacts. More specifically,
for each original stimulus, we build multiple pairs of retargeted
videos, each consisting of a reference video and a test video

for comparison. In each pair, the reference video is con-
structed by consistently resizing all temporal correspondences,
regardless of paired/non-paired regions, across neighboring
frames, while inconsistently resizing different regions in each
frame. In contrast, all paired regions in the test video undergo
consistent resizing with that of their temporal correspondences
in the reference video, whereas the non-paired regions at frame
boundaries undergo a specific degree of temporally inconsis-
tent resizing with their correspondences across neighboring
frames.

For the test video, we define the degree of temporal resizing
inconsistency (T RI ) as the resizing difference of two corre-
sponding regions between neighboring frames.1 In particular,
given a region r t1 in frame I t1 of the original video, let r t2

denote its correspondence in I t2 , and st1 and st2 the scaling
factors of r t1 and r t2 , respectively. The temporal resizing
inconsistency T RI is defined as follows:

T RI = |st1 − st2 |. (2)

5) Subjective Test: In the subjective user study, the ref-
erence and test videos are displayed side by side on the
monitor. Subjects are asked to look at the fixed square in the
test/reference video, and then answer the following question:

Q: Do you notice the motion incoherence between the two
video clips (1: Yes; 2: no)?

There are a few parameters (e.g., TRI and line angle)
each is of a large range. Fully evaluating all values for each
parameter would be a laborious task and take huge time
cost. Recently, some quality assessment methods [33], [34]
proposed a binary search procedure to efficiently search the
optimal value of a quantization parameter for video com-
pression. Inspired by these methods, we propose to sample
the values of these parameters from coarse to fine, so as
to hierarchically evaluate value for each parameter. Take the
stimuli of lines as an example, the values of angle are set to be
0◦, 10◦, 20◦,…, 90◦, in the coarse stage. After the first-round
subjective evaluation, the results show that all subjects can
notice motion incoherency for stimuli whose angle is greater
than 30◦. Without loss of generality, we argue that temporally

1The corresponding regions between two neighboring frames have the same
width in our original videos.
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Fig. 4. User study results: (a) evaluation on test video sequences retargeted from their original ones, where each test video sequence undergoes temporally
inconsistent transformation to some degree (see Fig. 1(a)–(d)); and (b) evaluation on test video sequences retargeted from different original videos, where
original videos are shot at different angles (see Fig. 2) and all test videos undergo the same degree of temporally inconsistent transformation. The perceptual
temporal incoherence increases with the degree of temporally inconsistent in (a) and the degree of orientation angle (i.e., texture characteristics) in (b).

inconsistent resizing would cause temporal incoherency on
stimuli with an angle greater than 30◦. Therefore, in the
fine stage, we only evaluate angle< 30◦, and adjust the
angle in a finer range. That is, the values of angle are set
to be 1◦, 4◦, 7◦, . . ., 28◦. We then conduct the second-round
evaluation.

C. Observations and Analyses

1) Subjects: We invite 23 subjects to participate in the user
study. All subjects have normal stereopsis perception.

2) Apparatus: Visual stimuli are displayed on a 53.15cm
× 29.90cm 3D monitor (ASUS Vg248qe 144 Hz, 1920 ×
1080 pixels). The subjects watch the stimuli through an Nvidia
shuttered glass at a viewing distance of 80cm for the stereo
vision test. We then ask the subjects to assess their viewing
experience of watching individual stimuli.

3) Observations: According to the user study result, tempo-
rally inconsistent resizing within a range of degrees does not
introduce noticeable temporal incoherence for certain types of
stimuli. For example, as shown in Fig.1 and Fig. 2, perceptual
temporal incoherence artifacts in test video 2, 3, 5 and 6 are
negligible.

Moreover, the perceptual temporal incoherence, incurred
by inconsistently resizing a region and its temporal
correspondences, is related to the textural characteristics of this
region. In particular, the temporal incoherence is dependent
on the texture difference between the resized versions of the
region and its temporal correspondence, as illustrated in Fig. 4,
Fig. 1 and Fig. 2. More specifically, let r t1 and r t2 denote
the marked region and its correspondence in I L ,t1 and I L ,t2

in Fig. 1 and Fig. 2. The temporal resizing inconsistency
degree T W I_D for r t1 and r t2 in test video 1 is the same as
that in test video 3. However, the temporal incoherence of test
video 3 is perceptually unnoticeable, but that in test video 1 is
noticeable. This is because the textures of the resized r t1 and
r t2 are visually the same in test video 3, but those in test video
1 look significantly different. In contrast, test video 1 and test
video 2 are resized from the original video, but the temporally
resizing inconsistency degrees for r t1 and r t2 in test video 1 are
higher than their counterparts in test video 2. Consequently,
compared with test video 2, the texture difference between r t1

and r t2 in test video 1 is higher, thereby introducing visually
more annoying temporal incoherence artifacts in test video 1.

