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Abstract— Viewing various stereo images under different view-
ing conditions has escalated the need for effective object-level
remapping techniques. In this paper, we propose a new object
spatial mapping scheme, which adjusts the depth and size of
the selected object to match user preference and viewing con-
ditions. Existing warping-based methods often distort the shape
of important objects or cannot faithfully adjust the depth/size
of the selected object due to improper warping such as local
rotations. In this paper, by explicitly reducing the transformation
freedom degree of warping, we propose an optimization model
based on axis-aligned warping for object spatial remapping. The
proposed axis-aligned warping based optimization model can
simultaneously adjust the depths and sizes of selected objects to
their target values without introducing severe shape distortions.
Moreover, we propose object consistency constraints to ensure
the size/shape of parts inside a selected object to be consistently
adjusted. Such constraints improve the size/shape adjustment
performance while remaining robust to some extent to incomplete
object extraction. Experimental results demonstrate that the
proposed method achieves high flexibility and effectiveness in
adjusting the size and depth of objects compared with existing
methods.

Index Terms— Object remapping, warping, stereoscopic image,
image editing, depth adjustment.

I. INTRODUCTION

STEREOSCOPIC 3D content is becoming mainstream in
consumer media, as it has been widely adopted by many

3D movies and virtual/augmented-reality (VR/AR) games. The
popularity of stereo images/videos calls for convenient visual
editing tools, which can manipulate stereo visual content such
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as object-level depth adjustment, object scaling, image manip-
ulation, and viewing experience enhancement, similar to those
for 2D images. Different from 2D images/videos, the 3D view-
ing experience of stereo images/videos is heavily affected
by viewing conditions, owing to the vergence-accommodation
conflicts in the human visual system (HVS) [1], [2]. For exam-
ple, as revealed in [3], [4], stereo visual contents produced
for a theater screen would look shallow and rather different
on a computer monitor, leading to unsatisfactory viewing
experience. Therefore, professional 3D makers use complex
softwares (e.g. Ocula [5]) or tools to edit the size and depth
for objects of interest in stereo images/videos to fit various
viewing conditions. However, this requires 3D movie makers
to have expertise on 3D post-production, while the editing
tools require high-quality segmentation, inpainting, or camera
calibration which are computationally expensive. Therefore,
various viewing conditions and viewer preferences posing the
need of efficient and convenient editing methods for adjusting
the depth/size at the object level.

With the development of interactive image editing tools,
viewers can conveniently select and extract objects-of-interest
from a stereo image, and then perform object-level editing and
manipulation. In this paper, we focus on object remapping,
which aims to adjust the depth and size of a selected object
to their target values in a stereo image pair. Stereo object
remapping has been studied for years. Compared with solely
adjusting the depth, jointly adjusting the size and depth of
an object is more challenging in two aspects. (1) Since
both size and depth adjustment would alter the locations of
regions in the object, simultaneous depth and size adjustments
often severely distort grids, leading to noticeable shape dis-
tortions. (2) Since an object usually involves multiple grids,
the shapes/sizes of grids associated with an object should be
consistently adjusted; otherwise, the object will be deformed.

Among the existing object remapping works, Lei et al. [6]
was the first to introduce non-uniform warping into object
remapping, where the depth and size of a selected object
are adjusted by non-uniformly warping the grids associated
with the object and its surrounding neighbors. Thanks to the
continuity nature of grid warping, this method changes the
depth of an object without generating holes. The method,
however, tends to inconsistently adjust the depth and size of an
object, thereby introducing visually annoying shape distortions
as illustrated in Fig. 1. Such shape distortions not only degrade
the fidelity of visual content, but also negatively affect depth
perception.

To address the above issues, we propose a warping-based
object remapping method for faithful object-level size and
depth adjustment in a stereo image while avoiding noticeable
shape distortions. Specifically, we adopt axis-aligned grid
warping to effectively mitigate the shape and depth distortions
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Fig. 1. Examples of object remapping methods. From top to bottom, the left-view image, right-view image, and depth map. The sizes and depths of the
fox and rabbit (from movie Zootopia) are decreased to 89% and by 4cm, respectively. VDM [6] introduces noticeable shape distortions on the door in the
left-view image and the face of the rabbit in the right-view image. VDM also fails to faithfully adjust the size/depth of the rabbit. Our method faithfully
adjusts the sizes and depths of the two objects without introducing noticeable shape distortions.

caused by the high degree of freedom of conventional grid
warping schemes [6]. On top of the proposed axis-aligned
warping, we build an optimization model and derive efficient
constraints for object resizing, depth adjustment, shape preser-
vation, and object consistency. Moreover, our optimization
model adjusts the size and depth of a selected object via
warping unimportant regions of the entire stereo image, rather
than the local neighboring regions surrounding the object
suggested by existing methods [6], since the HVS tends to be
relatively insensitive to distortions in unimportant regions [7].

Our contributions are listed as follows:
• To the best of our knowledge, we are among the first

to introduce axis-aligned warping to object remapping.
Thanks to its reduced degree of freedom of grid warping,
the proposed axis-aligned warping effectively mitigates
shape distortions, while faithfully adjusting the depth and
size.

• Our method mitigates the distortions of object boundary
regions surrounding selected objects by propagating the
distortions to unimportant regions in the entire stereo
image. This enables further shape and size adjustment.

• Our object consistency constraints consistently warp grids
associated with a selected object, making them robust to
imperfect object extraction to some extent.

• Our method offers the flexibility of setting depth adjust-
ment and object resizing separately, making it easier to
meet multiple requirements for object remapping simul-
taneously.

Compared with its preliminary conference version [8],
this paper has been significantly expanded in three aspects.
First, we clarify why the high-degree-of-freedom grid warping
proposed in [6] can significantly distort important/structural
objects. Second, new object consistency constraints are derived
to ensure grid warping consistency for an object. Third,
more experiments and a user study are conducted along
with insightful analyses on the evaluations. With these newly
added components, the superiority of the proposed method is
thoroughly validated.

The rest of our paper is organized as follows. Sec. II surveys
related work on object remapping as well as warping-based

editing methods. Then, we formulate the problem of object
remapping in Sec. III. The object remapping method is
proposed in Sec. IV. We demonstrate experimental results
in Sec.V.

