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Abstract— The performance of a convolutional neural network
(CNN) based face recognition model largely relies on the richness
of labeled training data. However, it is expensive to collect
a training set with large variations of a face identity under
different poses and illumination changes, so the diversity of
within-class face images becomes a critical issue in practice.
In this paper, we propose a 3D model-assisted domain-transferred
face augmentation network (DotFAN) that can generate a series
of variants of an input face based on the knowledge distilled
from existing rich face datasets of other domains. Extending from
StarGAN’s architecture, DotFAN integrates with two additional
subnetworks, i.e., face expert model (FEM) and face shape
regressor (FSR), for latent facial code control. While FSR aims
to extract face attributes, FEM is designed to capture a face
identity. With their aid, DotFAN can separately learn facial
feature codes and effectively generate face images of various
facial attributes while keeping the identity of augmented faces
unaltered. Experiments show that DotFAN is beneficial for
augmenting small face datasets to improve their within-class
diversity so that a better face recognition model can be learned
from the augmented dataset.

Index Terms— Face augmentation, convolutional neural
networks, generative adversarial networks, domain knowledge
transfer, generative model.

I. INTRODUCTION

FACE recognition is one of the most considerable research
topics in the field of computer vision. Benefiting from

meticulously-designed CNN architectures and loss functions
[1]–[3], the performance of face recognition models have been
significantly advanced. The performance of a CNN-based face
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recognition model largely relies on the richness of labeled
training data. However, collecting a training set with large
variations of a face identity under different poses and illu-
mination changes is very expensive, making the diversity of
within-class face images a critical issue in practice. This is
a considerable problem in developing a surveillance system
for small/medium-size real-world applications. In such cases,
each identity usually has only a few face samples (we call
it Few-Face learning problem), making the data processing
strategy equally important as the face recognition algorithm.

A face recognition model may fail, if the training set is
too anemic to well train the model. To avoid this circum-
stance, our idea is to distill the knowledge within a rich data
domain and then transfer the distilled knowledge to enrich an
incomprehensive set of training samples in a target domain via
domain-transferred augmentation. Specifically, we aim to train
a composite network, which learns a attribute-decomposed
representation of faces from rich face datasets, so that this
network can generate face variants—each being associated
with a different pose angle, a different facial expression, or a
shading pattern due to a different illumination condition—of
each face subject in an anemic dataset for the data augmen-
tation purpose. Hence, we propose in this paper a Domain-
transferred Face Augmentation Net (DotFAN), that aims to
learn the distributions of the faces of distinct identities in the
feature space from rich training data so that it can augment
face data, including frontalized neutral faces, during inference
by transferring the knowledge it learned, as its design concept
illustrated in Fig. 1.

The proposed DotFAN is a face augmentation approach
through which any identity class—no matter a minority class
or not—can be enriched by synthesizing face samples based
on the knowledge learned from rich face datasets of other
domains via domain transfer. To this end, DotFAN first learns
a facial representation from rich datasets to decompose facial
information into essential facial attribute codes that are vital
for identity identification and face manipulation. Then, exploit-
ing this attribute-decomposed facial representation, DotFAN
can generate synthetic face samples neighboring to the input
faces in the sample space so that the diversity of each face-
identify class can be significantly enhanced. As a result,
the performance of a face recognition model trained on the
enriched dataset can be improved as well.

Utilizing two auxiliary subnetworks, namely a data-driven
face-expert model (FEM) [4], [5] and a model-assisted face
shape regressor (FSR), DotFAN operates in a model-assisted
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Fig. 1. DotFAN aims to enrich an anemic domain via identity-preserving face generation based on the knowledge, i.e., separated facial representation,
distilled from data in a rich domain.

data-driven fashion. FEM is a purely data-driven subnetwork
pretrained on a domain rich in face identities, whereas FSR is
driven by a 3D face model and pretrained on another domain
with rich poses and expressions. Hence, FEM ensures that
the synthesized variants of an input face are of the same
identity as the input, while FSR collaborating with illumi-
nation code enables the model to generate faces with various
poses, lighting (shading) conditions, and different expressions.
In addition, we use a 3D face model (e.g., 3DMM [6], [7]) to
characterize face attributes related to pose and expression with
only hundreds of parameters. Thereby, the size of FSR, and
its training set of faces with labelled poses and expressions
as well, is largely reduced, making it realizable with a light
CNN with a significantly reduced number of parameters.
Furthermore, the loss terms related to FEM and FSR act as
regularizers during the training stage. This design prevents
DotFAN from common issues in data-driven approaches, e.g.,
overfitting due to small training dataset.

Moreover, DotFAN is distinguishable from previous face
augmentation and face synthesis methods. As for face aug-
mentation, for example, Masi et al. [8] proposed their face-
specific data augmentation method designed for maximizing
the appearance variation of training images during training
on-the-fly. To achieve this goal, the method focuses on two
face-specific appearance variations, namely, pose and shape.
It exploits face pose estimation, texture mapping, ray cast-
ing, precomputed projection matrix and 3D shape models
to render new facial views. Although the method proposed
in [8] well exploits graphics models to assist face recognition,
it does not take into account facial appearance variations
due to expressions and lighting conditions, thereby reducing
its effectiveness for tackling the Few-Face problem in real-
world surveillance systems. In addition, current face synthesis
methods, including FaceID-GAN and the method proposed
in [9], are not so suitable for the Few-Face problem, neither.