As for the result with orientation-specific textures, as shown
in Fig. 2, the temporal incoherence perceived by viewers is
also related to the texture orientation, which is measured by the
angle of the texture lines corresponding to the horizontal lines.
Roughly speaking when the angle is smaller than around 45◦,
the larger the angle is, the higher the texture difference
becomes. When the angle is smaller than around 45◦, most
subjects can notice the temporal incoherence.

4) Dependency of Temporal Incoherence on Texture: We
further quantitatively validate the above observations. We eval-
uate the dependency by measuring the correlation between
temporal incoherence scores and the textural feature of regions
in resized videos, where the textural feature is represented
by the texture difference between a resized region and its
correspondence temporally.

We use the Pearson correlation, ρ, to measure the cor-
relation, following the literature on quality assessment [35],
[36]. The higher absolute value of ρ, the stronger correlation
between texture and temporal coherence. Hence, the correla-
tion is measured as

ρ = E[(δ − μδ)(Y − μY )]
σδσY

, (3)

where δ is the list of values of texture difference measured
for each resized video, Y the list of the temporal incoherence
scores corresponding to all test videos, E(·) the expectation
function, and σ is the standard deviation. We adopt LBP [37]
to represent the textural feature, due to its well-proven per-
formance in recognition, retrieval, etc. We obtain ρ = 0.705
in the correlation estimation, which shows there does exist
strong correlation between temporal coherence and texture
differences.

To sum up, the perceptual temporal incoherence caused by
temporally inconsistent resizing is dependent on the textural
characteristics of regions. Based on this observation, we pro-
pose texture-dependent temporal constraints to adaptively con-
trol the degrees of inconsistent resizing for a non-paired region
and its temporal correspondences across neighboring frames
according to the regions’ textural characteristics.

IV. TEMPORAL INCOHERENCE-AWARE RETARGETING

Based on the user study results on perceptual temporal
incoherence, we propose a stereo video retargeting frame-
work that employs texture-dependent temporal constraints.
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Fig. 5. Proposed framework of stereo video retargeting.

As shown in Fig. 5, our method first detects corresponding
regions between the left-views and right-views of the input
stereo video pair, and then classifies the regions into paired
regions and non-paired ones. For each paired region, besides
imposing appropriate shape and depth constraints, all its tem-
poral correspondences across neighboring frames are further
constrained to be consistently resized. In contrast, for non-
paired regions, the imposed temporal constraints are relaxed
such that temporal correspondences of a non-paired region can
be inconsistently warped to some extent without introducing
perceptual temporal incoherence artifacts. Such relaxation on
temporal coherence for non-paired regions can effectively
mitigate the conflicts among the requirements for preserving
shape, depth, and temporal coherence. All these steps are
elaborated below.

A. Problem Formulation
Suppose a stereo video is resized from W × H to W ′ × H ′.

To maximize 3D viewing experience, our stereo video retar-
geting method aims to simultaneously preserve the shapes of
salient objects, the depths of 3D scenes, and their temporal
coherence by minimizing the following overall distortion:

Dtotal = min{α · DS + β · DD + DT }, (4)

where DS denotes the shape distortion of salient objects,
and DD the depth distortion of 3D scenes, DT the amount
of perceived temporal incoherence distortion, α, and β the
weights for the three distortion terms.

We adopt grid-based warping [17], [22] to solve the above
optimization problem, since it has proven to be an efficient
and effective means for 2D and 3D visual retargeting. We first
uniformly divide the frames in a stereo video pair into grids,
and then formulate an optimization model which imposes
shape, depth, and temporal constraints in (4) to constrain
the warping of grids. Thus, the optimal retargeted version is
obtained by finding the optimal set of grid warping functions
that minimize the overall distortion Dtotal .

B. Non-Paired Region Detection

We propose relax temporal constraints on part of non-paired
regions, which can be detected from the disparity maps
between the left-view and right-view frames estimated by
stereo matching [38], [17]. However, although stereo matching
can accurately estimate disparity for most regions, it often
wrongly assigns zero disparity to some kinds of regions,

thereby introducing large holes for these regions in the
estimated disparity maps. Such regions would be wrongly
classified as non-paired regions, thereby degrading retargeting
performance. To address the problem, we combine stereo
matching with optical flow estimation to improve the accuracy
of disparity estimation, as optical flows can help avoid such
incorrect holes. Specifically, we first employ stereo matching
to estimate initial disparity maps, then perform optical flow
estimation on those regions with significant no-correspondence
holes in the initial disparity maps and refine the maps by
filling the holes based on the estimated optical flows. In our
implementation, we mainly employ the algorithms proposed
in [38]–[40] for stereo matching and optical flow estimation.