II. RELATED WORK

A. Image and Video Warping

Warping has been widely-adopted in many image/video
editing areas including image/video retargeting, video sta-
bilization, image distortion correction, image morphing,
etc. Image/video retargeting is to adapt a 2D image/video
to various sizes or aspect ratios. Many warping-based
methods [9]–[14] were proposed for 2D image/video retar-
geting. To maximize viewing experience, these methods pre-
serve the shapes of important objects while stretching or
shrinking less important regions via non-uniformly warp-
ing pixels/regions. Since the HVS tends to be relatively
insensitive to the shape distortions of unimportant regions,
these warping-based methods achieve better perceptual qual-
ity than uniform scaling. Inspired by these 2D image and
video retargeting methods, warping-based methods have been
explored for stereo image/video retargeting. Compared with
2D image/video retargeting, stereo image/video retarget-
ing methods [15]–[21] usually resort to additional depth-
preserving constraints to preserve scene depth. Specifically,
the depth-preserving constraints proposed in [15]–[17] main-
tain depth by encouraging the disparity value of a few cor-
respondences in the retargeted image to be equal to their
original values. Besides depth preservation, Shao et al. [22]
further consider visual comfort for stereo image retargeting.
Chai et al. [23] propose a hybrid method which combines
warping and cropping to generate thumbnail for stereo images.

Video stabilization aims to remove undesired camera shake
and jitters to improve viewing experience. Warping-based
methods [24]–[26] were proposed for stabilizing videos. For
example, Liu et al. [24] proposed a content-preserving warping
for stereo video stabilization. Tang et al. [26] devised a
3D spherical warping model for 360◦ video stabilization.
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Fig. 2. Illustration of grid warping of depth remapping methods in Fig. 1. From top to bottom, we show the grids of left-view image and the grids of
right-view image. Because VDM adopts a high-degree-freedom grid warping to adjust the size/depth, most grids in the background remain unchanged and
only neighboring grids around the objects are shrunk/stretched. In contrast, with the proposed axis-aligned warping, our methods achieve significantly better
remapping (see Fig. 1) by warping grids in unimportant regions of the image to have more room for depth/size adjustment.

Some works [27]–[29] also use content-preserving warping
for stereo image stitching.

Recently, warping was introduced into aesthetic-driven
stereo image recomposition. Aesthetic-driven stereo image
recomposition is to improve the composition of the stereo
image, such that the aesthetic quality of the image is enhanced.
Islam et al. [30] proposed a hybrid method for aesthetic-driven
stereo image recomposition. This method [30] first segments
a stereo image into foreground and background objects, and
then the segmented objects are pasted through warping and
inpainting with the guidance of aesthetic rules. Chai et al. [31]
proposed a novel warping-based image recomposition for
stereo images [31]. By explicitly considering the trade-off
between information loss and aesthetic quality as well as depth
adaption, method [31] generates high-quality recomposed
stereo images. To ensure the aesthetic quality of recomposed
stereo images, these methods [30], [31] adopt computationally
complex algorithms such as inpainting or triangle-mesh-based
optimization.

B. Depth Remapping

One class of depth remapping is view synthesis-based
methods [32]–[35], which globally adjust the depth of a stereo
image by synthesizing new views from the original stereo
image pair. For example, the methods in [32], [33], [35]
first estimate the disparity map from the original stereo image
pair. Then, the depth map of a new viewpoint is estimated
based on camera parameters. With the estimated depth map,
the new-view image is synthesized from the original stereo
images. View synthesis-based methods, however, rely on cam-
era parameters, which may not be readily available. More-
over, these methods often yield disoccluded regions that need
inpainting to fill in.

As indicated in [1]–[3], [36], due to the vergence-
accommodation conflicts in the HVS, improper depth values
could result in an uncomfortable viewing experience. The
methods in [37], [38] map the disparity/depth range of an
entire stereo image/video into the so called “comfort zone.”
Lang et al. [4] is the first to propose remapping the depth range
through warping. Yan et al. [39] proposed a warping-based
method for stereo video, where additional constraints are
devised to ensure temporal consistency. In contrast to view
synthesis-based methods, the methods proposed in [4], [39]

do not need camera parameters nor inpainting of disoccluded
regions.

C. Object Remapping

Different from depth remapping which adjusts the depth
range of an entire image, object remapping aims to adjust
the depths and sizes of selected objects. One class of object
remapping is shifting-based methods [40], [41], which first
employ a segmentation tool to extract a selected object, and
then shift the object such that its depth is altered to a target
value. These methods, however, often generate disoccluded
holes that require inpainting.

Recently, warping-based methods were proposed for object
remapping in stereo images. Specifically, by dividing the stereo
image into grids, the method proposed in [6] adjusts the depth
and size of a selected object by non-uniformly warping neigh-
boring unimportant regions surrounding the object based on
high-degree-of-freedom warping functions. Without the need
to shift objects, warping-based methods do not generate holes.
However, they often introduce visually annoying depth/shape
distortions in stereo images, as illustrated in Fig. 2. These
distortions mainly originate as byproducts of the high-degree-
of-freedom warping functions and the limited space for object
remapping gained from warping the neighboring unimportant
regions surrounding a selected object.

III. PROBLEM FORMULATION

Given an original stereo image pair consisting of a left-view
image and a right-view image, our object remapping method
aims to generate a high-quality stereo image pair, in which the
depths and sizes of selected objects are altered to their desired
values.

We tackle the object remapping problem via grid warping.
As mentioned earlier, existing grid warping-based remapping
methods often cause noticeable shape distortions in remapped
stereo images (see Fig. 1 and Fig. 3), when adjusting the
depth/size of a selected object. Such shape distortions can
be visually annoying, especially when noticeable distortions
appear on important objects. Besides introducing annoying
visual artifacts, shape distortions may also confuse depth
perception, as revealed in the literature [42], [43]. Specifically,
the HVS may incorrectly perceive the depth of an object
with severe shape distortions, leading to stereo artifacts like
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Fig. 3. Illustration of object remapping of (a) the original stereo image to adjust the depth/size of (b) the selected eyeshadow box with an accurate segmentation
mask to (c) the target values. (d) VDM distorts both the shape and the depth (disparity) of the eyeshadow box. (e) Our method faithfully preserves the shape
of the eyeshadow box while well adjusting its disparity to the target value. From top to bottom, the left-view image, right-view image and disparity map.

Fig. 4. Illustration of object remapping with inaccurate object extraction,
where (a) the top-left part of the object is missing compared to the accurate
object extraction in Fig. 3. (b) The method proposed in [6] leads to a distorted
depth map due to inconsistent warping between the left-view and right-view
images. (c) Despite the inaccurate object extraction, our method does not
degrade the quality of depth remapping but achieves comparable performance
with that using accurate object extraction in Fig. 3. From top to bottom: the
left-view image, right-view image and disparity map.

retinal rivalry. Furthermore, viewers tend to fixate on important
objects and perceive their depths to understand the 3D scene
of a stereo image pair. If one cannot properly perceive the
depths of important objects, he/she would suffer from an
uncomfortable viewing experience that may lead to headaches
and nausea. Hence, we aim to mitigate shape distortions on
important objects in a stereo image pair, while faithfully
adjusting their sizes and depths.

