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Embedding Regularizer Learning for Multi-View
Semi-Supervised Classification

Aiping Huang

Abstract— Classification remains challenging when confronted
with the existence of multi-view data with limited labels. In this
paper, we propose an embedding regularizer learning scheme
for multi-view semi-supervised classification (ERL-MVSC). The
proposed framework integrates diversity, sparsity and consensus
to dexterously manipulate multi-view data with limited labels.
To encourage diversityy, ERL-MVSC recasts a linear regres-
sion model to derive view-specific embedding regularizers and
automatically determines their weights. This is able to tactfully
incorporate complementary information of different views. To
ensure sparsity, ERL-MVSC imposes ¢ j-norm on a fused
embedding regularizer to exploit the sparse local structure of
samples, thereby conveying valuable classification information
and enhancing the robustness against noise/outliers. To enhance
consensus, ERL-MVSC learns a shared predicted label matrix,
which serves as the comment target of multi-view classification.
With these techniques, we formulate ERL-MVSC as a joint
optimization problem of an embedding regularizer and a pre-
dicted label matrix, which can be solved by a coordinate descent
method. Extensive experimental results on real-world datasets
demonstrate the effectiveness and superiority of the proposed
algorithm.

Index Terms— Multi-view learning, multi-view semi-supervised
classification, embedding regularizer.

I. INTRODUCTION

ANY computer vision applications attempt to associate
visual data with one or more semantic labels. This task
can be achieved by classification which can establish an accu-
rate correspondence between perceptual-level visual informa-
tion and semantic-level linguistic descriptions. Recently, there

Manuscript received December 24, 2020; revised June 6, 2021 and July 21,
2021; accepted July 24, 2021. Date of current version August 9, 2021. This
work was supported in part by the National Natural Science Foundation of
China under Grant 61901119 and Grant 62001116 and in part by the Natural
Science Foundation of Fujian Province under Grant 2019J01222 and Grant
2020J01466. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Clinton Fookes. (Corresponding
author: Tiesong Zhao.)

Aiping Huang, Zheng Wang, and Yannan Zheng are with the Fujian
Key Laboratory for Intelligent Processing and Wireless Transmission
of Media Information, College of Physics and Information Engineer-
ing, Fuzhou University, Fuzhou 350108, China (e-mail: sxxhap@163.com;
N191120078 @fzu.edu.cn; N191127059 @fzu.edu.cn).

Tiesong Zhao is with the Fujian Key Laboratory for Intelligent Processing
and Wireless Transmission of Media Information, College of Physics and
Information Engineering, Fuzhou University, Fuzhou 350108, China, and
also with the Peng Cheng Laboratory, Shenzhen 518055, China (e-mail:
t.zhao@fzu.edu.cn).

Chia-Wen Lin is with the Department of Electrical Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan, and also with the Institute of
Communications Engineering, National Tsing Hua University, Hsinchu 30013,
Taiwan (e-mail: cwlin@ee.nthu.edu.tw).

Digital Object Identifier 10.1109/TTP.2021.3101917

, Member, IEEE, Zheng Wang, Yannan Zheng, Tiesong Zhao™', Senior Member, IEEE,
and Chia-Wen Lin

, Fellow, IEEE

have been a great number of classification algorithms related to
object recognition [1], visual localization [2], image semantic
segmentation [3] and retrieval [4]. To improve classification
performance, many of them require to train the classifier on a
large-scale annotated dataset. Nevertheless, data annotation is
time-consuming and laborious, resulting in scarcity of labels
in the collected data. The effective combination of unlabeled
samples with labeled ones is therefore of critical importance
[51-{10].

Besides the scarcity of labeled samples, another important
issue for many visual applications lies in the existence of
multi-view data. For example, RGB video cameras, depth
cameras and on-body sensors are often equipped together
to offer different representations of visual data for pedestri-
ans [11]. These data that describe the same instance with
diverse modalities or features are called multi-view data. Each
modality or feature representation is referred to as a view.
Intuitively, simultaneous analysis of multi-view features facil-
itates utilizing their complementarity for disambiguation [12].
Previous research efforts [13]-[17] also show the superiority of
multi-view feature fusion, which can surpass the performance
achieved by using single-view features or simple concatenation
of multi-view features.

The limited labels in  multi-view data have
motivated the research of multi-view semi-supervised
classification [18]-[22] to exploit the latent information of
both labeled and unlabeled data. A representative multi-view
semi-supervised classification model is the co-training [23],
which was originally designed for two views. It trains
classifiers with the labeled data, and classifies the unlabeled
data on each view independently. Then the most confidently
predicted samples from one classifier are selected to train the
other classifier in each iteration. Since the standard co-training
algorithm was proposed, many variants have been devised
[24]-[26]. However, co-training and its variants require
accurate classification results in each view. Once erroneous
information from either of the classifiers is provided, the
overall performance will be deteriorated.

Recently, graph-based multi-view semi-supervised classifi-
cation techniques have attracted increasing attention [27]-[29].
They treat labeled and unlabeled samples as vertices of a graph
and propagate label information through edges. The local
structure in the sample space is one of the important elements
affecting classification performance, and it generally requires
graph construction to embody. Therefore, some state-of-the-art
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Framework of the proposed method. We firstly extract feature matrices of data from m views and compute view-specific embedding regularizers

from them. With a sparsity constraint and label guidance, the predicted label matrix Y is obtained by the proposed algorithm.

methods coupled with manifold learning have been proposed,
including adaptive neighbors based [30] and hyper-Laplacian
regularized [31] multi-view semi-supervised classification. In
these methods, both the way of construction and the noise
in raw data might impair the constructed graph, resulting in
unstable classification performance.

In this paper, we propose a brand-new method, named
embedding regularizer learning for multi-view semi-
supervised classification (ERL-MVSC). As outlined in
Fig. 1, the whole procedure includes three aspects. Firstly, a
traditional linear regression model is recast to derive view-
specific classifiers and regularizer constructors. Secondly,
with the embedding regularizers of different views as input,
the derived classifier is applied in the multi-view scenario to
learn a shared embedding regularizer for label propagation.
To convey valuable classification information, the learned
embedding regularizer is constrained to be sparse to exploit
important local structure information. Finally, to incorporate
the label information as learning guidance, a constraint matrix
is introduced into our framework. The main contributions of
this paper are summarized as follows:

o Embedding regularizer learning derived from a linear
regression model: A traditional linear regression model is
recast to derive an embedding regularizer learning frame-
work that integrates diversity, sparsity and consensus for
multi-view semi-supervised classification.

o Sparse representation for the fused embedding regular-
izer: The sparse representation is automatically updated
with {7 {-norm minimization. It aims to capture the sparse
local structure of multi-view data that conveys useful
classification clues, while simultaneously improving the
robustness against noise and outliers.

o Mathematical solutions for the proposed formulation:
We employ the coordinate descent method to factorize
our objective function into several small sub-problems
to efficiently attain their solutions. Experimental results
validate the superior performance of our solutions.