Although the method in [9] elegantly incorporates 3DMM
model to synthesize photorealistic faces, their method was
primarily designed for generating faces of new identities.
Moreover, FaceID-GAN regards its face-expert model as an
additional discriminator that needs to be trained jointly with
its generator and discriminator in an adversarial training man-
ner. In FaceID-GAN’s 3-player game strategy, its face-expert
model assists its discriminator rather than its generator, and
accordingly FaceID-GAN guarantees only the upper-bound of
identity-dissimilarity. This design may prevent FaceID-GAN’s
face expert model from pretraining and impede the whole
training speeds. Because FaceID-GAN cannot be pretrained
on a rich-domain data, this fact makes it difficult to transfer
knowledge from a rich dataset to another in an on-line learning
manner.

On the contrary, DotFAN, a GAN-based domain-transferred
face augmentation network, utilizes a concatenation of
attribute-decomposed facial features to synthesize faces with
appearance variations in poses, expressions and shadows. Also,
DotFAN regards its FEM as a regularizer to guarantee that the
identity information is not altered by the generator. As a result,
its FEM can be pretrained on a rich dataset and play a role
of an inspector in charge of overseeing identity-preservability.
This design not only carries out the identity-preserving face
generation task, but also stabilizes and speeds up the training
process by not intervening the competition between generator
and discriminator. In sum, DotFAN has following four primary
contributions.

• We are the first to propose a domain-transferred face
augmentation scheme. The proposed scheme can effec-
tively transfer the knowledge distilled from a rich domain
to an anemic domain, while preserving the identity of
augmented faces in the target domain.

• DotFAN provides a learning-based universal solution
for the Few-Face problem. Specifically, i) when a face
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recognizer is re-trainable, DotFAN enriches the Few-Face
Set by data augmentation, and then the recognizer can be
re-trained on the enriched set to improve its performance;
and, ii) if the face recognizer is pretained on an incom-
prehensive dataset (e.g., with mainly frontal faces and/or
neutral illumination) and is NOT re-trainable, DotFAN
can assist the recognizer by frontalizing/neutralizing a to-
be-recognized face.

• Through a concatenation of facial attribute codes learned
separately from existing face datasets, DotFAN offers a
unique unified framework that can incorporate prominent
face attributes (e.g. id-information, pose, illumination,
shape, and expression codes derived by different subnet-
works) for face recognition and can be easily extended
to other face related tasks.

• DotFAN well beats the state-of-the-arts by a significant
gain margin in face recognition application with small-
size training data available. This makes it a powerful tool
for low-shot learning applications.

II. RELATED WORK

Recently, various algorithms have been proposed to address
the issue of small sample size with dramatic variations in
facial attributes in face recognition [10]–[13]. This section
reviews works on GAN-based image-to-image translation, face
generation, and face frontalization/rotation techniques related
to face augmentation.

A. GAN-Based Image-to-Image Translation

GAN and its variants have been widely adopted in a variety
of fields, including image super-resolution, image synthesis,
image style transfer, and domain adaptation. DCGAN [14]
incorporates deep CNNs into GAN for unsupervised repre-
sentation learning. DCGAN enables arithmetic operations in
the feature space so that face synthesis can be controlled
by manipulating attribute codes. The concept of generating
images with a given condition has been adopted in suc-
ceeding works, such as Pix2pix [15] and CycleGAN [16].
Pix2pix requires pair-wise training data to derive the trans-
lation relationship between two domains, whereas CycleGAN
relaxes such limitation and exploits unpaired training inputs to
achieve domain-to-domain translation. After CycleGAN, Star-
GAN [10] addresses the multi-domain image-to-image transla-
tion issue. With the aids of a multi-task learning setting and a
design of domain classification loss, StarGAN’s discriminator
minimizes only the classification error associated to a known
label. As a result, the domain classifier in the discriminator
can guide the generator to learn the differences among multiple
domains. Recently, an attribute-guided face generation method
based on a conditional CycleGAN was proposed in [11]. This
method synthesizes a high-resolution face based on an low-
resolution reference face and an attribute code extracted from
another high-resolution face. Consequently, by regarding faces
of the same identity as one sub-domain of faces, we deem that
face augmentation can be formulated as a multi-domain image-
to-image translation problem that can be solved with the aid
of attribute-guided face generation strategy.

Additionally, although DotFAN is skeletally an extension of
StarGAN, DotFAN is conceptually different from StarGAN.
Specifically, DotFAN is a framework specialized for domain-
knowledge-transferred face augmentation, whereas StarGAN,
as well as other GAN-based face synthesizers, does not
have a proper network structure and a suitable loss function
design that supports the concept of domain knowledge transfer
particularly to face synthesis.

B. Face Frontalization and Rotation

We regard the identity-preserving face synthesis task as an
inverse problem of the face frontalization technique used to
synthesize a frontal face from a face image with arbitrary
pose variation. Typical face frontalization and rotation methods
synthesize a 2D face via 3D surface model manipulation,
including pose angle control and facial expression control,
such as FFGAN [17], FaceID-GAN [7], ExpNet [18], Face-
PoseNet [19], Rotate-and-render [20], and FFWM [21]. Still,
some designs utilize specialized sub-networks or loss terms
to reach the goal. For example, based on TPGAN [22],
the pose invariant module (PIM) proposed in [23] contains
an identity-preserving frontalization sub-network and a face
recognition sub-network; the CNN proposed in [24] estab-
lishes a dense correspondence between paired non-frontal
and frontal faces; and, the face normalization model (FNM)
proposed in [5] involves a face-expert network, a pixel-wise
loss, and a face attention discriminators to generate a faces
with canonical-view and neutral expression. Finally, some
methods approached this issue by means of disentangled
representations [25], [26]. For example, DR-GAN [25] uti-
lizes an encoder-decoder structure to learn a disentangled
representation for face rotation, whereas CAPG-GAN [26]
adopts a two-discriminator framework to learn simultaneously
pose and identity information. Therefore, we integrate the
encoder-decoder framework with DotFAN to learn a attribute-
decomposition representation for face augmentation.