After obtaining the refined disparity map, we detect
non-paired frame-boundary regions at frame boundaries and
the other non-paired regions as follows:

1) Non-Paired Boundary Regions: Given a non-paired
region at a frame boundary in a left/right-view frame, its
correspondence is out of view in the other view. Therefore,
given a boundary pixel pz,t

k , it is classified as a non-paired
boundary pixel if it satisfies the following condition:

x z,t
k + dz,t

k < 0, or xz,t
k + dz,t

k > W, (5)

where xz,t
k denotes the x coordinate of pz,t

k in frame I z,t , dz,t
k

the disparity value of pixel pk , W the width of I z,t .
2) Other Non-Paired Regions: For the remaining non-paired

regions in left/right-view frames, we detect them in a way
similar to [4]. Specifically, given a pixel in one view, we find
its correspondence in the other view. If more than one pixel
corresponds to the same pixel in the other view, the pixel with
the smallest disparity value is the non-paired one.

C. Shape Preservation

We define the shape distortion energy of a stereo video
as a weighted sum of all grids’ distortion energy. To reduce
computation, we adopt grid-edge-based warping proposed
in [41], [42], that sets the shapes of all retargeted grids to
be rectangular. In this way, the grids in each column/row are
enforced to have the same width/height, thereby significantly
reducing the number of variables, so as the complexity of
solving the variables. Since the retargeted grids remain rec-
tangular, the shape distortion energy of a grid can be simply
characterized by the difference between its original aspect ratio
and the retargeted ratio [22], [41]. Let gz,t

i denote a grid in
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frame I z,t where z ∈ {L, R}, the shape distortion is formulated
as

DS =
∑

z

∑
t

∑
i

D(gz,t
i )

=
∑

z

∑
t

∑
i

‖w(gz,t
i ) · h̃(gz,t

i )−w̃(gz,t
i )·h(gz,t

i )‖2 ·ηz,t
i ,

(6)

where w(gz,t
i ), h(gz,t

i )) and (w̃(gz,t
i ), h̃(gz,t

i )) denote the
widths and heights of grid gz,t

i before and after retargeting,
respectively, ηz,t

i is the saliency value of gz,t
i , calculated by

averaging the saliency values of all pixels in gz,t
i .

1) Perceptual Importance Map: Given a grid gz,t
i , we com-

pute its perceptual importance ηz,t
i by averaging the spatial

importance values of it and its temporal correspondences
across frames, similar to existing video retargeting methods
(e.g. [10], [22]).

ηz,t
i =

∑
k∈c

ηz,t ′
k , (7)

where c is the set containing gz,t
i and its temporal correspon-

dences across frames.
As revealed in [43], depth cue indicates occlusion informa-

tion which is favorable for shape preservation. Similarly, in [4],
[44], depth information provides valuable cues to measure
the perceptual importance of visual content in a stereo image
pair. The spatial perceptual importance map of each frame is
estimated by image-based saliency map [45] and depth-based
saliency map.

D. Depth Preservation

We adopt the depth-preserving constraints proposed in
our previous work [17] for depth preservation. The depth-
preserving constraints are used to constrain the warping of
grids on paired regions and non-paired regions in different
ways. We divide depth distortion DD in (4) into two terms:
DDP and DDN for paired regions and non-paired regions,
respectively.

1) Paired Regions: The constraints enforce each paired
region in I z

t and its correspondence in the other view I z′
t

to undergo consistent width changes. Let gL ,t
i be a grid

covering paired region r and gR,t
k its corresponding grid in

I R
t , the constraints are given as follows:

DDP =
∑

t

∑
r∈ϒ t

∑
gL,t

i ∈r

θ i,k,t · ‖w̃(gL ,t
i ) − w̃(gR,t

k )‖2, (8)

where ϒ t denotes the set containing all paired regions in I L ,t

and I R,t , and θ i,k,t the ratios of corresponding regions between
gL ,t

i and gR,t
k .

2) Non-Paired Regions: We translate depth distortion in
non-paired regions DDN into depth constraints that preserve
the width of non-paired regions. Thus, for a non-paired
region r̄ , the constraints preserve the total width of grids
covering r̄ by minimizing

DDN =
∑

t

∑
gz,t

i ∈r̄t

‖w̃(gz,t
i ) − w(gz,t

i )‖2, (9)

where r̄t denotes a non-paired region in I L ,t or I R,t .