The rest of this paper is arranged as follows. Section II
reviews the related work to this paper. In Section III, the
proposed framework with optimization algorithm is developed.
Section IV presents extensive experiments and analysis on
real-world datasets. Conclusions are drawn in Section V.

II. RELATED WORK

Due to the existence of multi-view data and the scarcity of
labeled samples, multi-view semi-supervised classification has
become an imperative and challenging research topic. Existing
algorithms were mainly developed in two paradigms based on
co-training and graph.

The principle of co-training was first introduced in [23]
for semi-supervised learning. Since then, several successful
variants of co-training have been proposed. For example, the
method proposed in [24] embeds an EM algorithm into the
co-training procedure for parameter estimation. A Bayesian
undirected graphical model was proposed in [25] to clarify
the fundamental assumptions of co-training related algorithms.
The method in [26] resorts to a co-regularization term to
minimize the distinction between the predictor functions of
two views. Recently, co-training methods coupled with deep
networks have been proposed for semi-supervised classifi-
cation [32], [33]. These methods utilize two different-view
features (RGB and depth in [32]; image and text in [33])
to respectively learn a deep neural network, then apply the
learned network in the unlabeled pool to iteratively generate
training sets for each other. Generally, the co-training-based
approaches address the scarcity of labeled samples with two
views’ classifiers interacting with each other to augment
the training data. However, the process is time-consuming,
and the final classification accuracy can be easily degraded
by misleading pseudo labels. To address the problems, [34]
runs Graph Convolutional Network (GCN) with a weighted
combination of Laplacians in each view then aggregates these
two GCNs to infer labels.

Graph-based method is another representative paradigm
for multi-view semi-supervised classification. Reference [35]
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proposed a graph-based semi-supervised learning that adap-
tively fuses different views to learn a shared class indica-
tor matrix for image categorization. Reference [36] utilizes
sparse weights to learn an optimally fused graph for label
propagation. To handle noise and outlying entries embedded
in data, [30] adaptively learns local manifold structures to
obtain an optimal graph for classification. Reference [28]
proposed a multiple kernel-based framework to simultaneously
perform classification and similarity learning. Reference [29]
integrates deep constrained matrix factorization and low-rank
similarity learning into a unified objective function for classi-
fication. Reference [31] utilizes hyper-graph regularization to
design a parameter-free semi-supervised learning framework
for addressing the data classification in multiple nonlinear
subspaces. Reference [37] proposed a new structural regular-
ization term to learn a unified graph that is more suitable for
semi-supervised learning. Although many graph-based semi-
supervised classification methods have been proposed, their
constructed graphs could be easily affected by the way of
construction and the quality of data, resulting in unstable
performance. Meanwhile, due to the computational costs of
graph construction and label propagation, these methods are
difficult to scale to large data.

As a result, some other methods such as subspace-based
[38] and regression-based methods [39]-[42] have been devel-
oped. [38] proposed a tensorized multi-view subspace repre-
sentation learning, where a low-rank tensor was employed to
explore high-order multi-view correlations and a constraint
matrix was devised to guide the representation learning.
Reference [39] employs a statistical approach and hierarchi-
cal regression to infer a reliable classifier for multimedia
analysis. Reference [40] regresses to label matrix directly
by formulating the objective function as a linear weighted
combination of all regression-based loss functions. Reference
[41] employs a discriminative regression target and a set of
learnable weights to formulate a regression-based framework
for multi-view classification. Reference [42] proposed a prob-
abilistic square hinge loss and a power mean incorporation
strategy to exploit both consensus and diversity information of
multi-view data for semi-supervised classification. This paper
also resorts to a regression model but with the following
differences: (i) employing embedding regularizers as inputs of
the model, (ii) recasting a linear regression model to provide
important modules for efficient multi-view semi-supervised
classification, and (iii) integrating the derived important mod-
ules, diversity, sparsity and consensus into a unified cost
function as the classification loss, that learns a predicted label
matrix rather than a transformation matrix and a bias vector.

III. MULTI-VIEW EMBEDDING REGULARIZER FOR
SEMI-SUPERVISED CLASSIFICATION
In this section, we elaborate the formulation and opti-
mization of ERL-MVSC. To facilitate the understanding of
mathematical derivations, the key notations used in this paper
are summarized in Table 1.

A. Problem Formulation

In multi-view semi-supervised classification, the local struc-
ture information in the sample space is more capable of
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TABLE I
SUMMARY OF KEY NOTATIONS USED IN THE PAPER

Notations Explanations

X (@) e R"Xdi  the data matrix of the ith view

{x@ym data matrices of m views
{M;} embedding regularizers of m views
M € RPX"™ the fused embedding regularizer
Y € RnXe¢ the predicted label matrix
L € {0,1}™*¢ the label constraint matrix
AeR™ the weight vector
n/m/c the number of samples/views/classes
i the dimensionality of the ith view
l/u the number of labeled/unlabeled data
« the smoothing factor
B the embedding parameter
ol the regularization parameter
1 the fitting coefficient
Multi-view semi-supervised classification
Datasets — Labe'lntzl:iitraint
I L
Feature Sparsity |f2.1-non
Training data extraction constraint
Lxoyn,
& l(?i}.”:-
Embedding-regularizer M3, @_, Objective function
constructor
Linear reg ion —_ 1
-IE New method for ‘“J“ETT(YTMY)
L | eihod o]

Fig. 2. Construction of objective function. We start with conventional
classification, recast a widely-used linear regression model (i.e., (1)) to derive
two important modules (i.e., (6) and (7)) for multi-view semi-supervised
classification. Incorporating label information and {7 |-norm regularization,
an objective function (i.e., (9)) with diversity, sparsity and consensus for multi-
view semi-supervised classification is formulated.

reflecting the relationships among samples. To this end, lots of
schemes coupled with manifold learning have been proposed
with graph construction to embed the local structure informa-
tion. However, a constructed graph can be easily impaired by
the ways of construction and the noise embedded in raw data
[40]. To avoid this, we attempt to exploit the local structure
information from a brand-new viewpoint. As demonstrated
in Fig. 2, we recast a widely-used linear regression model
to derive an embedding regularizer constructor and a new
classifier, then employ these two modules coupled with the
sparsity constraint and label guidance to derive a multi-view
semi-supervised classification model. The sparsity constraint
imposed here is to excavate important local relationships
among samples, so as to convey valuable information for
classification.