We consider an additional requirement that the regions
associated with a selected object should be consistently warped
to avoid the object shape deformation, which was never taken
into account by existing methods to the best of our knowledge.
Moreover, when editing an object in an image, the object
may not be accurately extracted from the image using an
automatic object segmentation tool, as illustrated in Fig. 4.
This inaccurate object extraction issue will degrade the visual
quality of remapped stereo images as well. In the example
shown in Fig. 4, since the top-left region in the eyeshadow
box is not well extracted, the method in [6] inconsistently

warps the corresponding regions of the object, leading to a
distorted depth map. In contrast, our method can tolerate this
inaccurate object extraction while remapping the object.

To meet the above requirements, we formulate object remap-
ping as an optimization problem aiming at (1) preserving the
shapes of important objects while avoiding noticeable shape
distortions on unimportant objects, (2) faithfully adjusting the
depths and sizes of selected objects to their target values, and
(3) consistently warping the grids associated with a selected
object, while mitigating the negative effect of inaccurate object
extraction.

Let I = {I L , I R} denote a stereo image pair, where I z,
z ∈ {L, R} represents the z-view image. Our objective is to
find the optimal warping functions of grids that minimize the
following energy function:

E = (E S + λD · E D + λO · E O + λC · EC) (1)

where E S is the energy for shape preservation, E D the
depth adjustment energy measured by the deviation from the
remapped depths of selected objects to their target values,
E O the object resizing energy measured by the deviation from
the remapped sizes of selected objects to their target values,
EC the object consistency energy, and λD , λO and λC the
weighting factors for the depth energy, size energy, and object
consistency, respectively.

The optimization of object remapping is challenging,
since the optimal warping functions need to fulfill multiple
requirements simultaneously, which often causes conflicts
among the requirements. Recent stereo image/video retarget-
ing works [22], [44] indicate that the HVS can tolerate depth
distortions on unimportant regions to some extent. Inspired
by these works, our method allows slight depth distortions
on unimportant regions to provide enough room to accommo-
date the adjustments on selected objects. Thus, our method
allow grids on unimportant regions to be stretched/shrunk.
Moreover, we adopt axis-aligned warping [45], [46] for
object remapping, which enforces the shapes of warped grids
to be rectangular so as to mitigate shape distortion while
performing object size and depth adjustments. On top of
the axis-aligned warping, we formulate the shape-preserving
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Fig. 5. Proposed object remapping framework. Our method first divides a stereo image pair into grids. Then, an optimization model is derived to find optimal
warped grids, where resizing constraints, depth adjustment constraints, shape-preserving constraints, and object consistency constraints are built.

energy, object-resizing energy, depth adjustment energy, and
object consistency energy, respectively, in Sec. IV.

IV. PROPOSED OBJECT REMAPPING FRAMEWORK

Our method consists of four steps. First, we extract selected
objects via an automatic or interactive object segmenta-
tion tool, and then specify the target depths and sizes for
the selected objects. Second, we divide the left-view and
right-view images of a stereo image pair into grid meshes.
Third, we formulate an optimization model over the grid
meshes. In the model, size/depth adjustment constraints are
derived to adjust the sizes/depths of the selected objects while
preserving that of the remaining non-selected objects. We also
impose shape-preserving constraints and object consistency
constraints to avoid noticeable shape distortions in unimpor-
tant regions while reducing the negative effects caused by
inaccurate object extraction. Finally, we solve the proposed
optimization problem to obtain optimal warped grids for the
stereo image, and then use the warped grids to generate the
edited stereo image pair with depth-remapped objects.

In the following subsections, we first discuss what kind of
grid transformation is suitable for object remapping. We then
elaborate on our object remapping model including constraints
for resizing, depth adjustment, shape preservation, and object
consistency.

A. Grid Warping for Object Remapping

The key challenge of object remapping in a stereo image
pair is to simultaneously fulfill multiple requirements includ-
ing shape preservation, resizing and depth adjustment for
selected objects, which would usually compete for limited
resources in the image. For example, resizing constraints
can easily conflict with shape-preserving constraints and
depth-adjustment constraints. When such conflicts occur, exist-
ing methods (e.g., [6]) usually tend to deform the shapes of
objects or cannot correctly adjust the depths/sizes of selected
objects to their target values.

We here investigate why non-uniform warping adopted
by existing methods (e.g., [6]) causes conflicts among the
constraints for object remapping. Specifically, non-uniform
warping adopted by method [6], referred to as “vertex warp-
ing”, allows a grid to be an arbitrary quadrilateral. Such vertex
warping attempts to adjust the size of an object by directly
imposing constraints on the vertices. That is, the lengths of
grid edges between two neighboring vertices are constrained to
be identical to the target ones. However, vertex warping needs
to constrain four vertices of individual grids, each containing
two variables (i.e., the x and y coordinates of a vertex), thereby

Fig. 6. Illustration of enlarging (a) the original grid by 60% to obtain the
warped grids by (b) vertex warping and (c) axis-aligned warping, respectively.
In (b), although each edge between two neighboring vertices is increased
by 60%, the grid height wrongly decreased to 52% while the grid width
increases to 300%. In contrast, the grid width and height are properly increased
by 60% in (c).

constituting a large solution space. As a result, owing to such
a high degree of transformation freedom with vertex warping,
the resizing constraints together with the depth adjustment
constraints often stretch and rotate grid edges, leading to shape
distortions of objects as illustrated in Fig. 6. In addition, the
size (height and width) of an object involving warped grids
often cannot be effectively adjusted, although the edge lengths
in the warped grids are constrained to be identical to their
target lengths (see Fig. 6).

To address this problem, we propose to reduce the degree
of freedom of grid warping, such that our object remap-
ping model can meet multiple requirements simultaneously.
We hence adopt axis-aligned warping [45], [46], which has
been proven to be effective and efficient in 2D image/video
retargeting [11], [45], especially for 2D images containing
structured objects. Axis-aligned warping restricts the shape of
warped grids to be rectangular, which explicitly eliminates the
rotation of grid edges. Thus, with a largely reduced degree
of freedom of grid warping, axis-aligned warping is much
easier to control compared to vertex warping. Moreover, since
rotation is eliminated, axis-aligned warping can properly adjust
the size of objects while preserving the structure of objects.