3) Vertical Disparity: Non-zero vertical disparity would
cause uncomfortable 3D viewing experience such as headache
and eye fatigue. To avoid non-zero vertical disparity, we con-
strain the retargeted grid at the same location between
left-view I L ,t and right-view I R,t to be of the same height.

E. Texture-Dependent Temporal Constraints

The temporal constraints aim to constrain the temporally
corresponding regions across neighboring frames to be consis-
tently resized so as to avoid noticeable temporal incoherence
artifacts. According to the user study in Sec. III, the warping
function for a non-paired boundary region can differ from
that of the region’s temporal correspondences to some extent
based on the region’s textural characteristics. We hence first
identify grids in non-paired boundary regions, and label them
non-paired boundary grids. Then we translate the temporal
incoherence distortion DT in (4) into two sets of temporal
constraints for the non-paired boundary grids and the remain-
ing, respectively.

Before imposing temporal constraints, we first align the
temporal corresponding grids across frames. We adopt the grid
flow algorithm proposed in [22] to align the corresponding
grids temporally, as it can effectively align grids temporally
in a video involving significant object and camera motions.

Subsequently, the first set of constraints are imposed on
temporally aligned non-paired boundary grids. In particular,
let gz,t

i and gz,t ′
j respectively denote the temporally aligned

grids in frame I z,t and I z,t ′ , where gz,t
i is a non-paired bound-

ary grid. We constrain the horizontal warping inconsistency
between gz,t

i and gz,t ′
j based on the texture difference between

the two grids as follows:
h̃(gz,t

i ) = h̃(gz,t ′
j ),

0 < |w̃(gz,t
i ) − w̃(gz,t ′

j )| < 
, (10)

where 
 is the threshold empirically derived from the texture
difference between gz,t

i and gz,t ′
j .

In this work, we only set two levels of warping inconsis-
tency for 
. In particular, the user study results in Sec. III
reveal that for most stimuli, as long as the warping incon-
sistency is less then 0.15 · w(gz,t

i ), the temporal incoherence
is perceptually unnoticeable or negligible. As a result, for a
region with textures sufficiently similar to that of its inconsis-
tently resized correspondences (e.g., as depicted in Fig. 1(f)
and Fig.2(f)), the degree of warping inconsistency can be up
to 0.5 · w(gz,t

i ) or even larger. Therefore, 
 is set as


 =
{

0.5 · w(gz,t
i ), if δ(gz,t

i , gz,t ′
j ) < ε

0.15 · w(gz,t
i ), otherwise,

(11)

where δ(gz,t
i , gz,t ′

j ) measures the texture difference between

the inconsistently resized textures of gz,t
i and gz,t ′

j as follows:

δ(gz,t
i , gz,t ′

j ) = (T(gz,t
i )−T(g̃z,t ′

j ))2−(T(gz,t
i )−T(gz,t ′

j ))2,

(12)

where T(gz,t
i ) denotes the texture descriptor for gz,t

i .
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The second set of temporal constraints applies to the remain-
ing temporally aligned grids gz,t

i and their correspondences
gz,t

j except non-paired boundary grids. We constrain gz,t
i and

gz,t
j to be consistently resized in both their height and width:{

h̃(gz,t
i ) = h̃(gz,t ′

j )

w̃(gz,t
i ) = w̃(gz,t ′

j )
(13)

F. Key-Frame Based Optimization

The optimal set of retargeted grids is then obtained by
minimizing the following overall distortion:

αDS + β(DDP + DDN ) (14)

subject to the derived temporal constraints. This is a
quadratic programming problem, and we solve it using the
active-set method [46].

To obtain optimal retargeting results, the method proposed
in [12] directly performs the above optimization over all
frames of a video shot.2 However, the computational com-
plexity of such optimization increased with the number of
variables, which is Nt × (Nx + Ny), where Nt is the frame
number, Nx and Ny are the numbers of grid columns and rows
in a frame, respectively. Since the total number of variables
increases with the number of frames, the computational cost
of the in [12] is high for long video shots.

Some 2D video retargeting methods devoted efforts into
reducing computation cost via reducing the number of video
frames. For example, the 2D video retargeting method pro-
posed in [22] first extracts a few key-frames which summarize
the information of a video, and then performs the optimization
of retargeting on these key-frames. Since the key frames well
summarize information, the resizing results can be optimal for
objects in all frames.