Linear regression models are among the representative
methods for classification [43], [44]. Given a set {X;}_, C
R¢ of sample points and a destination set {yi}l_, C RS,
y; is assigned as +1/—1 for two-class problems or a class
label vector for multi-class problems. A linear regression
model aims to regress each sample to its label vector through
computing ¢ transformation vectors and bias constants which
are respectively denoted as W = [w, wo, -+, W] € Rdxe
and b = [by,bs,---,b.]T € RC. To avoid over-fitting, a
regularization term is added. One of the most widely-used
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linear regression models is
n
: = Tz 2 2
‘x‘%’; 15; — WIS —blI3 + 01| WI[Z, (M
i=

where 6 is a regularization parameter, || - ||2 is the Euclidean
norm and || - |[F denotes the Frobenius norm. Denoting X =
X1, -, %07 € R and Y = [y, -+ ,¥aulT € R"™*, the
above optimization problem can be rewritten as

1~ = 0
in=[[Y — XW — 1b7||% + Z||W| ]2 2
I“%{{}g” IIF+2II %> (2)

where 1 is a n-dimensional column vector with all elements
being 1. We know that (2) has the following optimal closed-
form solutions:

w* = X"HX + 1)~ 'X"HY, (3)
1 -/ -
b=n 2 (i -W's), o

where I is an identity matrix and H € R"" is a centering

matrix, i.e., H=1— 1117, Plugging W* and b* into (1), the

n
optimal objective function can be represented as

| QA
5 2V My; )
i=1
with positive semi-definite matrix

M =H{I- XX HX + 01)"'X")H. (6)

Without loss of generality, the objective function of linear
regression for classification in (2) can be recast as

1 ~ e~ ~
min = Tr(Y'MY), (7)
Yy 2

where the positive semi-definite matrix M serves as an embed-
ding regularizer. Obviously, the above formulation is solvable.
Hereto, we provide a new method for classification. Given a
data matrix, we need to calculate M by (6), and optimize (7),
then the ultimate class labels are predicted. Next, we will
extend this classification model to design an embedding reg-
ularizer learning framework for multi-view semi-supervised
classification.

In the multi-view setting, one sample is represented by
several different views. Suppose {X(")}?’:1 is a multi-view
dataset with m views, where X® ¢ R"%4  For semi-
supervised learning, a small amount of labeled samples are
available. We rearrange all the samples and let the first / (0 <
| <« n) ones be labeled. The corresponding set of class
label vectors is denoted as {l,-}é=1 C R€. Multi-view semi-
supervised classification aims to integrate multi-view features
to predict the class labels for unlabeled data with limited label
information. In other words, it aims to obtain a predicted label
matrix Y = [y1,y2, -+ ,¥al7 € R"™C from the multi-view
feature matrices {X(")}?’:1 and the label information {li}le.
Extending (7) to the multi-view case, ERL-MVSC can be
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formulated as
min — §m M =M%+ B (YTMY)
rYM2 & F1a
=

!

+ 7 [IMll2,1 + g ;Hyz' — Ll st 2=0,1"0=1, (8)
where M is a shared embedding regularizer to be learned,
M; is constructed from X® by (6), 4 = [A1,---, I AT
weighted vector to measure the importance of different views,
[| - ||2,1 denotes the {7 j-norm, a > 1 is a smoothing factor,
and S, y, 0 are three nonnegative hyper-parameters. However,
(8) can not be directly optimized with a closed-form solution
of Y due to variable coupling. For the sake of facilitating
optimization and balancing the importance of each term in
(8), we add a smooth regularization term for unlabeled data,
and further formulate ERL-MVSC as

1 B

m
min = > A4[M — M|} + ST (YTMY)
i=1

LY M2
0 2 T
+ 7 I[IMll2,1 + §||Y—L||F st.A>0,1"2=1, (9

where L = [I1, b, -+, 1,]7 € {0, 1}"*¢ is a label constraint
matrix. For labeled data, L;; = 1 if the ith sample belongs
to the jth class, and O otherwise; While for unlabeled data,
l; (i > 1) is set to a zero vector.

There are four terms in (9). The first term ensures to
learn an embedding regularizer shared by different views
with a minimal fitting error. The second term extends (7)
to the multi-view scenario for regressing each sample to its
class label. The third term aims to learn a sparse embedding
regularizer M. Related research [45] on manifold learning
revealed that a sparse matrix characterizing locality relation-
ships conveys valuable information for classification [46]. In
this work, M describes the relevances between samples by
multi-view features. We impose a sparsity constraint on M
to remove those relevances that are not discriminative for
given samples. The obtained sparse M encodes important local
relationships among samples, conveying valuable information
for classification and enhancing the robustness to noise and
outliers. Herein, £ j-norm rather than {i-norm is adopted as
the sparsity regularizer for the following two reasons. First,
different from the flat sparsity of £j-norm, the ¢ j-norm
regularization involves structured sparsity [47]. This type of
sparsity can greatly improve the efficacy of sparse learning
algorithms through encoding specific structured information
[48]. Second, the {5, 1-norm regularized minimization problem
can be solved by the method in [49], which is much easier than
that with the £1-norm regularization. The last term is to ensure
the smoothness for unlabeled data and to leverage the labeled
information to guide the prediction of Y. The weighted vector
A can be regarded as a regularization parameter to the multi-
objective optimization problem, where A > 0 and A71 = 1.

B. Optimization

In this subsection, we employ the coordinate descent
method to solve the above optimization problem. Denote
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m

JOY,M) 2 %Z]z;.luM — Mi|l% + E1r (YTMY) +
N 1=

yI1IMll2,1 + %HY — Lllf,. The objective function for

ERL-MVSC can be optimized with the following iterative

framework:

AUHD = argmin 7 (1, YO, M©),
A
Yyt — arg n%n j(l(""l), Y, M(’)),

MUFD = arg min J Dy vy, (10)

Update /1 when fixing Y and M. Eliminating the constant
terms of J (4, Y, M), the subproblem of updating 4 is written
as

) 1 m 5 T
rrEnEZ;A?||M—Mi||F st. A>0,172=1. (1)
i=
Utilizing the Lagrange multiplier method, we construct a
Lagrangian function as

1 m
LG p) =5 > AIM = Mil[f + p(1 =172). (12)

i=1
Taking the derivative of L£(4, x) with respect to A and g,

oL o 2 oL T
=S u M =Ml = o= 11 A (13)

Ol
Setting %—f =0 and % =0, we have

(1M — M 7))

Ai = (14)

: .
> (M — My 30

i=1

Update M when fixing 4 and Y. The subproblem of
updating M aims to minimize the objective

1 & S
S 2 MM = M7 + 2
i=1

Tr (YTMY) + 7M1, (15)