B. Shape Preservation

Traditional object remapping schemes warp the grids cov-
ering a selected object, while preserving the locations of
grids in the unselected regions (except for the neighbors
surrounding the selected object). However, since unselected
regions usually occupy a large portion in a stereo image,
preserving the locations of grids on these regions signifi-
cantly limits the zoom for size/depth adjustments of selected
objects, making the adjustments unsatisfactory. To address the
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problem, our method allows all grids to be warped, such
that more resources can be utilized for object remapping.
Nevertheless, significant warping of grids covering important
content may introduce visually annoying shape distortions or
largely alter object positions. Moreover, object-resizing and
depth-adjustment constraints may also distort the shapes of
important objects. To address the two issues, we build two
sets of shape preservation constraints corresponding to the
following energy:

E S = E S
1 + E S

2 (2)

where E S
1 is the set of the constraints for preserving the shape

of important objects, and E S
2 for avoiding large shifting of

object position.
To preserve the shapes of important objects, our method

resorts to adaptive warping of grids by their impor-
tance, inspired by shape-preserving constraints developed in
image/video retargeting methods [11], [14], [17], [19], [46].
We define the shape preservation energy as the weighted
sum of all grids’ distortions, each being measured by the
discrepancy between its original aspect ratio and that of its
warped version, since the shape of a warped grid is constrained
to be rectangular. As a result, we simply find the optimal set
of heights and widths of warped grids rather than the grids’
vertices, since grids at the same row/column have the same
height/width. Given a stereo image pair containing left-view
image I L and right-view image I R , the shape preservation
energy is defined as follows:

E S
1 =

∑

z∈{L ,R}

∑

i=1

∑

j=1

(wz
i, j · h̃z

i, j − hz
i, j · w̃z

i, j )
2 · sz

i, j , (3)

where wz
i, j and hz

i, j (z ∈ L, R) respectively denote the original

width and height of grid gz
i, j , w̃z

i, j and h̃z
i, j are the width and

height of the warped grid, respectively, and sz
i, j represents the

importance of grid gz
i, j .

Since our method allows all grids to be warped,
the grids in the left/right boundary regions may be seri-
ously shrunk/stretched. This can globally alter object locations
largely along the horizontal direction. To avoid this object-shift
artifact, we constrain the left/right-boundary grids not to sig-
nificantly deviate from their original x-coordinates by defining
the following boundary deviation energy:

E S
2 =

∑

gz
k∈B

(x z
k − x̃ z

k )
2 · sz

i, j (4)

where x z
k and x̃ z

k are the x-coordinates of the top-left vertex
in the original grid and its warped version, respectively. B is
the set containing the left/right-boundary grids of the stereo
image pair.

1) Importance Map: Given a grid gz
i, j , it importance sz

i, j is
computed by averaging importance values of pixels belonging
to gz

i, j , where the importance of each pixel is measured
by importance map. We calculate the importance map as
a weighted summation of the object map, disparity-based
saliency map, and image-based saliency map. Specifically,
the image-based saliency map and disparity-based saliency
map are calculated by employing the methods proposed in [4],
[47], [48]. For the object map, we assume the grids involved
in the selected objects are the most important ones. Therefore,
we build an object map o from the selected objects. That is,

if a pixel pi, j belongs to the selected objects, its corresponding
value oi, j = 1 in the object map; otherwise oi, j = 0.

C. Object Resizing

We derive constraints to correctly resize selected objects
to their target sizes. Thanks to the axis-aligned warping,
our method requires simpler constraints for object resizing.
In particular, since the warped grids remain rectangular, we can
simply constrain the heights of warped grids to be as close as
the target values as possible. Since the aspect ratio of a warped
grid is constrained to be same as the original value, the grid
width would proportionally increase (or decrease) with the
grid height. Hence, we propose the following constraints to
encourage grids covering the selected objects to undergo the
same size change κ :

E O =
∑

z∈{L ,R}

∑

gz
i, j ∈θ

(h̃z
i, j − κ · hz

i, j )
2 · si, j (5)

where θ is the set containing grids which cover the selected
objects, si, j indicates the importance level of grid gi, j , and
κ is the scaling factor of the selected objects. Note, we can
also build the object resizing constraints in terms of grid width
instead.

Suppose both I L and I R are divided by Nr × Nc grids,
where Nr and Nc denote the row and column number of the
grid division, respectively. The number of variables involved
in our resizing constraints is not greater than Nr , whereas
that for resizing involved in vertex warping-based methods is
2 × Nr × Nc .

1) Specifying Object Size: In the method proposed in [6],
a selected object is restricted to be resized along with its depth
change in the remapped stereo image. However, we argue that
it is not necessary to resize an object along with its depth
change, as long as the resizing does not conflict with other cues
such as horizontal disparity cues and perspective cues. For
example, for stereo images containing few perspective cues
(see Fig. 3 for example), the object size can be decoupled from
its depth. In such cases, independently adjusting the depth and
size of an object (e.g., maintaining the depth of an object
while shrinking it) usually does not cause visual conflict or
hurt viewing experience.

Therefore, compared to existing methods, our method
allows to set depth change and size change separately. Conse-
quently, the target size of an object can be specified in several
manners. For example, our method allows one to specify the
target object size according to his/her preference or demand.
Moreover, the target size of an object can also be determined
along with its depth change as suggested in [6].

D. Depth Adjustment

We impose two constraints for depth adjustment. The first is
to adjust the horizontal disparities of a warped stereo image to
the target values. The second is to eliminate nonzero vertical
disparities for the warped stereo image.

1) Target Horizontal Disparity: Given an object in a 3D
scene, as illustrated in Fig. 7, its depth with respect to the
display screen increases with its horizontal disparity between
the left-view and right-view images. Hence, we adjust the
depth via controlling the horizontal disparities of selected
control points. To this end, we first formulate the relationship
between the target depth of an object and the corresponding
horizontal disparity on the display screen. Given an object and
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Fig. 7. Relationship between depth and disparity.

the viewing condition, let D denote the object’s original depth
in the 3D scene constructed from the input stereo image pair,
and D + �D be the target depth, where �D is the amount
of depth adjustment. According to [49], we can calculate the
target horizontal disparity from the target depth as follows:

d̃ = − (D + �D) · e

Z − D − �D
, (6)

where Z is the viewing distance from the viewer to the display
screen, and e is the interocular distance between the pupils of
the viewer’s eyes.