Inspired by [22], we present a key-frame based optimization
method to efficiently solve the above optimization problem.
In the method, only a few key-frames are resized by solv-
ing a small-scale optimization programming, where these
key-frames are selected by grid flows [22]. After resizing the
key-frames, we then resize the non-key frames in between
every two neighboring key-frames. In existing video retarget-
ing methods, for maintaining temporal consistency, temporal
correspondences are constrained to be consistently resized
across frames. Thus, given a grid in a non-key frame, it is
easy to predict its retargeted size by grid interpolation from its
corresponding grids in two neighboring key-frames, like [22].
However, in our method, since a non-paired boundary region
and its temporal correspondences undergo inconsistent resiz-
ing. we cannot directly apply such grid interpolation. Instead,
we present a new grid interpolation to address this issue. Since
the time interval between two neighboring key-frames is usu-
ally short, we can assume that camera/object moves linearly
between two neighboring key-frames. As such, the size of
a non-paired boundary region changes linearly between two
neighboring key-frames, making the sizes of these retargeted

2video shots are divided by shot segmentation

Fig. 6. Illustration of resizing a non-key frame (left-view). The dashed
rectangles mark non-paired regions in key-frames. A red grid in the non-key
frame is estimated from grids with the same color in the two key-frames. A
red grid in the non-key frame is estimated from the corresponding non-paired
grids in the two neighboring key-frames, rather than from their temporal
correspondences (i.e., the blue grid).

non-paired boundary regions change linearly. Thus, for non-
key-frames, given a non-paired boundary grid, its retargeted
size is predicted from retargeted grids on non-paired boundary
regions between two neighboring key-frames, although these
grids are correspondences (see Fig. 6). For the remaining grids
(i.e., paired grids and non-paired non-boundary grids) in non-
key-frames, as depicted in Fig. 6, their retargeted grids are
estimated by linear grid interpolation.

The key-frame based scheme consumes significantly lower
computation cost, since it performs optimization only on the
grids in key-frames. In particular, the number of variables
with the key-frame optimization is Nk × (Nx + Ny), where
Nk is the number of key-frames. Typically, since Nk �
Nt , the keyframe-based implementation largely reduces the
computation cost, compared with the method in [12]. For
example, the number of video frames in Fig. 10 is 90, while
that of key-frames is only 4. In addition, we do not need
to estimate disparity maps for non-key frames, which further
significantly reduces computation.

V. EXPERIMENTAL RESULTS

In the experiments, we first validate the effectiveness of
the texture-dependent temporal constraints. Then, we compare
our method with the state-of-the-art approaches by conducting
qualitative and quantitative evaluations.

Dataset: We collect testing stereo videos from commercial
3D movie films for performance evaluation. Our collected
stereo videos pose technical challenges on stereo video retar-
geting in two aspects: (1) Both foreground and background
objects are of large disparity range and with significant tem-
poral disparity changes, which exhibits vivid and impressive
3D viewing experience to viewers but requires effective depth-
preserving constraints for retargeting. (2) Besides various
object motions, all videos contain significant camera motions
that change the locations of objects largely across frames. This
makes maintaining temporal coherence challenging for stereo
video retargeting.

We also test our method on the CVW dataset [29]. In most
videos of the CVW dataset, foreground objects or their
movements occupy a large portion of a frame. We choose
challenging videos which contain multiple objects with sig-
nificant motions and disparity changes.
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Fig. 7. Illustration of perceptually unimportant regions which are constrained by temporal constraints to be consistently resized with non-paired regions
in another frames. Rows from top to bottom: frames #55, #42 and #30. In (b) unimportant regions are indicated by light blue. In (c) non-paired regions in
each frame are colored red. In (d) and (e) non-salient regions which are constrained to be consistently resized with non-paired regions in another frames are
colored yellow.

Fig. 8. Performance comparison for Tangled. Rows from top to bottom: the left-views, the right-views and the disparity maps.

Fig. 9. Retargerting results for Tangled, where the width is reduced by 10% and 40%, respectively. Rows from top to bottom: the left-views, the right-views
and the disparity maps.

A. Effectiveness of Temporal Constraints
We evaluate the effectiveness our temporal constraints in

two aspects: (1) the amount of reduction on conflicts among
shape, depth, and temporal constraints and (2) the quality
improvement, achieved by our temporal constraints.

Constraint conflicts occur when different constraints lead
to conflicting requests for resizing a region. In particular,
shape constraints preserve the shapes of salient objects by
resizing perceptually unimportant regions. However, when
these unimportant regions are constrained not to be resized
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Fig. 10. Area of perceptually unimportant regions constrained not to be horizontally resized by temporal constraints.

by temporal/depth constraints, conflicts occur among these
constraints. The more the constraint conflicts, the more the
regions without a feasible solution, thus the severer the degra-
dation on stereo video retargeting performance. We quantify
the degree of conflicts among various constraints as the area
of perceptually unimportant regions in a frame which are
supposed to be resized for shape preservation, but eventually
are constrained not to be resized by depth/temporal constraints.