C. Data Augmentation for Face Recognition

To facilitate face recognition, there are several face
normalization and data augmentation methods. Face
normalization methods aim to align face images by removing
the volatility resulting from illumination variations, changes of
facial expressions, and different pose angles [5], whereas the
data augmentation method attempts to increase the richness of
face images, often in aspects of pose angle and illumination
conditions, for the training routine. To deal with illumination
variations, conventional approaches utilized either physical
models, e.g. Retinex theory [27], or 3D reconstruction strategy
to remove/correct the shadow on a 2D image [28], [29].
Moreover, to mitigate the influence brought by pose angles,
two categories of methods were proposed, namely pose-
invariant face recognition methods and face rotation methods.
While the former category focuses on learning pose-invariant
features from a large-scale dataset [30]–[32], the latter
category, including face frontalization techniques, aims to
learn the relationship between rotation angle and resulting face
image via a generative model [7], [17], [22], [23], [25], [26],
[33], [34]. Because face rotation methods are designed
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Fig. 2. Data flow of DotFAN’s training process. FEM and FSR are independently pre-trained subnetworks, whereas E , G , and D are trained as a whole. f̃ p and
f̃l denote respectively a pose code and an illumination code randomly given in the training routine; and, fl is the ground-truth illumination code provided by the
training set. For inference, the data flow begins from x and ends at y = G(x, f̃). Note that f̃ = [lx , fid , f̃ p, f̃l ], and f = [E(G(x, f̃)),� f em(G(x, f̃)), f p, fl ].

to increase the diversity of the view-points of face image
data, they are also beneficial for augmentation tasks. Still,
face swapping methods provide another direction for face
augmentation tasks. For example, FaceShifter [35] was
designed to swap the face region of one image to one another
photo-realistically by exploiting the GAN framework with an
identity-preserving loss. FaceShifter feeds face identity feature
jointly with attribute codes into its generator in a multi-level
fashion to produce swapped faces with high-fidelity, and it
adopts the cosine similarity to guarantee the (directional)
similarity of its id-feature. Nevertheless, FaceShifter takes
paired input faces during deployment and guarantees only the
visual fidelity of the swapped face via the cosine similarity
rather than the consistency of extracted face identity feature
via L2-norm, and hence it may not be applied to face
augmentation tasks directly.

Based on these meticulous designs, DotFAN is implemented
as an extension of StarGAN, involving an encoder-decoder
framework and two sub-networks for learning attribute codes
separately, and triggered by several loss terms, including
reconstruction loss and domain classification loss, as will be
elaborated later.

III. PROPOSED METHOD

DotFAN is a framework to synthesize face images of one
domain based on the knowledge, i.e., attribute-decomposed
facial representation, learned from others. Given an input
face x, the generator G of DotFAN is trained to synthesize
a face G(x, f) based on an input attribute code f comprising
i) a general latent code lx = E(x) extracted from x by
the general facial encoder, ii) an identity code fid indicating
the face identity, iii) an attribute code f p describing facial
attributes including pose angle and facial expressions, and

iv) an illumination code fl . Through this design, a face image
can be embedded via a concatenation of these attribute codes,
i.e., f = [lx, fid , f p, fl ]. Fig. 2 depicts the flow-diagram of
DotFAN, and each component will be elaborated in following
subsections.

A. Attribute-Decomposed Facial Representation

To obtain a decomposed representation, the attribute code f
used by DotFAN for generating face variants is derived col-
laboratively by a general facial encoder E , a face-expert sub-
network FEM, a shape-regression sub-network FSR, and an
illumination code fl . FEM and FSR are two well pre-trained
sub-networks. FEM learns to extract identity-aware features
from faces (of each identity) with various head poses and facial
expressions, whereas FSR aims to learn pose features based
on a 3D model. The illumination code is a 14 × 1 one-hot
vector specifying 1 label-free case (corresponding to data from
CASIA [36]) and 13 illumination conditions (associated with
selected Multi-PIE dataset [37]).

1) Face-Expert Model (FEM): FEM � f em , architecturally
a ResNet-50 trained via ArcFace loss [2], enables DotFAN
to extract and then transplant the face identity from an input
source to synthesized face images. Though conventionally face
identity extraction is considered as a classification problem
and optimized by using a cross-entropy loss, recent methods,
e.g., CosFace [3] and ArcFace, proposed adopting angular
information instead. ArcFace maps face features onto a unit
hyper-sphere and adjust between-class distances by using
a pre-defined margin value so that a more discriminative
feature representation can be obtained. Using the ArcFace loss,
FEM ensures not merely a fast training speed for learning
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face identity but also the efficiency in optimizing the whole
DotFAN network.