According to [49], the above problem can be addressed by
solving

. 1 c o 2
lelnj(/l,Y,M):le[nEZ/li||M—M,-||F

i=1
B T T
+ 57 (YMY) 4+ Tr(M'DM), - (16)

where D € R"*" is a diagonal matrix, defined by
1

2(myll2
D= : : 17)
1
2||lmy||2
with M = [my; - - - ; m,]. Taking the derivative of 7 (4, Y, M)
with respect to M, we obtain
8j m
Vi Z/lj-"(M -M,) + gYYT +2yDM.  (18)

i=1

7001

Setting 2_1\% = 0, we have the closed-form solution

m —1 m
M:(ZA?I+2yD) (Zlf‘Mi—gYYT). (19)

i=1 i=1
Update Y when fixing 1 and M. The subproblem of
updating Y is formulated as
. P T J 2
AL Y.M)=min 2T (Y MY) SIY = L.
H%nj( ) min = Tr +2|| 12
(20)

Setting the derivative of 7 (4, Y, M) with respect to Y to
zero, i.e.,

oJ B

= ="M+M)Y+6Y-L)=0 21
= SMAEMDY 1Y - L) =0, QD)
from which it infers the following closed form solution
(L mar)
Y= 2—5(M+M)+I L. (22)

Once the predicted label matrix Y is attained, the ultimate
class label y; for unlabeled data x; can be calculated by the
following decision function:

yi = argmax Y;;.
j
Vi=I1l+1,14+2,---

,n. Vj=1,2,---,c. (23)

Summarizing the aforementioned analysis of respective
optimal solutions to all subproblems, the algorithm for
ERL-MVSC is presented in Algorithm 1.

Algorithm 1 The Algorithm of ERL-MVSC

Input:
1: The data matrix: X(1), X® ... X(m)
2: The label constraint matrix: L € {0, 1}"*¢.
3: The parameters: smoothing factor «, hyper-parameters
B, v and 0.
Output:
1: The class label for unlabeled data.
2: The weight vector A = [\, -+, A7
Initialization:

1: Compute each embedding regularizer M; from X ()
using (6).
2: Initialize A = [X,--- L7, Y = L and M =

m’
1 m
i=1
Procedure:

1: while Not convergent do
2:  Update Y using (22);
3:  Update D using (17);
4:  Update M using (19);
5:  Update A using (14);
6: end while

7: Obtain the ultimate class labels by using (23);

8: return The class label for unlabeled data and the

weight vector.
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ERL-MVSC converges for the following two reasons.
Firstly, we decompose the proposed multi-variable optimiza-
tion problem by the convergent coordinate descent method.
Secondly, we alternately get the closed-form solutions of 4, Y
and M at each iteration. Besides, the experimental evidence
on real data also shows a good convergence behavior.

The proposed algorithm also consumes a reasonable compu-
tational complexity, which mainly depends on the initialization
of M; and update of Y and M. These three parts respectively
contribute O(d;n> + dizn + di3), O3 + n?c) and O(n?c) to
the overall complexity. Because the number ¢ of classification
is much lower than d; and n, the overall computational cost
of ERL-MVSC is O(n® + > (din® + d?n + d?)).

IV. EXPERIMENTS
A. Test Datasets

To evaluate the proposed method, the experiments are
performed on several real-world benchmark datasets. These
datasets cover four different applications, including generic
object classification, digit classification, video classification,
and news article classification.

ALOI! is a collection of color images with small objects,
which were taken with various viewing angles, illumination
directions, illumination colors, and object orientations. For
each image, RGB color histograms, HSV color histograms,
color similarity and Haralick texture features are extracted as
four views.

Caltech101? is a dataset containing 101 categories with
9,144 samples, where six different features are extracted
as views, i.e., 48-D Gabor features, 40-D wavelet moments
features, 254-D CENTRIST features, 1,984-D HOG features,
512-D GIST features, and 928-D local binary pattern (LBP)
features.

HW? consists of handwritten numerals from 0 to 9 digit
classes with total 2,000 samples. There are six public features
are available, including 76-D Fourier coefficients of the char-
acter shapes (FOU), 216-D profile correlations (FAC), 64-D
Karhunen-Loeve coefficients (KAR), 240-D pixel averages in
2 x 3 windows (PIX), 47-D Zernike moment (ZER) and 6-D
morphological (MOR) features.

MNIST* is a handwritten digit collection from which
30,000 samples are selected for testing, along with three views
of features produced by IsoProjection with 30 dimensions, lin-
ear discriminant analysis with 9 dimensions and neighborhood
preserving embedding with 9 dimensions.

YouTube’ contains approximately 120,000 instances and
we select 2,000 samples for test. Each sample is described
by six views consisting of both audio features (mfcc,
volume stream, and spectrogram stream) and visual fea-
tures (cuboids histogram, hist motion estimate, and HOG
features).

1 http://aloi.science.uva.nl/

2http://www.Vision.caltech.edu/Image Datasets/Caltech101/

3 http://archive.ics.uci.edu/ml/datasets/Multiple+Features

4http://yann.lecun.com/exdb/mnist/

5 http://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+
Games+Dataset
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3sources® consists of 169 news reported by 3 well-known

online news sources: BBC, Reuters and the Guardian which
are treated as views. Each new is manually annotated with one
of 6 topical labels.

BBCnews’ is derived from the BBC news corpora [50].
It contains a total of 685 documents with 5 annotated topic
labels. In our experiments, we construct new synthetic datasets
with 4 views by splitting each document into four related
segments with 4,659, 4,633, 4,665 and 4,684 dimensions,
respectively.

BBCsports’ consists of 544 documents from the BBC sport
website involving the sports news in 5 topical areas [50]. For
each document, two different types of features are extracted
as views with 3,183 and 3,203 dimensions, respectively.

The important statistics of the above datasets are summa-
rized in Table II. Several sample images from the selected
three image datasets are demonstrated in Fig. 3.

B. Compared Algorithms and Parameter Settings

To evaluate the effectiveness of ERL-MVSC, we compare
the method with several state-of-the-art multi-view semi-
supervised classification approaches. The brief introduction
and parameter setting of each method are presented as follows:

1) SVM utilizes different types of kernel functions to
project nonlinear separable samples onto a high dimen-
sional space for classification.

2) AMGL [27] is a parameter-free multi-view learning
method based on spectral clustering and can be extended
to semi-supervised classification tasks.

3) MVAR [40] is an adaptive regression based multi-
view semi-supervised model, where class labels can be
directly predicted by non-smooth ¢ j-norm minimiza-
tion.

4) MLAN [30] automatically calculates view weights and
simultaneously performs semi-supervised classification
and local structure learning.

5) AWDR [41] employs a discriminative regression target
and a set of learnable weights to formulate a regression-
based framework for multi-view classification.

6) Co-GCN [34] integrates co-training, spectral graph
information and the expressive power of neural net-
work into one unified framework for multi-view semi-
supervised learning.

7) HLR-M?VS [31] is a hyper-laplacian regularized
multi-linear multi-view self-representation model. It can
capture both the global and local structures of data for
semi-supervised classification.