We mainly compare our temporal constraints with global
temporal constraints (GTC) proposed in the consistent
volumetric warping (CVW) [29], that enforce all temporal
correspondences of each region, regardless of a paired one
or non-paired one, to be consistently resized across a video
shot. To compare with GTC, we implement a baseline warping
method (without cropping) namely GTC that employs the
same shape and depth constraints as our method, but adopts
the global temporal constraints proposed in CVW [29].

As illustrated in Fig. 7(d) and Fig. 10, GTC constrains a
large area of unimportant regions not to be resized, which
introduces severe constraint conflicts. For example, the per-
centage of such unimportant regions with conflicts increases
to 90% in frame #30. The reason of causing such a large degree
of conflicts lies in the facts that, in the test videos, many
unimportant regions in a frame correspond to certain non-
paired regions in neighboring frames due to camera motions.
For example, both non-paired regions in frames #42 and
#55 correspond to a non-paired region in frame #30. The depth
constraints tend to preserve the widths of non-paired regions,
whereas GTC enforces non-paired regions to be consistently
resized with their temporal correspondences across neighbor-
ing frames. As a result, GTC together with depth constraints
would enforce those unimportant regions that correspond to
non-paired regions not be resized, thereby leading to conflicts
with shape preservation which relies on resizing unimportant
regions to preserve the shapes of salient objects.

In contrast, compared with GTC, our method allows much
more unimportant regions to be resized by adequately relaxing
the temporal constraints on non-paired boundary regions,
as shown in Fig. 10, thereby largely reducing constraint
conflicts.

Because GTC leads to many constraint conflicts (see Fig. 7),
it fails to find feasible solutions for regions in the video shown
in Fig. 8, although the frames contain lots of unimportant
regions. In contrast, our method largely reduces the conflicts so
as to better preserve the depth and shape information without
sacrificing temporal coherence perceptually.

We further quantify the gains of our temporal constraints.
We incrementally reduce the frame width by 10%, 20%, …,
so as to evaluate the maximum width of a video frame that
a retargeting method can be trimmed out without introducing
noticeable visual artifacts. For the video shown in Fig. 8, when
the trimmed width is larger than 10%, GTC fails to find a
feasible solution. In contrast, the trimmable width achieved
by our method is 40%, thanks to the adequate relaxation on
temporal constraints that allow non-paired boundary regions
to undergo inconsistent resizing temporally.

B. Qualitative Comparison

We then evaluate the performances of stereo video retarget-
ing methods in terms of shape preservation, depth preservation,
and temporal coherence. The depth preservation performance
is evaluated by comparing the disparity maps of retargeted
versions with their original one, where dark red and dark
blue respectively indicate the highest and lowest disparity
values. We compare our method with two existing methods:
the uniform scaling (US) method and the CVW method [29],
which is a state-of-art content-aware stereo video retargeting
method and is most related to our work. Because CVW
combines warping with cropping to handle difficult videos, for
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Fig. 11. Performance comparison for Madagascar 4. Rows from top to
bottom: the left-views, the right-views and the disparity maps.

a fair comparison, we implement two versions of CVW: the
full version of CVW with both warping and cropping (namely
“CVW”) and CVW without any cropping (namely “CVW w/o
Crop.”).3

1) Retargeting Without Cropping: Fig. 11 compares the
left-views of the original and retargeted frames and their
associated disparity maps for a stereo video shot containing
large camera motions. It shows that, for shape preservation, our
method and CVW achieve comparable performance, and both
outperform US. For depth preservation, both US and CVW
lead to severe depth distortions in most regions, since they
do not explicitly consider depth information while performing
retargeting. In contrast, since our temporal constraints trade
unnoticeable temporal incoherence for depth preservation, our
method achieves the best depth preservation performance.
As for temporal coherence, since non-paired boundary regions
usually do not contain much textural details, our temporal
constraints have an enough room to inconsistently resize
these non-paired regions and their temporal correspondences
to a large extent to achieve shape and depth preservation
without introducing noticeable temporal incoherence artifacts.
Therefore, even with temporally inconsistent resizing for
non-paired regions, our method still achieves comparable
perceptual temporal coherence with US and CVW. Fig. 12
shows a video with more textural details in non-paired
regions than the video in Fig. 11. Our temporal constraints
adaptively adjust the extent of temporally inconsistent resiz-
ing of non-paired boundary regions, thereby achieving the
best overall visual quality. (see the complementary materials
for comparison).