2) Face Shape Regressor (FSR): The FSR � f sr , archi-
tecturally a MobileNet [38], aims to extract face attributes
including face shape, pose, and expression. Based on a widely
used 3D Morphable Model (3DMM [6]), we designed our
FSR as a model-assisted CNN rather than a fully data-
driven network, which is complex and must be trained on a
large variety of labeled face samples for characterizing face
attributes because of the lack in prior knowledge. Moreover,
because 3DMM can characterize the face attributes using
only hundreds of parameters, the model size of FSR can be
significantly reduced. To train FSR, firstly, we follow HPEN’s
strategy [39] to prepare ground-truth 3DMM parameters �x
of an arbitrary face x from CASIA dataset [6]. Then, we train
FSR via Weighted Parameter Distance Cost (WPDC) [40]
defined in (1), with a modified importance matrix, as
shown in (2).

Lwpdc = (
� f sr (x) − �x

)t W
(
� f sr (x) − �x

)
(1)

W = (wR, wT , wshape, wexp), (2)

where wR , wt3d , wshape, and wexp are distance-based weight-
ing coefficients for the �x derived by 3DMM, and �x is a
vector consisting of a 9 × 1 vectorized rotation matrix R,
a 3 × 1 translation vector T , a 199 × 1 vector αshape, and a
29 × 1 αexp . Note that the facial attribute code f p = � f sr (x)
extracted by FSR is a 240 × 1 vector mimicking �x. While
training DotFAN, we keep αshape’s counterpart—representing
facial shape—in f p unchanged, and we replace f p’s other
code segments corresponding to translation T , rotation R, and
expression αexp by arbitrary values.

3) General Facial Encoder E and Illumination Code fl :
E is used to capture other features, which cannot be repre-
sented by shape and identity codes, on a face. fl is a one-
hot vector specifying the lighting condition, based on which
our model synthesizes a face. Note that because CASIA has
no shadow labels, for fl of a face from CASIA, its former
13 entries are set to be 0’s and its 14−th entry f casia

l = 1;
this means to skip shading and to generate a face with the
same illumination setting and the same shadow as the input.

B. Generator

The generator G takes an attribute code f = [lx, fid , f p, fl ]
as its input to synthesize a face G(x, f). Described below are
loss terms composing the loss function of our generator.

1) Reconstruction Loss: In our design, we exploit a recon-
struction loss to retain face contents after performing two
transformations dual to each other. That is,

Lrec = ‖G
(
G(x, f̃), f)

) − x‖2
2/N, (3)

where N is the number of pixels, G(x, f̃) is a synthetic
face derived according to an input attribute code f̃ . This
loss guarantees our generator can learn the transformation
relationship between any two dual attribute codes.

2) Pose-Symmetric Loss: Based on a common assumption
that a human face is symmetrical, a face with an x◦ pose angle
and a face with a −x◦ angle should be symmetric about the
0◦ axis. Consequently, we design a pose-symmetric loss based
on which DotFAN can learn to generate ±x◦ faces from either
training sample. This pose-symmetric loss is evaluated with
the aid of a face-mask M(·), which is defined as a function
of 3DMM parameters predicted by FSR and makes this loss
term focus on the face region by filtering out the background,
as described below:

Lsym = ‖M(f̂−) · (G(x, f̂−) − x̂−)‖2
2/N. (4)

Here, f̂− = [lx, fid , f̂ −
p , fl ], in which f̂ −

p = � f sr (x̂−)

with x̂− denoting the horizontally-flipped version of x, and
the other three attribute codes are extracted from x. In sum,
this term measures the L2-norm of the difference between a
synthetic face and the horizontally-flipped version of x within
a region-of-interest defined by a mask M .

3) Identity-Preserving Loss: We adopt the following
identity-preserving loss to ensure that the identity code of a
synthesized face G(x, f̃) is identical to that of input face x.
That is,

Lid = ‖� f em(x) − � f em
(
G(x, f̃)

)‖2
2/N1, (5)

where N1 denotes the length of � f em(x).
4) Pose-Consistency Loss: This term guarantees that the

pose and expression feature extracted from a synthetic face is
consistent with f̃ p used to generate the synthetic face. That is,

Lpose = ‖ f̃ p − � f sr
(
G(x, f̃)

)‖2
2/N2, (6)

where N2 denotes the length of f̃ p .

C. Discriminator

By regarding faces of the same identity as one sub-domain
of faces, the task of augmenting faces of different identities
becomes a multi-domain image-to-image translation problem
addressed in StarGAN [10]. Hence, we exploit an adversarial
loss to make augmented faces photo-realistic. To this end,
we use the domain classification loss to verify if G(x, f̃) is
properly classified to a target domain label fl , which specifies
the illumination condition of G(x, f̃). In addition, in order to
stabilize the training process, we adopted the loss design used
in WGAN-GP [41]. Consequently, these two loss terms can
be expressed as follows:

LD
adv = Dsrc(G(x, f̃)) − Dsrc(x)

+λgp · (‖∇x̂ Dsrc(x̂)‖2 − 1
)2

LG
adv = −Dsrc(G(x, f̃)), (7)

where λgp is a trade-off factor for the gradient penalty, x̂ is
uniformly sampled from the linear interpolation between x
and synthesized G(x, f̃), and Dsrc reflects a distribution over
sources given by the discriminator; and,

LD
cls = − log Dcls ( fl |x)

LG
cls = − log Dcls ( f̃l |G(x, f̃)), (8)
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where fl is the ground-truth illumination code of x, and f̃l is
the illumination code embedded in f̃ .

In sum, the discriminator aims to produce probability dis-
tributions over both source and domain labels, i.e., D : x →
{Dsrc(x), Dcls (x)}. Empirically, λgp = 10.