Among the above methods, the first one is a single-view
baseline, while the rest ones are the state-of-the-art methods in
multi-view semi-supervised learning. Prior to conduct compar-
ison, there are several algorithmic parameters need to be set.
For the proposed ERL-MVSC, we set the smoothing factor
o = 2, the embedding parameter f = 1, the regularization
parameter y = 1, and the fitting coefficient 6 = 10. The way

6http://mlg.ucd.ie/datasets/Ssources.html
7 http://mlg.ucd.ie/datasets/segment.html
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TABLE 11
STATISTICAL CHARACTERISTICS OF ALL TESTING DATASETS

Datasets Samples Views Total features Classes Data types
ALOI 1079 4 218 10 Object image
Caltech101 9,144 6 3,766 101 Object image
HW 2,000 6 649 10 Digit image
MNIST 30,000 3 48 10 Digit image
YouTube 2,000 6 1,589 10 Video data
3sources 169 3 10,259 6 Text document
BBCnews 685 4 18,641 5 Text document
BBCsports 544 2 6,386 5 Text document

e

237567 §F90

(c) Images from MNIST dataset

Fig. 3.

to determine these parameters will be expounded in detail in
Section IV-E.3. As for the compared algorithms, we directly
utilize the source codes provided by the authors. For fair
comparison, we adopt the parameters of each method just as
reported in the corresponding papers if feasible. For example,
the maximum number of iterations for AMGL and MLAN are
respectively fixed as 100 and 30, and the number of nearest
neighbors are respectively tuned as 5 and 9. As to MVAR, the
weight distribution coefficient r is set as 2. For AWDR, the
trade-off parameter 4 = 1, the termination parameter € = 103,
and the maximum number of iterations r = 200. Regarding
Co-GCN, the maximum number of training iterations is set to
be 2500, and the learning rate aw = 10? and o, = 10%. Note,
HLR-M?VS requires different parameter settings in different
datasets. However, due to the addition of new test datasets,
we set each parameter as a uniform fixed value, i.e., .1 = 0.2
and Ap 0.4, respectively. For single-view baseline, we
concatenate feature vectors of different views together for the
all-view classification setting.

C. Evaluation Metrics

We evaluate the performance of individual algorithm in
term of classification accuracy, i.e., the proportion of correctly
classified samples. The purpose of semi-supervised learning is
to excavate more unlabeled information from limited labeled
samples. To present the classification capacity of different
algorithms, we set the percentage of labeled samples ranging
from 10% to 80% for training. All the experiments are

Sample images from three datasets.

performed on a server with Inter (R) Xeon (R) E5-2680 CPU
(2.40GHz) and 256G memory. For each dataset, we execute
each algorithm 10 times with randomly selected labeled data,
and then record the average classification accuracy and its
standard deviation corresponding to each labeling rate.

D. Experimental Results

Tables III~VI present the classification accuracies with
standard deviations of all methods under different labeling
rates on eight datasets. For ease of comparison, we highlight
the best results in red boldface and the second best in blue
boldface. Through the analysis of experiment results, some
conclusions are drawn.

1) Superiority of ERL-MVSC over single-view baseline:
Not all multi-view methods outperform the single-view
baseline. This conversely illustrates that the learning per-
formance cannot be improved if multiple views are not
properly integrated. In this respect, ERL-MVSC shows
its superiority over the other multi-view classification
methods. It can always achieve better classification accu-
racies than the single-view based method. Fig. 4 presents
the comparison of ERL-MVSC with fused multi-view
and single-view information, respectively. The results
further validate that ERL-MVSC can reasonably fuse
different views to exploit the hidden complementary
information.

Robustness of ERL-MVSC: Different compared meth-
ods exhibit respective strengths for different types of

2)
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TABLE III

CLASSIFICATION ACCURACY (%) COMPARISON OF DIFFERENT ALGORITHMS ON ALOI AND CALTECH101. THE BEST RESULTS ARE HIGHLIGHTED IN
RED BOLDFACE AND THE SECOND BEST ARE MARKED WITH BLUE BOLDFACE. (HIGHER MEANS BETTER)

Datesets Methods 10% 20% 30% 40% 50% 60% 70% 80%
SVM 331 (4.7) 372 (3.6) 401 (2.0) 407 24) 415(1.8) 429 (15) 452 (24) 447 (@41
AMGL 824 (3.3) 893 (23) 946 (1.7) 954 (0.7) 97.0(0.7) 98.1 (0.6) 98.1(0.6) 98.4 (1.0)
MVAR 67.1 (6.1) 778 (8.5) 803 (6.9) 88.1(6.2) 862(52) 85.1(1.3) 88.8(83) 92.5(3.6)
MLAN 87.6 2.6) 919 (29) 919 (1.7) 948 (2.8) 96.8 (0.8) 942 (4.6) 963 (1.2) 97.5(L.7)
AWDR 93.5(1.9) 95.0 (0.7) 955 (0.5) 958 (0.2) 96.1 (0.3) 96.8 (0.4) 97.3(1.2) 97.4 (1.0)
Co-GCN | 96.9 (0.3) 97.6 (0.4) 97.6 (0.5) 97.7 (0.2) 98.3 (0.6) 98.3 (0.4) 98.2 (0.5) 98.5 (0.5)
HLR-M2VS | 89.3 (2.2) 942 (0.9) 957 (0.8) 96.1 (0.7) 964 (0.8) 96.7 (0.9) 97.3 (1.1) 97.3 (0.7)
ERL-MVSC | 93.6 (1.1) 95.7 (0.6) 97.2 (1.0) 97.8 (0.7) 98.4 (0.6) 98.5 (0.6) 98.8 (0.6) 99.1 (0.4)

Datesets Methods 10% 20% 30% 20% 50% 60% 70% 30%
SVM 226 (0.6) 266 (0.2) 289 (0.3) 29.8 (0.3) 31.4(0.3) 32.6(0.3) 32.8(04) 325(02)
AMGL 243 (0.8) 29.5(1.8) 34.8(0.5) 37.3(0.5) 383 (0.1) 41.0(0.0) 422(12) 44.1(0.0)
MVAR 435(03) 477 (0.6) 519 (0.5 53.8(1.0) 53.4(03) 53.4(1.0) 53.0(0.8) 53.4(1.6)
MLAN 314 (0.4) 372(0.2) 38.1(L7) 404 (0.7) 41.4(12) 44.1(0.0) 44.2(0.0) 44.7 (0.0)
AWDR 45.0 (1.3) 53.1(0.3) 569 (02) 59.6(0.1) 61.4(0.6) 627 (1.5 63.0(03) 64.0(0.7)
Co-GCN | 46.1 (0.6) 52.6 (0.8) 543 (0.4) 552 (1.3) 56.1(0.8) 558 (1.1) 55.6(0.9) 55.9 (0.9)
HLR-M2VS | 456 (0.7) 54.2 (0.8) 57.4 (0.9) 60.4 (0.6) 62.5(1.1) 633 (0.8) 64.1(1.0) 652 (1.9)
ERL-MVSC | 462 (0.1) 56.0 (1.0) 60.2 (0.0) 61.7 (0.0) 63.9 (0.9) 662 (1.2) 66.4 (1.1) 67.0 (1.6)