2) Horizontal Disparity Adjustment: To fulfill the target
depth requirement, we adjust the horizontal disparities of a
few correspondences. We refer to these correspondences as
control point pairs. Let fk = { f L

k , f R
k } be the k-th control

point pair in the left and right images, where f L
k and f R

k
correspond to each other between the left and right images of
the stereo image pair. We constrain the disparity values of all
control points in the warped stereo image pair to match the
target disparity values by using the following energy function
of disparity deviation:

E D =
∑

k

Ed (f̃k, d̃k) · τk, (7)

where d̃k is the target disparity for control point pair fk ,
τk is the weight factor, which is set larger for those control
points that are inside the selected objects or near the left/right
boundary of the input stereo image. E D(fk, d̃k) is the deviation
from the disparity of fk in the warped stereo image to its target
value:

E D(fk, d̃k) = (x̃ R
k − x̃ L

k − d̃k)
2, (8)

where x̃ z
k (z ∈ L, R) is the x-coordinate of control point fk in

warped image Ĩ z .
We further represent x̃ z

k in Eq. 8 in terms of warped grids’

width, such that E D(x̃k, d̃k) adjusts the warped grids to match
the target disparity values. Assuming that f z

k lies in grid gi,n+1,
the corresponding x-coordinate of f z

k in the warped image is
determined as:

x̃ z
k =

n∑

j=1

w̃z
i, j + αz

k · w̃z
i,n+1, (9)

where wz
i, j and w̃z

i, j are the width of grid gz
i, j and its warped

version, respectively, αz
k is a constant value calculated from the

original grid width and x-coordinate xz
k of control point fk in

original image Ĩ z as follows:

αz
k = x z

k − ∑n
j=1 wz

i, j

wz
i,n+1

(10)

3) Vertical Disparity Elimination: Object resizing in
Sec. IV-C may change the heights of grids and therefore
introduce the y-coordinate differences of correspondences
between the left-view and right-view images, thereby leading
to nonzero vertical disparity. However, nonzero vertical dispar-
ities can often cause an unconformable viewing experience,
e.g., eye fatigue or diplopia. To eliminate nonzero vertical
disparities for grid warping, we constrain the grids in the same
row of the left/right-view images to have the same height:

h̃ L
i, j = h̃ R

i, j (11)

E. Object Consistency Constraints

To ensure the parts of a selected object are consistently
scaled, all grids involved in the selected object (termed “object
grids”) need to be consistently warped. Moreover, the selected
object may be imprecisely segmented, where some parts of
the object are not extracted. As a result, these non-extracted
parts may be inconsistently warped with the correctly extracted
parts of the object, thereby leading to noticeable object shape
distortion. Hence, our method also aims to tolerate imprecise
object extraction to some extent. To this end, we build two
sets of object consistency constraints.

The first set of object consistency constraints is designed to
encourage neighboring grids involved in a selected object to
be warped consistently. Specifically, given an object grid gz

i, j ,
we constrain gz

i, j and its neighboring grids to undergo con-
sistent warping along the vertical and horizontal directions,
respectively:

EC = EC
h + EC

w (12)

where

EC
h =

∑

z∈{L ,R}

∑

gz
i, j ∈θ,gz

i+1, j ∈θ

(h̃z
i, j − h̃z

i+1, j )
2

EC
w =

∑

z∈{L ,R}

∑

gz
i, j ∈θ,gz

i, j+1∈v

(w̃z
i, j − w̃z

i, j+1)
2, (13)

where θ is the set containing grids which cover the selected
objects.

As mentioned above, for object grid gz
i, j that is not extracted

due to imprecise segmentation, the inconsistency between the
warping on this grid and those on the correctly extracted object
grids usually results in object shape and depth deformation.
To mitigate the deformation, we devise the following set
of object consistency constraints to constrain the warping
discrepancies between gz

i, j and its neighboring grids according
to the distance from the object center to the center of gz

i, j .
In other words, the farther from the center of the selected
object to the center of gz

i, j , the higher the warping difference
is allowed:

EC
h =

∑

z∈{L ,R}

∑

gz
i, j /∈θ

∑

m

(h̃z
i, j − h̃z

i+m, j )
2 · μz,h

i, j

EC
w =

∑

z∈{L ,R}

∑

gz
i, j /∈θ

∑

m

(w̃z
i, j − w̃z

i, j+m)2 · μz,w
i, j , (14)

where h̃z
i+m is the height of warped grid gz

i+m, j , w̃z
j+m is

the width of warped grid gz
i, j+m , gz

i+m, j and gz
i, j+m are the

neighbor grids of gz
i, j , μz,h

i, j and μz,w
i, j are weight factors to
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control the warping difference between neighboring girds.
Inspired by a data propagation algorithm for colorization [50],
we determine μz,h

i, j and μz,w
i, j by the following Gaussian smooth

function:

μz,h
i, j = κh · 1

2πσ
e
− (yz

i, j −yo)2

σ2 ,

μz,w
i, j = κw · 1

2πσ
e
− (xz

i, j −xo)2

σ2 (15)

where σ denotes the standard deviation of Gaussian function,
(xo, yo) is the center of the selected object, (xz

i, j , yz
i, j ) is the

center of grid gz
i, j , and κh and κw is a linear scaling function

of original grid height hz
i, j and grid width wz

i, j , respectively.
The object consistency constraints can help tolerate

imprecise object extraction to some extent. As illustrated
in Fig. 4, thanks to the proposed object consistency constraints,
the top-left part of the box, that is unextracted in the segmen-
tation mask, undergoes consistent warping with neighboring
object grids correctly extracted in the segmentation mask,
thereby effectively mitigating the shape and depth distortions
caused by inconsistent warping with VDM [6].

F. Optimization

To find the optimal warped grids for object remapping,
we minimize the total objective functions in Eq. (1) subject to
a set of boundary constraints, where the terms in Eq. (1) are
defined in Eq. (3), (4), (5), (8), (13), and (14), respectively, and
the boundary constraints follow that in [11], [14]. We also set
the lower bound of h̃z

i, j and w̃z
i, j to be h̃z

i, j ≥ 1 and w̃z
i, j ≥ 1

to prevent them from being negative. Such optimization model
is kind of quadratic programming, since all the objective
terms are quadratic ones and the boundary constraints are
linear equalities. We can employ the interior points, trust-
region-reflective or active-set algorithms to solve the quadratic
programming problem [51]. We adopt the active-set algorithm
in this paper.