D. Full Objective Function

In order to optimize the generator and alleviate the training
difficulty, we pretrained FSR and FEM with corresponding
labels. Therefore, while training the generator and the dis-
criminator, no additional label is needed. The full objective
functions of DotFAN can be expressed as:

LG = αLG
adv + βLG

cls + γLid + ζLpose

+ηLsym + ξLrec

LD = LD
adv + LD

cls . (9)

where, the two loss terms in LD are equal-weighted, and
the weighting factors in LG are α = 1, β = 1, γ = 8,
ζ = 6, η = 5, and ξ = 5, empirically. Note that the alternative
training of generator and discriminator was performed with
ratio 1 : 1.

IV. EXPERIMENTS

A. Datasets

DotFAN is trained jointly on CMU Multi-PIE [37] and
CASIA [36]. Multi-PIE contains more than 750, 000 images
of 337 identities, each with 20 different sorts of illumination
and 15 different poses. We select images of pose angles
ranging in between ±45◦ and illumination codes from 0 to 12
to form our first training set, containing totally 84, 000 faces.
From this training set, DotFAN learns the representative fea-
tures for a wide range of pose angles, illumination conditions,
and resulting shadows. Our second dataset is the whole CASIA
set that contains 494, 414 images of 10, 575 identifies, each
having about 50 images of different poses and expressions.
Since CASIA contains a rich collection of face identities,
it helps DotFAN learn features for representing identities.

We exploit CelebA to simulate the data augmentation
process. CelebA contains 202, 599 face images collected from
10, 177 identities with 40 kinds of diverse binary facial
attributes. We randomly select a fixed number of face images
of each identity from CelebA to form our simulation set, called
“sub-CelebA” and conducted data augmentation experiments
on both CelebA and sub-CelebA by using DotFAN.

Moreover, to evaluate the performance of DotFAN on
face synthesis, four additional datasets are used: LFW [42],
IJB-A [43], SurveilFace-1, and SurveilFace-2. LFW has
13, 233 images of 5, 749 identities; IJB-A has 25, 808 images
of 500 identities; SurveilFace-1 has 1, 050 images of
73 identities; and SurveilFace-2 contains 1, 709 images of
78 identities. Because faces in two SurveilFace datasets are
taken in uncontrolled real working environments, as demon-
strated in Fig. 3, they are contaminated by strong backlight,
motion blurs, extreme shadow conditions, or influences from
various viewpoints. Hence, they mimic the real-world con-
ditions and thus are suitable for evaluating the face aug-
mentation performance. The two SurveilFace sets are private

Fig. 3. Image samples of SurveilFace dataset. Here we show four extreme
conditions: (a) strong-backlight, (b) motion-blur, (c) extreme shadow, and
(d) unconstrained viewpoint.

data provided by a video surveillance provider. We will make
them publicly available after removing personal labels. Finally,
as for DotFAN’s capability of face frontalization, we follow
the general experiment design to evaluate its performance on
LFW and IJB-A.

In this paper, we demonstrate all face images in grayscale
because of two reasons. First, two SurveilFace datasets are
all grayscale, as is a general case in surveillance applications.
Second, DotFAN was trained partially on Multi-PIE in which
images have reddish color-drift, so the same color-drift may
occur on faces generated by DotFAN. Because such color-drift
does not alter the id-features, we do not demonstrate color
faces to avoid misunderstanding.

B. Implementation Details

Before training, we align the face images in the Multi-
PIE and CASIA by MTCNN [44]. Structurally, our FEM is
obtained by Resnet-50 pretained on MS-Celeb-1M [45], and
FSR is implemented by a MobileNet [38] pretained on CASIA.
To train DotFAN, each input face is resized to 112 × 112.
Both generator and discriminator exploit Adam optimizer [46]
with β1 = 0.5 and β2 = 0.999. The total number of training
iterations is 420, 000 with a batch-size of 28, and the number
of training epochs is 12. The learning rate is initially set to
be 10−4 and begins to decay after the 6-th training epoch.
Table I shows the network structures of DotFAN’s encoder (E),
generator (G), and discriminator (D).

C. Face Augmentation

Because DotFAN is a face augmentation network, the exper-
iments in this subsection are designed to show how face recog-
nition accuracy can be improved with DotFAN-augmented
training data. We adopt MobileFaceNet1 as our face recogni-
tion model rather than other state-of-the-arts (SOTAs) because
it is suitable to be deployed on mobile/embedded devices

1We use the third-party open-source implementation in
“https://github.com/Xiaoccer/MobileFaceNet_Pytorch”.
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TABLE I

ARCHITECTURES OF DOT-FAN’S ENCODER (E),
GENERATOR (G), AND DISCRIMINATOR (D)

(less than 1M parameters) for small/medium-size real-world
applications. Fig. 4 shows some augmented faces with shad-
ows assigned with four different illumination codes. Note that
all synthesized faces presented in this paper are produced by
the same DotFAN model without manually data-dependent
modifications.

To evaluate the effectiveness of face augmentation with
DotFAN, we perform data augmentation on the same dataset
by using DotFAN, FaceID-GAN, and StarGAN first. We then
train MobileFaceNet [47] on the different datasets augmented
by the three augmentation models to obtain the correspond-
ing face recognition models. Consequently, we compare the
accuracy of these MobileFaceNet models, each trained on an
augmented dataset, on LFW, SurveilFace-1 and SurvilFace-2,
respectively. StarGAN used in this experiment is trained on
Multi-PIE that is rich in illumination conditions; meanwhile,
FaceID-GAN is trained on CASIA to learn pose and expres-
sion representations.