ALOI

Caltech101

TABLE IV

CLASSIFICATION ACCURACY (%) COMPARISON OF DIFFERENT ALGORITHMS ON HW AND MNIST. THE BEST RESULTS ARE HIGHLIGHTED IN RED
BOLDFACE AND THE SECOND BEST ARE MARKED WITH BLUE BOLDFACE. IN MNIST DATASET, THE RESULTS OF HLR-M2VS ARE NOT
PROVIDED DUE TO THE OUT-OF-MEMORY EXCEPTION CAUSED BY LARGE-SCALE SIMILARITY MATRIX. (HIGHER MEANS BETTER)

Datesets | Methods 10% 20% 30% 40% 50% 60% 70% 80%
SVM 313 (2.7) 69.6 (1.9) 805 (1.0) 84.6(09) 86.6(09) 88.1(l.1) 89.2(1.0) 90.0 (I.1)
AMGL 88.8 (0.7) 92.1(0.5) 93.5(0.6) 948 (0.7) 955 (0.9) 96.5(0.1) 97.0(0.8) 97.0 (0.8)
MVAR 762 (0.6) 556 (2.7) 53.8(32) 888 (0.6) 934 (0.9) 95.1(04) 958 (0.7) 96.0(0.7)
MLAN 957 (0.8) 96.6 (0.2) 96.7 (0.4) 969 (0.9) 96.8 (0.5) 97.1 (0.5 97.0 (0.4) 97.5 (1.0)
AWDR 89.2 (1.0) 923 (1.0) 922 (0.8) 923 (0.3) 94.0 (0.6) 95.5(0.3) 953 (0.7) 964 (0.8)
Co-GCN | 89.1 (1.1) 90.9 (1.3) 92.1 (1.4) 92.0 (1.3) 92.6 (1.3) 93.6(1.2) 94.1 (1.6) 94.1 (1.1)
HLR-M2VS | 86.4 (1.8) 89.9 (1.6) 93.3(0.9) 94.0(0.7) 952 (0.5 954 (0.5) 963 (0.7) 962 (0.7)
ERL-MVSC | 943 (1.1) 96.8 (0.6) 97.1 (0.4) 97.3 (0.4) 97.6 (0.4) 98.0 (0.4) 98.3 (0.5) 98.5 (0.6)

Datesets Methods 10% 20% 30% 40% 50% 60% 70% 80%

SVM 829 (0.2) 87.6(0.2) 899 (0.1) 909 (0.1) 91.7 (0.3) 92.2(0.2) 929 (0.2) 93.1 (0.1)
AMGL 32.1 (0.3) 334 (03) 346 (0.1) 351(0.2) 357(0.2) 359(0.5) 36.6 (0.5 37.2(0.5)
MVAR 534 (2.1) 539 (0.1) 53.1(0.7) 532(0.8) 54.1(0.3) 534(0.7) 53.4(0.5) 53.8(0.5)
MLAN 31.3(0.0) 31.5(04) 322(0.9) 33.0(0.9) 296 0.6) 27.3(0.8) 10.0(0.9 33.10.7)

HW

MNIST | AwDR | 774 (03) 793 (02) 800 (0.1) 803 (04) 81.1(02) 814 (0.1) 81.2(05 819 (0.4)
Co-GCN | 87.2(0.2) 882 (0.9) 888 (1.2) 892 (1.3) 89.5(13) 89.9(14) 90.1(1.4) 912 (0.2)
HLR-M?VS - - - - - - - -
ERL-MVSC | 91.6 (0.1) 93.1 (0.2) 93.8 (0.2) 939 (0.1) 944 (0.2) 94.8 (0.2) 94.9 (0.3) 95.2 (0.3)

- LM os |mRv ‘ M ‘ LM

096 53 =£ 085 Eﬁ E\éZRL—MVSC

[— T = [— Y 0.95
MNIST YouTube 3sources BBCsports

Fig. 4. Comparison of ERL-MVSC with fused multi-view and single-view information, where Vn indicates the n-th view is used.

images. AMGL and MLAN are graph-based multi-view well on HW and ALOI, but achieve unsatisfactory
semi-supervised classification methods. They perform performance on BBCsports and 3sources as shown in
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CLASSIFICATION ACCURACY (%) COMPARISON OF DIFFERENT ALGORITHMS ON YOUTUBE AND 3SOURCES. THE BEST RESULTS ARE HIGHLIGHTED IN

TABLE V

RED BOLDFACE AND THE SECOND BEST ARE MARKED WITH BLUE BOLDFACE. (HIGHER MEANS BETTER)

Datesets | Methods 10% 20% 30% 40% 50% 60% 70% 80%
SVM 205 24) 260 (1.6) 298 (1.3) 33.0 (1.5 358 (1.5 388 (1.8) 405 (1.9) 42.7 (3.0)
AMGL 442 (0.8) 543 (14) 609 (1.0) 63.8(0.6) 659(1.2) 68.1(0.9) 71.0(L7) 71.7(1.5)
MVAR 37.6 (1.8) 448 (2.8) 524 (0.9) 54.1(3.9) 59.6(24) 619 (2.1) 63.7(1.4) 648 (3.1)
YouTube MLAN 37.0 (13)  43.0(0.8) 46.2(1.2) 488 (1.9) 49.6(1.8) 51.6(1.9) 523 (24) 53.7(3.1)
AWDR 36.1 2.8) 434 (1.1) 51.8(1.3) 558 (1.7) 57.2(1.9) 58.1(1.7) 584 (2.0) 61.0(1.9)
Co-GCN | 58.0 (0.5) 652 (1.3) 70.6 (0.9) 71.4(0.7) 727 (1.1) 74.6 (1.4) 757 (1.0) 76.0 (1.0)
HLR-M2VS | 327 (1.1) 372 (0.8) 404 (1.4) 423 (0.7) 439 (1.2) 462 (1.9) 482 (1.9) 469 (1.8)
ERL-MVSC | 57.4 (1.8) 63.3 (1.3) 66.6 (1.3) 68.6 (0.9) 712 (1.4) 733 (17) 74.0 (1.6) 75.0 (2.5)