2) Retargeting With Cropping: Since CVW adopts both
warping and cropping, we further combine our method with
cropping, namely “Ours w/ Crop”, for comparison. Fig. 13
compares our method (incorporating cropping) with US and
CVW for a frame in test video IceAge4. The test video con-
tains multiple salient objects with significant object motions,
for which camera has to be moved intensively for ‘tracking

3Since CVW does not release codes, the comparisons are based on our own
implementations.

the moving objects. It is therefore challenging for a stereo
video retargeting method to simultaneously preserve the depth,
temporal coherence and shapes of multiple objects. We can
observe that CVW significantly distorts the shape of folivora
and its depth, leading to poorer viewing experience. In con-
trast, our method simultaneously well preserves the shapes and
depths of salient objects, as well as successfully maintains
temporal coherence. Fig. 14 shows the right-views and dispar-
ity maps of the original and retargeted frames for Madagas-
car3 that contains multiple foreground objects. Similarly, our
method achieves the best performance compared with CVW
and US. (see the videos in the supplementary material).

C. Subjective User Study

Since 3D viewing experience is crucial while watching a
stereo video, we conduct a subjective user study to com-
pare the performances of different retargeting methods on
preserving 3D viewing experience. We invite 12 subjects with
diverse ages to participate in the user study. As reported
in [47], 3%–15% of the population are stereo blindness.
We hence conduct vision test on all subjects, to verify whether
subjects have normal stereopsis (ability of properly fusing a
3D scene) before the user study, following [48]. All subjects
pass the vision test. In addition, they are not professionals
in 3D image/video processing.

The subjects view stereo videos on an ASUS 3D 24-inch
monitor with the resolution of 1920 × 1080, equipped with
NVIDIA GeForce 3D Vision and active shuttered glasses.
The width and height of the display screen are 54.6 cm
and 31.4 cm, respectively. We select a moderate-size dis-
play, since stereo videos on large screen would exhibit high
perceptual depth which may exceed the comfort zones of
subjects. Since ITU-R BT.2021 [48] suggests that the view-
ing distance should be 4 times the height of the display
screen. The viewing distance is set to be 125.6 cm in the
user study.

Different from 2D videos, stereo videos are more complex
and a human brain needs more time to fuse 3D scenes.
Therefore, we allow subjects to playback, pause, and Fast
forward the test videos during the subjective test.

We adopt pairwise comparison by following the setup of
user studies in the literature [27], [49], [50]. We show an
original video on the top and two retargeted versions which
are placed in a random order to subjects each time. Then,
each subject is asked to choose the retargeted version he/she
prefers in terms of preserving 3D experience of the original
stereo video. We do not inform the subjects of the experiment
hypothesis and purpose.

We conduct subjective evaluation on 10 stereo video clips.
We compare our method with the CVW and US methods.
We receive 12 × 10×3= 360 pairwise comparison answers in
total, where each subject evaluates 3 × 10 = 30 video pairs.
Table I shows the winning frequency matrix, where the value
ai j in row i and column j indicates that method i receives ai j

preference votes to method j . As shown in Table I, our method
offers the best 3D viewing experience, as 83.33% and 91.67%
of subjects prefer our method to the CVW and US methods,

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 23,2020 at 23:55:58 UTC from IEEE Xplore.  Restrictions apply. 



5778 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 12. Performance comparison for Frozen. Rows from top to bottom: the left-views, the right-views and disparity maps.

Fig. 13. Performance comparison for IceAge4. Rows from top to bottom: the left-views, the right-views and disparity maps. The regions removed by
individual retargeting methods are marked in the corresponding figures in the supplemental material.

Fig. 14. Performance comparison for Madagascar 4. Rows from top
to bottom: the left-views, the right-views and disparity maps. The regions
removed by individual retargeting methods are marked in the figures in the
supplemental material.

respectively. The user study results also show that the subjects
do not notice significant temporal incoherence, although our
method inconsistently resizes non-paired boundary regions
temporally.

D. Quantitative Depth Distortion

We quantify depth distortion by the average difference
between the disparity values of the retargeted video and
their original values. The average disparity difference is
further normalized to the range of the original disparity
map as

1

|dmax | · Nv

∑
(k,t)

|dz,t
k − d̃ z,t

k |, (15)

where |dz,t
k − d̃ z,t

k | is disparity difference of a point pz,t
k , Nv

is the total number of points, and |dmax | is the range of the
original disparity map.