Table II summarizes the results of this experiment set.
We interpret the results focusing on Sub-experiment(a).
In Sub-experiment(a) of Table II, we randomly select 3 faces
of each identity from CelebA to form the RAW training
set, namely Sub-CelebA(3), leading to about 30, 000 training
samples in raw Sub-CelebA(3). The MobileFaceNet trained
on raw Sub-CelebA(3) achieves a face verification accuracy
of 83.1% on LFW, a true accept rate (TAR) of 20.5% at false
accept rate (FAR) = 0.1% on SurveilFace-1, and a TAR of
18.0% at FAR = 0.1% on SurveilFace-2. After giving each
face in raw Sub-CelebA(3) a random facial attribute f̃ p and
a random illumination code f̃l to generate a new face and
thus to double the size of the training set via DotFAN, the
verification accuracy on LFW becomes 93.6%, and the TAR
values on SurveilFace datasets are all nearly doubled, as shown
in the row named DotFAN 1x. This shows DotFAN is effective
in face augmentation and outperforms StarGAN and FaceID-
GAN significantly. Furthermore, when we augment about
90, 000 additional faces to quadruple the size of training
set, i.e., DotFAN 3x, we have only a minor improvement
in verification accuracy compared to DotFAN 1x. This fact
reflects that the marginal benefit a model can extract from the
data diminishes as the number of samples increases when there
is information overlap among data, similar to that reported
in [48]. Consequently, Table II and Fig. 5 reveal the following
remarkable points.

• First, by integrating attribute controls on pose angle,
illuminating condition, and facial expression with
an identity-preserving design, DotFAN outperforms
StarGAN and FaceID-GAN in domain-transferred face
augmentation tasks.

• Second, DotFAN’s results obey the law of diminishing
marginal utility in Economics2 [49], as demonstrated in
all (DotFAN 1x, DotFAN 3x) data pairs. Take LFW-
experiment in Table II(a) for example. An additional

2This law primarily says that the marginal utility of each homogeneous unit
decreases as the supply of units increases, and vice versa.
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Fig. 4. Face augmentation examples (CelebA) containing augmented faces with 4 illumination conditions and 7 poses.

TABLE II

PERFORMANCE COMPARISON OF FACE RECOGNITION MODELS TRAINED ON THE DATASETS AUGMENTED BY FIVE DIFFERENT AUGMENTATION
MODELS, WHERE OUR DOTFAN IS TRAINED ON CASIA, MULTI-PIE, AND MS-CELEB-1M, AND SUB-CELEBA(x ) DENOTES

A SUBSET FORMED BY RANDOMLY SELECTING x IMAGES OF EACH FACE SUBJECT FROM CELEBA

one-unit consumption of training data (1x-augmentation)
brings an accuracy improvement, i.e., marginal utility,
of 93.6% − 83.1% = 10.5%; when two more additional
units (3x-augmentation) are given, the improvement of
accuracy is only 94.7% − 93.6% = 1.1%. Therefore,
a 1x augmentation is effective to enrich a small dataset,
whereas the performance improvement with DotFAN
3x augmentation is already saturated as excessive face
augmentation does not add much to the richness of face
data.

• Third, although the improvement in verification accu-
racy decreases as the size of raw training set increases,
DotFAN achieves a significant performance gain on

augmenting a small-size face training set, as demonstrated
in all (RAW, DotFAN 1x) data pairs.

• Table II shows that DotFAN 3x is always not as good as
DotFAN 1x, and there is a gap between Sub-CelebA (3)
DotFAN 1x and Sub-CelebA (13) RAW. Being a feature-
space augmentation scheme, DotFAN fixes the identity
feature fid extracted from an input face and manipulates
attribute codes, e.g. including lx , f p , and fl , to create
synthetic features f = [lx , fid , f p, fl ] that distribute
around the fixed identity feature of the source face for
face augmentation. That is, while real faces are those
capable of spanning the whole sample space, generated
faces are those locally dense around source data points.
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TABLE III

PERFORMANCE EVALUATION ON DOMAIN KNOWLEDGE TRANSFER, WHERE DOTFAN-CASIA (I.E., DOTFAN TRAINED ON
CASIA ONLY) IS APPLIED TO AUGMENT THE CASIA DATASET FOR DATA AUGMENTATION

Fig. 5. Comparison of face verification accuracy on LFW trained on different
augmented dataset. The horizontal spacing highlights the size of raw training
dataset sampled from CelebA.

Hence, generated faces may deteriorate the models, and
real images are still more effective than generated images
for performance improvement.

D. Ablation Study

We then verify the effect brought by each loss term. Fig. 6
depicts the faces generated by using different combinations
of loss terms. The top-most row shows faces generated with
the full generator loss LG in (9), whereas the remaining rows
respectively show synthetic results derived without one certain
loss term.

As shown in Fig. 6(b), without Lid , DotFAN fails to pre-
serve the identity information although other facial attributes
can be successfully retained. By contrast, without Lcls ,
DotFAN cannot control the illumination condition, and the
resulting faces all share the same shade (see Fig. 6(c)). These
two rows evidence that Lcls and Lid are indispensable in
DotFAN design. Moreover, Fig. 6(d) shows some unrealistic
faces, e.g., a rectangular-shaped ear in the frontalized face;
accordingly, Lrec is important for photo-realistic synthesis.
Finally, Figs. 6(e)–(f) show that Lpose and Lsym are com-
plementary to each other. As long as either of them func-
tions, DotFAN can generate faces of different face angles.