V. EXPERIMENTAL RESULTS

Dataset: We evaluate our method on the Flickr dataset [52],
which has been widely used by recent stereo image editing
methods (e.g., [17], [18], [22]). We also collect several stereo
images from commercial 3D movies and the dataset used
in [30], [31] to evaluate the effectiveness of our method
on stereo movie images. The test stereo images are selected
by considering two factors. (1) We choose those types and
scenes of stereo images widely appearing in commercial
3D moves. We hence pick stereo images containing human in
indoor or outdoor scenes, involving various representative shot
types including close-up, close, and full ones. (2) We select
challenging test images for warping-based object remapping
methods. We collect stereo images containing at least an object
which occupies a large area of the whole images at various
depths. Such large objects are challenging for adjusting the
depth and size while avoiding noticeable distortions.

Evaluation Criteria: We evaluate the performance of object
remapping in terms of shape preservation, size adjustment,
and depth adjustment. To evaluate the performance of depth
adjustment, we first employ the disparity estimation algorithm
proposed in [53] to estimate the disparity map for a stereo
image pair. Then, we calculate the depth map of the stereo

image from its corresponding disparity map as follows:

D = e · Z

e − d
(16)

where the viewing distance Z = 500 mm and the interocular
distance (IOD) e = 60 mm in our experiments.

The objects selected can be extracted by interactive object
segmentation tools or manual annotation tools. In this work,
we employ GrabCut [54], which has been widely used
in image editing [17], [55] for interactive object extrac-
tion. To reduce the manual effort needed for this process
(i.e., marking the foreground/background), we allow the object
to be imprecisely extracted to some extent like in Fig. 15.
We also evaluate the impact of such imprecise segmentation on
depth remapping performance with our method. We compare
our method with VDM in [6], the most recent warping-based
object remapping method, and the shifting-based method
(SDM) in [41].

A. Comparisons

Fig. 8 shows the comparison on Thor that contains an indoor
scene involving a person and structural background. We first
evaluate the performance of our method with increasing depth
of the object.1 The object size is also adjusted along with
its depth change in the target stereo image, following the
experimental setting of VDM. That is, the depth of the man
is increased by 3.5cm (i.e. �D = 3.5cm), and its size is
increased by 6% (i.e. κ = 1 + 6% = 1.06%).

Our results show that, with depth remapping, SDM cannot
adjust the size of the man to the target value. Moreover,
since SDM is shift-based, it introduces holes in the remapped
image, which need to be subsequently completed using image
inpainting algorithms. In contrast, VDM outperforms SDM
in size adjustment, since VDM takes object resizing into
account. However, VDM distorts the head of the man because
the warping function employed by VDM is of high freedom
degree, which rotates grids of the head when imposing the
resizing and depth adjustment constraints. Moreover, due to
such rotations, VDM does not faithfully adjust the size of the
man to the target value. In contrast, thanks to the significantly
reduced degree of freedom of grid warping with axis-aligned
warping, our method can faithfully alter the sizes and depths
of objects as desired without introducing visually noticeable
shape distortions.

Fig. 9 compares the performance of VDM, SDM, and our
method on an outdoor stereo image, which contains a man and
structured objects including trees and buildings. We increase
the depth of the man and adjust his size according to the
depth change, following the experimental setting of VDM. The
result shows that SDM cannot alter the size of the man to the
target value, while VDM introduces severe shape and depth
distortions on the object. This is because VDM only allows
a few regions surrounding the man to be shrunk/stretched,
which does not provide enough room for adjusting the size
and depth of the man to the target value under the resizing
and depth adjustment constraints. Consequently, the man’s
shoulder and head are distorted. In contrast, our method allows
all unimportant regions to be warped to consider the size and
depth adjustment constraints more than VDM. Therefore, our

1Increasing the depth is to make the object closer to the viewer, and vice
versa.
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Fig. 8. Comparison of three object remapping methods on Thor in movie Thor, where the size and depth of the man is increased. From top to bottom: the
left-view image, the right-view image, and the depth map. The 2nd column shows the selected object where its size is adjusted to a target size in the 1st and
2nd row, and its ground-truth depth is showed in the 3rd row.

Fig. 9. Comparison of three object remapping methods on man in movie The Avengers, where the size and depth of the man is increased. From top to
bottom: the left-view image, right view image, the disparity map. The 2nd column shows the selected object where its size is adjusted to a target size in the
1st and 2nd row, and its ground-truth depth is showed in the 3rd row.

method faithfully adjusts the depth and size of the selected
object while preserving the shape of important objects well.

Fig. 10 compares our method on People taken from the
Flickr dataset [56], which is challenging for depth remapping.
People contains multiple salient objects and structured objects
(e.g., the car and house). Such visual content can be easily
distorted by improper warping. In the experiment, the depth
of the selected man is increased by 3cm, and its size remains
unchanged. The result shows that VDM [6] causes both
depth and shape distortions on the selected person. This is
because VDM enforces the object size to increase with its
depth, but its warping manner cannot provide enough space to
accommodate the object size increase. In contrast, our method
can successfully address the problem.

Fig. 11 shows the comparison results on stereo image
Woman. Woman is a close-up portrait, which is a common
type of photography. Both the size and depth of the woman is
increased simultaneously, following the experimental setting
of VDM. In a close-up portrait, the face involves many grids
that need to be consistently warped to well preserve the face
shape. VDM distorts the face and cannot faithfully adjust the
depth due to inconsistent warping of face grids. Again, our

method significantly outperforms VDM in shape preservation
and depth/size adjustment.

Fig. 12 shows the comparison results on stereo image Men.
Men is an long-shot stereo image, where the men fully appear
in the scene. However, the long shot makes the selected objects
occupy much less area than that in Figs. 3, 8, 9, 10 and 11.
Both VDM and our method perform well in shape preser-
vation. For the depth adjustment of the men, our method
outperforms VDM, since VDM inconsistently adjusts the
depth of regions in the men. For size adjustment, our method is
slightly better than VDM. Fig. 13 shows the remapping results
on stereo image Penguins from a cartoon movie. We decrease
the depth and size of the penguin at the deeper depth. The
selected object is relatively small, compared with that in other
Figures. Fig. 13 shows that both VDM and our method well
adjusts the size and depth of the penguin while faithfully
preserving its shape.

B. Evaluation of Robustness to Imprecise Object Extraction

We show that our method can tolerate imprecise object
extraction to some extent. Fig. 14 illustrates the remapping
results of VDM and our method with inaccurate object
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Fig. 10. Comparison of SDM [41], VDM [6] and our method on People, where only the depth of the man is increased. From top to bottom: the left-view
image, right-view image, and disparity map. The 2nd column shows the selected object where its size is adjusted to a target size in the 1st and 2nd row, and
its ground-truth depth is showed in the 3rd row.