Datesets | Methods 10% 20% 30% 0% 50% 60% 70% 30%
SVM 338 (1.4) 380 (9.6) 42.1(89) 462 (3.8) 514 (55 569 (53) 569 (69) 60.6 (8.5)
AMGL 39.9 (7.9) 419 (59) 450 (34) 468 (3.5) 43.8 (4.7) 482 (2.8) 462 (7.6) 443 (7.1)
MVAR 46.8 (13.6) 662 (83) 65.6(1.0) 753 (5.1) 77.2(32) 756 (9.8) 78.0(6.1) 81.8(7.9)
3sources MLAN 455(10.2) 55.0 (2.8) 572 (3.6) 553 (45) 60.0(6.7) 586 (4.5) 564 (43) 5658 (6.6)
AWDR 50.1 (7.6) 78.7 (8.5) 748 (1.5 820 (74) 863 (3.0) 89.7(1.5) 83.0(3.0) 82.4(2.9)
Co-GCN | 534(1.6) 759 (22) 78.1(1.3) 81.1 (2.0) 845(1.8) 853 (3.6) 909 (0.9 922 (3.7)
HLR-M2VS | 69.1 (7.5) 757 (47) 80.6 (5.1) 829 (4.5) 834 (43) 84.6(3.1) 857(5.0) 87.9(5.6)
ERL-MVSC | 73.4 (0.9) 834 (23) 864 (3.4) 89.0 (2.8) 91.5(1.5) 924 (1.2) 94.0 (1.6) 95.3 (2.6)

TABLE VI

CLASSIFICATION ACCURACY (%) COMPARISON OF DIFFERENT ALGORITHMS ON BBCNEWS AND BBCSPORTS. THE BEST RESULTS ARE HIGHLIGHTED

IN RED BOLDFACE AND THE SECOND BEST ARE MARKED WITH BLUE BOLDFACE. (HIGHER MEANS BETTER)

Datesets Methods 10% 20% 30% 40% 50% 60% 70% 80%
SVM 255 (7.8) 396 (5.1) 504 (48) 574 (22) 63.6(3.1) 684 (33) 71732 74732
AMGL 535 (2.6) 587 (2.8) 61.5(2.1) 638 (24) 655(12) 645(2.6) 655(22) 664 3.1)
MVAR 67.4 (1.6) 87.6 (2.7) 923 (1.4) 929 (0.8) 93.5(1.0) 953 (1.2) 952 (15 96.1(1.5)
BBCrews MLAN 74.1(0.9) 737 (1.1) 73.7(1.0) 737 (1.0) 733(19) 759 (1.9 763 (L.1) 76.1(2.6)
AWDR 85.7 (1.4) 909 (5.7) 94.0 (1.5) 94.8 (0.6) 94.7 (0.6) 96.5 (0.4) 95.8 (1.4) 959 (1.8)
Co-GCN | 819 (1.5) 889 (1.3) 88.5(0.7) 89.8(1.0) 925 (0.6) 94.4(0.6) 957 (0.5 972 (L1)
HLR-M2VS | 77.8 (4.1) 839 (2.3) 87.8(1.6) 89.2(24) 90.1 (1.9) 909 (22) 91.9 (2.2) 92.3 (2.6
ERL-MVSC | 90.2 (1.8) 94.0 (1.0) 95.1 (1.1) 95.7 (1.5) 96.9 (1.8) 97.0 2.4) 98.2 (1.4) 98.3 (2.0)

Datesets Methods 10% 20% 30% 20% 50% 60% 70% 80%
SVM 175 (6.1) 260 (6.1) 443 (5.1) 598 (25 669 (24) 764 (1.8) 788 (4.1) 82.8 (3.5
AMGL 55.6 (1.4) 599 (1.8) 61.3(1.2) 62922 633(L7) 61424 63824 623(@4.1)
MVAR 76.8 (9.6) 89.5(3.7) 934(23) 951(1.2) 957 (20) 966 (1.2) 96.7(23) 97.6 (1.5)
BBCsports MLAN 62.6 (2.2) 628 (1.0) 623 (0.6) 652(22) 64725 648 (0.7 62.6(L5) 65.1(3.3)
AWDR 81.3(33) 93.1 (4.0) 955 (0.8) 95.7(0.8) 96.0(0.4) 969 (1.5) 98.2(12) 969 (2.8)
Co-GCN | 842 (1.4) 929 (1.1) 952 (0.8) 96.9 (0.6) 97.4 (0.6) 97.8 (0.6) 98.1 (0.6) 98.5 (1.1)
HLR-M2VS | 88.5 (4.1) 923 (1.8) 94.5(1.2) 954 (0.9) 959 (1.3) 964 (12) 965 (1.9) 95.7 (1.4)
ERL-MVSC | 90.2 (2.3) 93.5(32) 958 (1.0) 97.2(0.9) 97.8 (1.1) 98.1 (1.0) 98.2 (1.3) 98.8 (2.0)

TABLE VII

OVERALL AVERAGE CLASSIFICATION ACCURACY (%) COMPARISON OF DIFFERENT METHODS ON ALL TEST DATASETS. THE BEST RESULTS ARE
HIGHLIGHTED IN RED BOLDFACE AND THE SECOND-BEST ONES ARE MARKED WITH BLUE BOLDFACE

Methods 10% 20% 30% 40% 50% 60% 70% 80%
SVM 334 (32) 44.0@3.5) 50.729) 553((24) 58620 62021 63525 651 3.0)
AMGL 526 24) 574 2.1) 608 (1.3) 625(1.5) 63.1(1.3) 642(1.3) 651(22) 652(23)
MVAR 586 (6.3) 65437 67.8(2.1) 751(24) 76719 77022 78127 795 (2.6)
MLAN 58.1 (23) 615(1.2) 623 (14) 635(L.7) 64219 642(L7) 619(13) 655 23)
AWDR 703 (3.0) 784 (1.8) 788 (1.0) 825(0.6) 83.2(1.5 846 (l.1) 844(19) 845 (1.8)
Co-GCN 73.6 (0.9) 81.6 (1.1) 83.2(0.9) 84.0 (1.0) 858 (1.2) 86.1(1.2) 86.2(1.8) 874 (1.0)
HLR-M2VS | 69.9 (3.1) 753 (1.8) 78.5(1.7) 80.1(1.4) 81.1(1.4) 819 (1.4 829 (1.8 83.1(1.8)
ERL-MVSC | 79.6 (1.1) 84.5(1.3) 86.5(1.00 87.7(0.9) 889 (1.0) 89.7(1.1) 90.3 (1.0) 90.8 (1.5)

Tables V and VI. This instability may be due to the
fact that the constructed graphs are easily affected by
the type and quality of data. HLR-M?VS constructs a
hypergraph rather than a traditional pairwise graph on

an optimized subspace representation to discover high-
order local geometrical structures; Co-GCN employs a
graph convolutional network for label propagation to
exploit the structural information from different views
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Fig. 5. Performance comparison of various methods

with the expressive power of neural network. Both of
them avail to achieve robust performance. MVAR and
AWDR are regression-based methods. MVAR can auto-
matically weaken the impact of low-quality classifier and
bypass the problem of graph construction by directly
regressing to labels, which can improve the stability of
classification performance to some extent. AWDR maps
multi-view data into a low-dimensional discriminative
subspace to enhance the discriminability of the features
for subsequent classification, which achieves better and
more robust performance than MVAR. The proposed
method ERL-MVSC outperforms the state-of-the-arts
on seven of the eight datasets. An exception is the
YouTube dataset, on which our method is ranked the
second best of all algorithms. This may be attributed to
the reason that the graph convolutional network is more
effective in capturing high-dimensional dense features of
YouTube. Nevertheless, from the overall average perfor-
mance shown in the Table VII, ERL-MVSC outperforms
all compared methods, which validates the superiority of
ERL-MVSC.