Fig. 6. Ablation study on loss terms. (a) Full loss. (b) w/o Lid , (c) w/o Lcls ,
(d) w/o Lrec , (e) w/o Lpose, and (f) w/o Lsym .

However, because Lsym is designed to learn only the mapping
relationship between +x◦ face and −x◦ face by ignoring the
background outside the face region, artifacts may occur in
the background region if Lsym works solely (see Fig. 6(e)).
Finally, Fig. 7 illustrate two other visual examples of our
ablation study.

E. Verification on Domain Knowledge Transfer

This subsection clarifies the doubt on how effective DotFAN
can be when training datasets and augmentation target are
highly overlapped. Because DotFAN is trained on three
datasets, i.e., CASIA, Multi-PIE, and MS-Celeb-1M, we con-
duct a face augmentation experiment on CASIA to simulate
such situation for clearing up this doubt.

Table III demonstrates the experimental results obtained
based on classifiers trained on the CASIA dataset augmented
by DotFAN-casia and the compared methods. Because the
raw CASIA dataset (494, 414 faces) is much richer than
the full CelebA (202, 599 faces), MobileFaceNet trained on
raw CASIA performs slightly better than those trained on
1x-augmented CelebA comprising 202, 599 source faces and
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Fig. 7. Two other examples of ablation study on loss terms. For each example, from top to bottom: i) Full loss, ii) w/o Lid , iii) w/o Lcls , iv) w/o Lrec,
v) w/o Lpose , and vi) w/o Lsym .

202, 599 augmented faces. As shown in Table III, DotFAN-
casia beats FaceID-GAN and Rotate-and-Render and performs
competitively with StarGAN and FFWM. This demonstrates
DotFAN is still effective under this situation that there are
overlaps between the source-domain and target-domain face
data, although the improvement here is less significant com-
pared with those shown in Table II. In sum, Tables II and III
jointly evidence that DotFAN effectively augments data via
domain knowledge transfer. For each experiment set shown
in Tables II and III, the data in RAW rows are used as the
comparison baseline, and MobileFaceNet and ResNet-101 are
trained with the same training configurations to guarantee the
fairness of evaluation.

Still, we can draw the following concluding remarks from
the IJB-A experiment sets shown in Tables II and III. First,
DotFAN (learning knowledge from multiple source domains)
well beats DotFAN-casia (learning knowledge from one single
domain). Although the augmented Sub-CelebA(13) contains
significantly fewer face samples (116, 659×2) than that of the
1x-augmented CASIA (494, 414 × 2), Table II(c) still shows
a better recognition accuracy on IJB-A than Table III(a). This
fact implies that DotFAN can augment reliable and diverse
face samples more effectively when it is trained on data
of multiple domains thoroughly. Second, we can notice that
in Table III all face GAN models, except for StaGAN that is
not specialized for face image translation, result in augmented
face datasets that deteriorate the recognition performance of
both MobileFaceNet and ResNet-101 on IJB-A. This is prob-
ably due to the various illumination conditions and different
kinds of shadows within the IJB-A dataset. Hence, only Star-
GAN, a general most multi-domain image translation model,
can render an input into faces with different lighting/shading
conditions while keeping other image contents almost unal-
tered. Third, however, even though in Table III DotFAN,
FaceID-GAN, FFWM, and Rotate-and-Render models do not
perform well on IJB-A, DotFAN still outperforms other three
and cause least degeneration of face recognizer’s ability due to

the contribution of DotFAN’s FEM module. This fact implies
that DotFAN is the most reliable identity-preserving face
synthesis model when i) the training dataset and ii) the to-
be-augmented dataset are not rich enough simultaneously.

F. Attribute-Decomposed Facial Representation

Fig. 8 show several synthesized faces to demonstrate the
capability of DotFAN’s attribute-decomposed facial represen-
tation. This experiment demonstrates that we can control
the face synthesis result by editing our face attribute code.
In Fig. 8, each row shows a sequence of faces. Each sequence
is obtained by modifying a code segment through linear
combination. For example, the aces in the first row are
synthesized by editing the face identity. Specifically, letting
the attribute codes of the input and the target images be
respectively fL = [ll

x , f l
id , f l

p, f l
l ] and fR = [lr

x , f r
id , f r

p , f r
l ],

the interpolated faces in the first row are generated by using an
edited code f̃ = [ll

x , f̃id , f l
p, f l

l ] with f̃id = α f l
id + (1−α) f r

id .
The first row illustrates that by fixing ll

x , f l
p , and f l

l , the face
identity varies smoothly with α while the other attributes
keep unchanged. The second and third rows show the face
interpolation results of controlled pose code f̃ p . Because both
pose information and expression information are encoded into
f p , these two sequences demonstrate that we can control the
face synthesis by simply editing only a small segment of f p .
Finally, the fourth row shows the faces synthesized according
to edited general feature l̃x . In this sequence, the bangs
and the eye-shadow (glasses) vary smoothly, but the identify
information, the lighting condition, and the pose/expression
remain unchanged.

G. Face Synthesis

Finally, we verify the efficacy of DotFAN through i) face
frontalization and ii) face rotation results. This experiment
set is designed for i) simulating the situation in which the
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Fig. 8. Attribute-decomposed facial representation. For each row, the morphing sequence is generated by editing an attribute code segment. For example,
in the first row, we edited the identity information by f̃id = α f input

id + (1 − α) f target
id with α ranging from 0.9 to 0.1. Other three rows show sequences

obtained by editing pose, expression, and general facial features.