Fig. 11. Comparison of our method and VDM [6] on Woman in movie Guardians of the Galaxy, where the size and depth of the woman is increased. From
top to bottom: the left-view image, right-view image, and the disparity map. The 2nd column shows the selected object where its size is adjusted to a target
size in the 1st and 2nd row, and its ground-truth depth is showed in the 3rd row.

Fig. 12. Comparison of VDM [6] and our method on Men in movie Guardians of the Galaxy, where the size and depth of the men is increased. The
2nd column shows the selected object where its size is adjusted to a target size in the 1st and 2nd row, and its ground-truth depth is showed in the 3rd row.
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Fig. 13. Comparison of VDM [6] and our method on Penguins in movie Madagascar, where the size and depth of the left penguin is decreased. The
2nd column shows the selected object where its size is adjusted to a target size in the 1st and 2nd row, and its ground-truth depth is showed in the 3rd row.

Fig. 14. Comparison of SDM [41], VDM [6] and our method on Woman, where the size and depth of the woman is increased. Compared with Fig. 11,
a portion of the woman’ face region is not extracted. From top to bottom: the left-view image, right-view image, and disparity map. The original stereo image
and the target size/depth are shown in Fig. 11.

Fig. 15. Comparison of SDM [41], VDM [6] and our method on Woman, where the size and depth of the woman is increased. Compared with Fig. 14,
a larger portion of the woman’s face region is not extracted. From top to bottom: the left-view image, right-view image, and disparity map. The original stereo
image pair and the target size/depth are shown in Fig. 11.
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Fig. 16. Comparison of “w/o OCC1”, “w/o OCC2” and our method on Yondu in movie Guardians of the Galaxy, where the size and disparity of the man
is decreased. The left region of the man’ head is not extracted, which is to test the effectiveness of the object consistency constraints. From top to bottom:
the left-view image, right-view image, and disparity map. The 2nd column shows the selected object, where its size is adjusted to a target size in the 1st and
2nd row, and its ground-truth depth is shown in the 3rd row.

extraction, where a small region of the woman is miss-
ing, in comparison with the remapping results with accurate
object extraction in Fig. 11. The result shows that SDM
breaks the top-right region of the woman’s face and fails
to faithfully adjust the depth of the woman’s left region,
since SDM’s performance highly relies on the accuracy of
image segmentation. Compared to Fig. 11 and while there is
no broken region, VDM significantly distorts the shape and
depth of the woman’s face, since it tends to inconsistently
warp the extracted and unextracted face grids. In contrast,
our method achieves comparable performance with the case of
accurate object extraction. This is primarily due to the object
consistency constraints. In particular, although part of the face
is not extracted, its neighboring face region is selected. With
object consistency constraints, neighboring grids in/around the
face are constrained to be warped consistently, thus properly
warping the unextracted face.

Compared with Fig. 14, Fig. 15 shows the remapping results
with a much poorly extracted object, where a large portion
of the face is not extracted. Owing to more noise in object
extraction, the remapping results of VDM in Fig. 15 are worse
than that in Fig. 14. Our method shrinks the face of the woman
a bit in the left image of Fig. 15, while our method well
preserves the face in Fig. 14 and 11. The disparity adjustment
performance of our method is also degrade a little, compared
with Fig. 14 and 11. Nevertheless, our method still generates
much better remapping results in terms of shape preservation,
depth adjustment, and size adjustment, Compared with VDM.

C. Validating Effectiveness of Object Consistency Constraints

We conduct experiments to validate the effectiveness of the
object consistency constraints. Let OCC1 and OCC2 denote
the Object Consistency Constraints (OCCs) in (13) and (14),
respectively. We build two baselines, where the first baseline
named “w/o OCC1” removes OCC1 from our method, and
the second named “w/o OCC2” removes OCC2.

Fig. 16 compares the results on a challenging testing set,
where the imperfectly extracted object is challenging for
disparity remapping methods, since the left part of the man’s
head is missing. As shown in Fig. 16, our method achieves
promising remapping results. Although the left part of the
man’s head is missing, the part is constrained to undergo sim-
ilar transformations with the selected head regions by OCC2,
thereby achieving promising shape preservation and depth/size
adjustment. In contrast, “w/o OCC2” introduces noticeable

shape distortions in the left head of the man, since OCC2
is removed. Similarly, “w/o OCC1” inconsistently adjusts the
depth of regions in the man’s head and distorts the man’s head.
In contrast, our method outperforms “w/o OCC1”, since OCC1
constrains the grids in the selected regions to be consistently
warped.

We build the third baseline named “w/o OCC” that removes
both OCC1 and OCC2. Fig. 15 shows that “w/o OCC”
inconsistently warps the un-extracted parts and extracted ones
of the face, leading to the distortions on the woman’s face
(see the left-view image). In contrast, thanks to the proposed
OCCs, our method consistently warps the face of the woman,
thereby achieving better shape preservation than “w/o OCC”.

D. User Study

We conduct a subjective user study on a 24-inch ASUS
3D monitor with NVIDIA active shuttered glasses and an
NVIDIA GeForce 3D Vision Solution. The resolution of the
monitor screen is 1920 × 1080 According to [57] and the
suggestions in ITU-R BT.2021 [58], [59], we set the viewing
distance from a subject to the monitor to be 1.256 m. We invite
21 subjects involving 15 males and 6 females to participate
in the study. The subjects’ age ranges from 21 to 33. All
subjects are not familiar with object remapping and have no
prior knowledge about the experiment. We adopt the paired
comparison method [60], which is widely used to subjectively
evaluate the performance of image/video processing methods
(e.g., [9], [61]).

The subjective user study is conducted on 15 stereo images.
To each subject, we present an original stereo image at the
top, while putting a pseudo-ground-truth stereo image and two
remapped versions generated by different remapping methods
at the bottom, where the two compared methods are placed
in a random order. Since 3D movie frames do not provide
ground-truth stereo images for object remapping, we build
pseudo-ground-truth stereo image like images in the second
column in Fig. 8, where only the selected object with the
target size and depth is presented. We ask each subject the
following question: which remapped stereo image has better
quality? The quality criteria include: (1) the faithfulness of
the remapped shape of the selected object compared with the
ground-truth; (2) the faithfulness od the remapped size and
depth of the selected object compared with the pseudo-ground-
truth.
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Fig. 17. Remapping results of assigning various values to weighting parameters λD , λO and λC . The size and disparity of the man is decreased. Different
from Fig. 16, the man’s head regions are accurately extracted. (a) Extracted object, (b) Target/size/depth, (c) λO = 100, λD = 3000, λC = 500, (d) λO = 104,
λD = 300, λC = 500, (e) λO = 104, λD = 3000, λC = 500. From top to bottom: the left-view image, right-view image, and disparity map. The 2nd column
shows the selected object, where its size is adjusted to a target size in the 1st and 2nd row, and its ground-truth depth is showed in the 3rd row.