Superior label-utilization capability of ERL-MVSC: As
shown in Fig. 5, exploiting more training samples
does not necessarily bring positive effects. It may
hinder their evolution towards higher agreement lev-
els, resulting in unsatisfactory performance. For exam-
ple, the performance of MVAR on HW tends to
decrease when the labeling ratio < 0.3; The per-
formance of MLAN on MNIST presents a descend
trend when label rate varies in [0.4, 0.7]; In con-
trast, the proposed ERL-MVSC still remains sta-
bly rising performance with more label information.
This indicates that ERL-MVSC can effectively utilize
label information and propagate them to unlabeled
data.

0.1 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08
Proportion of labels

BBCsports

Proportion of labels

BBCnews

as the ratio of labeled data ranges in {0.1,0.2, ---,0.8}.

To intuitively show the classification performance, Fig. 6
presents scatter diagrams of all algorithms with 0.1 label
ratio on a subset of MNIST with 2,000 samples. We first
concatenate feature vectors of 3 views together, and employ
t-distributed stochastic neighbor embedding (t-SNE) [51] to
project the original high-dimensional data onto a 2 D space.
The mapped 2 D data is then colored with the class labels
obtained by different methods and ground truth. In this figure,
our ERL-MVSC method assigns more consistent class labels
with the ground truth, which further validates the effectiveness
and superiority of our model.

E. Model Analysis

1) Runtime Complexity: Table VIII compares the runtime
complexities of different algorithms on all test datasets. With
10% labeled samples, we execute each algorithm 10 times and
report the average execution time. From Table VIII, Co-GCN
and HLR-M?VS consume more time than the other methods
due to the parameter training of graph neural network and the
computations for hyper-graph construction, respectively. Our
ERL-MVSC method performs stably and exhibits a good run-
ning speed compared with the other competitors. Considering
its superior classification performance, its time consumption
is acceptable for real-world applications.

2) Convergence Validation: Fig. 7 shows the convergence
behaviors of ERL-MVSC on ALOI, YouTube, 3sources and
BBCnews under 10% of label samples. From the figure,
the objective function values decrease with increasing itera-
tion number and then reach convergence within 5 iterations.
The fast convergence speed suggests the effectiveness of
ERL-MVSC and its good scalability in practical application.
Fig. 8 shows the evolution of view weights on the other four
test datasets. Each view weight is initialized equally and then
converge within a limited number of iterations, which also
indicates the stable convergence of ERL-MVSC.
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TABLE VIII

RUN-TIME COMPLEXITY COMPARISON OF CLASSIFICATION WITH DIFFERENT ALGORITHMS ON EIGHT DATASETS (IN SECONDS). THE BEST RESULTS
ARE HIGHLIGHTED IN RED BOLDFACE AND THE SECOND BEST ARE MARKED WITH BLUE BOLDFACE. IN MNIST DATASET, THE RESULT OF
HLR-MZ2VS Is NOT SHOWN DUE TO ITS OUT-OF-MEMORY EXCEPTIONS. (LOWER MEANS BETTER)

Datasets SVM AMGL MVAR MLAN AWDR Co-GCN HLR-M?VS ERL-MVSC
ALOI 13.8 12 24 2.8 0.2 2,676.2 103.6 0.9
Caltech101  688.0  346.6 521.3 1210.3 25.9 2,320.3 78,206.3 400.3
HW 9.3 6.0 16.3 79.1 0.6 568.2 1,351.9 6.0
MNIST 331 21155 4327 114545 23.6 36,012.6 - 2,397.3
YouTube 33.8 29 272 22.1 44 968.4 412.19 5.8
3sources 0.5 0.1 04 0.2 8.4 29.2 784.4 0.2
BBCnews 1.9 0.7 74 2.1 32.5 394.6 66.0 146.5
BBCsports 0.3 0.2 1.9 0.7 24 172.2 21.6 31.0

3) Parameter Sensitivity: To investigate the performance
variations of proposed method under different settings, para-
meter sensitivity analysis is conducted with respect to different
labeling ratios. There are four parameters in our model,
including the smoothing factor «, the embedding parameter /3,
the regularization parameter y and the fitting coefficient J. For
each parameter, we find the optimal values on each dataset by

grid searching, and then select an acceptable common value to
implement multi-view classification in all benchmarks. Herein,
we mainly present the parametric sensitivity of #, y and J, as
shown in Figs. 9 ~ 11.

While keeping a, y and J unchanged, the accuracy vari-
ation curves are reported in Fig. 9, where the embedding
parameter £ ranges in {107, 1074, ..., 10%}. The best results
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of ERL-MVSC are attained at [10_5, 1], then the perfor-
mances sharply decrease as f exceeds 1 in most cases.
It may be attributed to the following reason. As Y

—1
(% M+MT) + I) L, the necessary condition for the exis-

-1
tence of (%(M +M7) + I) is that the spectral radius of

%(M +MT) is less than 1. A large § will make the spectral
radius of %(M + MT) exceed 1, resulting in unsatisfactory
performance.

With fixed a, f and ¢, the parametric sensitivity of the
proposed ERL-MVSC with respect to y is analyzed in
Fig. 10, where the regularization parameter y varies in

{10_4, 1073, ..., 10, 104}. It shows that the classification
performance of ERL-MVSC is relatively stable when y
falls in the range of [1,10*]. However, when y is very
small (close to 0), its classification performance becomes
poor. This fact demonstrates the importance of sparsity
constraint.

Keeping a, f and y unchanged, the classification perfor-
mance of ERL-MVSC is reported in Fig. 11. Herein, the fitting
coefficient J ranges in {10°1,1,---,10°,10°). The overall
performance is relatively stable when ¢ varies in the range
of [10', 10°]. However, similar to the parameter sensitivity
analysis of £, a smaller § may make the spectral radius
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of %(M + MT) to be greater than I, resulting in inaccurate
label assignment.

V. CONCLUSION

In this paper, we proposed a multi-view semi-supervised
classification algorithm named ERL-MVSC, that exploits
diversity, sparsity and consensus information of different
views. Extensive experiments performed on eight datasets
demonstrate the clear superiority of ERL-MVSC compared
to the state-of-the-art algorithms. In the future, a more accu-
rate embedding regularizer for multi-view semi-supervised
classification may be learned by deep learning techniques.
Particularly, a link between embedding regularizers and graph
convolutions can be constructed to handle the problem with
severely limited labeled data.
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