As shown in Fig. 17, US and GTC both lead to high depth
distortion due to poor depth preservation. In contrast, our
method achieves the lowest depth distortion by mitigating the
constraint conflicts.

E. Parameter Setting

Our stereo video retargeting method has two parameters α,
β which mainly affect retargeting performance. In particular,
parameter α and β are weights to control the strength of shape
and depth constraints, respectively.

Following [29], we test various values of parameter α and β,
to analyze the influence of these two parameters on the retar-
geting results as illustrated in Fig. 15 and Fig.16. As shown
in Fig. 15, a small value of β corresponds to weak depth
preservation constraints, which are ineffective to preserve the
depth, thereby introducing severe depth distortions. In contrast,
a high value of β effectively preserves the depth. Fig. 16
shows that a small to medium value of α leads to comparable
performance of depth and shape preservation, but when α is
too large, the shape-preserving constraints would significantly
degrade the performance of depth preservation. Therefore,
we empirically set β = 105, α = 1 for all test videos in our
experiments.
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Fig. 15. Retargeting results using various values of weighting parameter β. From left to right: original, β = 102, 104, 105. Rows from top to bottom: the
left-views, the right-views and disparity maps.

Fig. 16. Retargeting results using various values of weighting parameter α. From left to right: original α = 1, 10, 105 Rows from top to bottom: the
left-views, the right-views and disparity maps.

Fig. 17. Comparison of depth distortions of the proposed method, CVW, and US for three test videos.
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Fig. 18. Performance comparison for Guardians of the Galaxy2. The images in the rows 1–3 are left-views, the right-views and disparity maps of frame
#17, and the images in rows 4–6 are that of frame # 41.

TABLE I

WINNING FREQUENCY MATRIX OF SUBJECTIVE PAIRWISE
COMPARISON FOR TEN TEST VIDEOS

F. Time Cost

Since we proposes a key-frame optimization which achieve
lower computational complexity, compared with that in [12].
We hence test the time cost of the optimization, to demon-
strate the improvement on run-time complexity. As shown in
Tab. II, our method is about 9 times faster than the previous
version [12] when processing a 80-frame video shot, while
achieving comparable visual quality.

VI. DISCUSSIONS AND LIMITATIONS

Different from DGW proposed in [28], our method does
not focus on preserving the temporal depth dynamics of 3D
objects. As a results, our method may not perform as well
as DGW in depth preservation for stereo videos containing
significant depth changes at the temporal domain. In particular,
Fig. 18 shows two frames selected from a challenging shot of
a live-action film. The video shot involves significant object
motions along the depth direction, which leads to large depth
changes temporally. Compared with US and CVW, our method
achieves superior performance on shape preservation, depth
preservation and temporal coherence. However, compared with

TABLE II

TIME COST

DGW, although our method well preserves the depth for
some frames, overall DGW achieves slightly better perfor-
mance in depth preservation at both the spatial and temporal
domains (e.g., temporal depth dynamics). This is because
DGW explicitly considers the temporal depth dynamics of 3D
objects, that is not the central focus of our paper. By con-
trast, however, as illustrated in Fig.9 of our paper, should a
stereo video be downsized significantly or involve significant
camera/object motions, DGW often leads to significantly more
resource conflicts in the requirements of preserving shape,
depth, and temporal coherence. In our future work, we will
extend our method to effectively preserve the temporal depth
dynamics of 3D objects without incurring excessive constraint
conflicts.

In addition,for stereo videos where salient objects or their
trajectory occupy a large portion of a frame, our method would
inevitably introduce shape/depth distortions, similar to state-
of-the-art warping-based methods. Although we can combine
our method with cropping, the retargeted results generated by
our method would be similar to that of cropping. That is, some
important content/objects may be removed, since there are not
enough less-important regions (i.e., “retargeting resource”) for
absorbing the depth/shape distortions due to grid warping.
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VII. CONCLUSION

A novel stereo video retargeting method was proposed in
this work. It can offer temporal coherence, shape preservation
and depth preservation for stereo visual contents that con-
tain various motion types, salient objects in a wide depth
range and significant temporal depth changes. As compared
with existing methods, our method can preserve shape and
depth information better while well maintaining temporal
coherence perceptually. This is achieved by adaptively relax-
ing temporal constraints on non-paired boundary regions to
effectively mitigate conflicts among the shape, depth, and
temporal constraints. Based on the proposed method, we have
formulated a grid-warping-based optimization problem and
proposed an efficient keyframe-based algorithm to solve it.
As demonstrated by extensive experiments, our method out-
performs other existing methods in general and on videos with
significant camera motions in particular.
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