We compare our method with VDM, which is the state-of-
the-art warping-based object remapping method and is most
related to our method. Our method receives 70.5% preference
votes, while VDM receives 29.5%,showing the significant
perceptual quality improvement achieved by our method over
VDM. In addition, the study indicates that most subjects
are more sensitive to noticeable shape distortions than depth
distortion in the background.

E. Computational Complexity and Time Cost

Since our optimization model is quadratic programming, the
time complexity of our method depends on the number of
variables. Thanks to axis-aligned warping, the variable number
is reduced to 2 × (Nc + Nr ), where Nr and Nc are the row
and column numbers of the grid division on I z .

We implemented our method on a PC equipped with Core
i9 2.30 GHz CPU and 16 GB RAM. The optimization of our
method consumes 0.125s for a stereo image with 30 ×30 grid
division.

F. Extension to Aesthetic-Driven Stereo Image Recomposition

Our framework is complementary to other warping-based
stereo image editing and can be extended to stereo image edit-
ing tasks such as stereo image retargeting and aesthetic-driven
stereo image recomposition. Aesthetic-driven image recom-
position is to recompose images with the guidance of aes-
thetic principles, such that the aesthetic quality of resulting
stereo image are enhanced. We can extend our method to
aesthetic-driven stereo image recomposition by incorporating
additional constraints to enhance the aesthetic quality of stereo
image editing. The aesthetic enhancement constraints are built
upon aesthetic principles such as the rule of thirds and visual
balance following [31].

We compare our method with the most recent aesthetic-
driven stereo image recomposition method (ADR) [31].2

Fig. 18 show the comparison results of our method with
ADR on a stereo image containing multiple objects. ADR
well improves the aesthetic quality of the stereo image.
However, ADR discards the left-boundary regions of the
image, leading to information loss. In contrast, our method

2For a fair comparison, our method adjusts the depth/size of objects
according to the target depth/size value of ADR.

generates high-quality results without information loss.
In addition, ADR consumes significantly higher time cost than
our method. The optimization of ADR takes more than 20s,
since ADR adopts triangular-mesh-based optimization which
is computationally expensive. In contrast, the optimization of
our method takes only 0.16s.

G. Parameter Setting

Parameters λD , λO and λC in (1) are adjustable, which
mainly affects the remapping performance of our method.
Specifically, λC , λD , and λC control the strength of the
size adjustment, depth adjustment, and object consistency
constrains, respectively. Sec. V-C has validated the effec-
tiveness of the object consistency constraints. We hence
empirically set λC = 500 in our experiments. We further
analyze the influence of λD and λO on the remapping results.
Fig. 17 shows the remapping results using different values
of λD and λO . When a small value λO is set, the size of object
would not be adequately adjusted, as shown in Fig. 17(d).
Similarly, using a small value of λD would lead to ineffective
depth adjustment of the selected object, as shown in Fig. 17(e).
Therefore, we empirically set a large value to λO and λD say,
λO = 104 and λD = 3000.

VI. DISCUSSIONS

Assuming the target depth/size value is proper and would
not yield visual discomfort, we focus on adjusting the depth
and size of an object to their target values. Should the target
depth/size value be beyond our assumption, the remapped
stereo images by our method may yield visual discomfort.

A few works have explored what kinds of depth/size cause
visual discomfort for stereoscopic content. For example, it was
revealed in [3], [4] that if the depth value is out of the
stereoscopic comfort zone, the remapped stereo image would
negatively affect 3D perception and generate visual discom-
fort. Similarly, as shown in [62], an improper object size may
cause visual discomfort. Based on these findings, our method
can address visual discomfort issues. For example, if a viewer
sets an improper target depth/size value, we can refine the
value into a comfortable one based on the results suggested
in [3], [62], [63]. On the other hand, given a stereo image
containing an object whose depth/size causes uncomfortable
experience, we can remap this image to fix the problem by
setting a proper target depth/size value.
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Fig. 18. Results of extending our method to aesthetic-driven stereo image recomposition. From top to bottom: the left-view image, right-view image, and
disparity map. (a) The left boundary regions marked by red blocks in the original stereo pair are discarded by ADR [31], leading to information loss; (b) Our
method well recomposes stereo images without information loss.

Compared with conventional grid warping schemes,
axis-aligned grid warping has less flexibility of transformation
freedom. Due to this limitation, our method would inevitably
introduce depth distortion while adjusting the depth/size of an
object. To address this issue perceptually, since we observe
that viewers are much more sensitive to shape distortions
in important regions than depth distortions in less important
ones, our method resorts to dispersing depth distortion in less
important background regions. In this way, the overall viewing
experience with our method is better than that with VDM
especially for stereo images containing large selected objects.
In contrast, due to its high degree of transformation freedom,
VDM performs comparatively with our method for those
stereo images with small-size objects and small disparity/size
adjustment (see Fig. 13)„ VDM well adjusts the size and depth
of the small object while maintaining depth of the background
regions.

Similar to state-of-the-art warping-based methods, our
method cannot always perform well on all kinds of stereo
images. In particular, since our warping scheme requires
enough unimportant regions to adjust the disparity/depth, our
method may fail if important objects occupy almost the whole
image, making unimportant regions not enough. These failure
cases are intractable for warping-based methods. That is, due
to the lack of unimportant regions, important objects would be
stretched/shrunk for size/depth adjustment, causing noticeable
distortions.

VII. CONCLUSION

In this paper, we proposed a novel approach for object
remapping that faithfully adjusts the depths and sizes of
selected objects, while preserving object shapes. To achieve
high-quality spatial remapping, we have proposed an opti-
mization model along with effective object resizing con-
straints, depth adjustment constraints and shape-preserving
constraints. Specifically, for spatial remapping, we devised
an axis-aligned grid warping scheme to reduce the degree
of freedom of warping, and object consistency constraints
to encourage consistent warping of those object grids, both

effectively mitigating object shape distortions while faithfully
adjusting the depths/sizes of selected objects to desired values.
Moreover, the proposed method can tolerate imprecise object
extraction to some extent, which significantly reduces the
image editing cost. Experimental results show that our method
achieves significant visual quality improvement over existing
methods for various test image pairs.
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