Fig. 9. Face frontalization results (LFW) obtained by different methods.

face recognizer is pre-trained but is not re-trainable and ii)
proving that DotFAN can assist the recognizer by frontaliz-
ing/neutralizing a to-be-recognized face.

1) Face Frontalization: First, we verify if the identity
information extracted from a frontalized face, produced by
DotFAN, is of the same class as the identity of a given
source face. Following [7], we measure the performance
by using a face recognition model trained on MS-Celeb-
1M. Next, we conduct frontalization experiments on LFW
and CASIA, as the examples demonstrated in Fig. 9 and
Fig. 10. Particularly, Fig. 10 demonstrates that DotFAN, being
an identity-preserving face augmentation method based on
domain knowledge transfer, can retain the identity feature
best after face frontalization, even for cases of faces with
extreme pose angles. Also, Fig. 10 shows that StarGAN can
generate faces with diverse illumination conditions while keep-
ing other image contents unaltered, as we already discussed
in Sec. IV-E.

Fig. 10. Face frontalization results (CASIA) obtained by different methods.
From left to right: i) input, ii) StarGAN [10], iii) FaceID-GAN [7], iv) Rotate-
and-Render [20], v) FFWM [21], and vi) DotFAN.

Table IV shows the comparison of face verification results of
the frontalized faces. This experiment set validates that i) com-
pared with other methods, DotFAN achieves comparable visual
quality in face frontalization, ii) shadows can be effectively
removed by DotFAN, and iii) both DotFAN and DotFAN-casia
(i.e., a DotFAN trained only on CASIA dataset) outperform the
other methods in terms of verification accuracy, especially in
the experiment on IJB-A shown in Table IV(b), where DotFAN
reports a much better TAR, i.e., 89.3% on FAR@0.001 and
93.7% on FAR@0.01, than existing approaches. In addition,
DotFAN is designed for general face image augmentation,
and face frontalization is only a special case of face augmen-
tation. Hence, face frontailization is just an added value of
DotFAN that is not particularly optimized for this purpose
(i.e., no frontalization-based cost function is used to train
DotFAN). Therefore, it is reasonable that when DotFAN’s
training set is not rich enough, its frontalization performance
(i.e., experiment values of DotFAN-casia) might be slightly
inferior to FFWM that was particularly designed for face
frontalization, as shown in Table IV(a).
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Fig. 11. Synthesized faces for face samples from different datasets generated by DotFAN. The left-most column shows the inputs with random attributes
(e.g., poses, expressions, and motion blurs). The top-most row illustrates 3D templates with specific poses and expressions. To guarantee the identity information
of each synthetic face is observable, columns 3–11 show shadow-free results, and columns 2 and 12 show faces with shadows. (a) 3D templates, (b) CelebA,
(c) LFW, (d) CFP, and (e) SurveilFace.

TABLE IV

FACE VERIFICATION COMPARISON. (a) VERIFICATION ACCURACY ON

LFW. (b) TRUE-ACCEPT-RATE (TAR) OF VERIFICATIONS ON IJB-A.
NOTE THAT WHILE DOTFAN HAS AN FEM TRAINED ON

MS-CELEB-1M IN OUR DESIGN, THE FEM OF
DOTFAN-CASIA WAS TRAINED

ON CASIA DATASET

Note that the numerical values shown in Table IV are
those reported in FaceID-GAN paper. FaceID-GAN derives the
verification values by measuring the cosine distance between

the two id-features, extracted by FaceID-GAN’s classification
module (i.e., module-C) that was trained on the training data
and further used to generate synthetic faces, of an real image
and that of a synthesized image. Hence, the accuracy values
reported in FaceID-GAN form a theoretical upper-bound.
On the contrary, DotFAN is a face augmentation network,
and therefore we verify DotFAN by using a face recognizer,
e.g. MobileFaceNet, different from DotFAN’s FEM under the
assumption that users may use an arbitrary face recognition
network to recognize faces synthesized by DotFAN. Conse-
quently, we use a different face recognition network to impar-
tially claim DotFAN’s capability of “identity-preservation”.
This experiment fairly shows DotFAN performs better than
previous methods.

2) Face Rotation: Fig. 11 demonstrates DotFAN’s capabil-
ity in synthesizing faces of given attributes, including pose
angles, facial expressions, and shadows, while retaining the
associated identities. The source faces presented in the left-
most column in Fig. 11 come from four datasets, i.e., CelebA,
LFW, CFP [51], and SurveilFace. CelebA and LFW are
two widely-adopted face datasets; CFP contains images with
extreme pose angles, e.g., ±90◦; and, SurveilFace contains
faces of variant illumination conditions and faces affected by
motion-blurs. This experiment shows that DotFAN can stably
synthesize visually-pleasing face images based on 3DMM
parameters describing 3D templates.
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V. CONCLUSION

We proposed a Domain-transferred Face Augmentation net
(DotFAN) for generating a series of variants of an input
face image based on the knowledge of attribute-decomposed
face representation distilled from rich datasets. DotFAN is
designed in StarGAN’s style with two extra subnetworks
to learn separately the facial attribute codes and produce
a normalized face so that it can effectively generate face
images of various facial attributes while preserving identity of
synthetic images. Moreover, we proposed a pose-symmetric
loss through which DotFAN can synthesize a pair of pose-
symmetric face images directly at once. Extensive experiments
demonstrate the effectiveness of DotFAN in augmenting small-
size face datasets and improving their within-subject diversity.
As a result, a better face recognition model can be learned
from an enriched training set derived by DotFAN.
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