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Multi-View Data Fusion Oriented Clustering
via Nuclear Norm Minimization

Aiping Huang , Member, IEEE, Tiesong Zhao , Senior Member, IEEE, and Chia-Wen Lin , Fellow, IEEE

Abstract— Image clustering remains challenging when han-
dling image data from heterogeneous sources. Fusing the indepen-
dent and complementary information existing in heterogeneous
sources together facilitates to improve the image clustering
performance. To this end, we propose a joint learning framework
of multi-view image data fusion and clustering based on nuclear
norm minimization. Specifically, we first formulate the problem
as matrix factorization to a shared clustering indicator matrix
and a representative coefficient matrix. The former is constrained
with orthogonality and nonnegativity, which ensures the val-
idation of clustering assignments. The latter is imposed with
nuclear norm minimization to achieve compression of principal
components for performance improvement. Then, an alternating
minimization strategy is employed to efficiently decompose the
multi-variable optimization problem into several small solvable
sub-problems with closed-form solutions. Extensive experimental
results on real-world image and video datasets demonstrate
the superiority of proposed method over other state-of-the-art
methods.

Index Terms— Unsupervised learning, data fusion, multi-view
clustering, matrix factorization, nuclear norm.

I. INTRODUCTION

AVARIETY of image datasets in real world comprise var-
ious multi-view representations. As illustrated in Fig. 1,

an image can be represented by different features, an ani-
mation can be encoded as a video or as an audio, and
a scenario can be described either in images or in texts.
Given specific learning tasks, discovering hidden patterns
and latent semantics from these views refers to multi-view
learning. Extensive studies [1]–[4] have revealed that multi-
view learning is more effective, robust, promising and general
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Fig. 1. Examples of multi-view data.

than single-view learning, because it considers the diversity of
different views and exploits the joint merits of these views.
Therefore, multi-view technology is of great potential for
benefiting many applications such as image recognition [5],
image segmentation [6], natural language processing [7] and
multimedia understanding [8].

Multi-view clustering aims at grouping data points into
a certain number of patterns by exploiting compatible and
complementary information of multi-view data. The past
decade has witnessed a booming of multi-view clustering
methods based on Canonical Correlation Analysis (CCA),
matrix factorization, subspace and spectral. CCA is an impor-
tant technique for identifying relationships among different
views and simultaneously constructing a common space. It
has been widely used in multi-view scenario for addressing
the clustering problem of paired data [9]–[11] and incomplete
view [12], [13]. Matrix factorization-based methods [14], [15]
are equivalent to the relaxed K-means by decomposing the
feature matrix into a centroid matrix and the cluster assign-
ment. Subspace clustering [16], [17] aims at learning a latent
low-dimensional representation to correctly cluster data points
based on the learned features. Recently, many subspace-based
methods have been proposed, including diversity-induced [18],
multi-manifold regularized [19], deep low-rank ensemble [20],
correlation consensus based [21], and tensor based [22], [23]
multi-view clustering. Spectral-based clustering involves low-
dimensional embedding of the affinity matrix between sam-
ples, followed by K-means clustering. It is a representative
model of unsupervised learning with several variants devel-
oped for multi-view clustering, such as co-regularized [24], co-
training [25], robust [26], low-rank [27], [28], one-step [29],
kernel based [30] and essential tensor [3] multi-view spectral
clustering.
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Fig. 2. Framework for the proposed method. In our method, features of images from k views are extracted, then the proposed MVDFC problem is formulated
as a canonical form of matrix factorization of a shared indicator matrix and respective representative coefficient matrices.

Certainly, there are still plenty of substantial research
results that are not mentioned above, such as graph learning
based [31], [32], consensus guided [21], [33] and incom-
plete [34] multi-view clustering. However, most of these
multi-view clustering methods mainly focused on finding a
reduced subspace structure, and then employing a two-step
pipeline to obtain features and cluster sequentially, which often
results in a suboptimal clustering performance. Moreover,
it is crucial to scoop out favorable geometric structures from
the given data that may overlap. To this end, we propose a
joint learning framework for both multi-view data fusion and
clustering in this paper. The former task is to search a compact
feature fusion with regularized structured learning, while the
latter aims to achieve accurate clustering with a tailored low-
dimensional representation.

As demonstrated in Fig. 2, the proposed framework first
extracts the features of images from k views, and then
formulates the proposed multi-view data fusion oriented
clustering (MVDFC) problem as a canonical form of matrix
factorization of a shared indicator matrix and respective repre-
sentative coefficient matrices. Through iteratively minimizing
the canonical form and updating view weight, we ultimately
obtain a shared indicator matrix for assigning the cluster
labels. Note that the shared matrix is imposed with orthogonal-
ity and non-negativity constraints to ensure the validation of
the clustering indicator matrix. Simultaneously, the coefficient
matrices are constrained with nuclear norm minimization,
aiming at capturing principal components of different views
for performance improvement. The main contributions of this
paper are summarized as follows:

• Proposing a joint model that integrates multiple views
into a comprehensive representation to simultaneously
learn multi-view fusion weights and make clustering
assignments.

• Factorizing the proposed problem formulation into several
small sub-problems, and then employing an alternative
optimization method to solve the problems by deriving
respective closed-form solutions.

• Proposing an efficient iterative optimization algorithm to
properly make clustering assignments and update fusion
weights.

• Conducting extensive experiments on several real-world
image and video datasets to demonstrate the superiority of
our method over the compared state-of-the-art methods.

The rest of this paper is arranged as follows. Section II
introduces some related work to this paper. In Section III,
a joint learning framework of multi-view data fusion and clus-
tering is proposed and the corresponding iterative algorithm
is developed. Section IV presents the experimental results and
analyses. We explore the extension of the proposed framework
to general multi-view learning in Section V. Finally, this paper
is concluded in Section VI.

II. RELATED WORK

Multi-view data captures rich compatible and complemen-
tary information among diverse data sources, which can be
beneficial to clustering tasks.

Early multi-view clustering studies mainly focused on han-
dling two-view data. For example, [35] extended K-means to
settle the clustering problem of two conditionally independent
views. Reference [24] proposed a co-regularized multi-view
spectral clustering method in which the eigenvectors of graph
Laplacian are adopted as predictor functions. To incorporate
more views, [36] developed a multiple graph framework to
automatically learn optimal weights of different views. Ref-
erence [37] presented a robust large-scale multi-view clus-
tering method based on K-means, in which L2,1-norm was
introduced to improve the robustness when handling outliers.
In [26], a shared low-rank transition probability matrix from
different views was recovered and then fed to a standard
Markov chain model for clustering. Reference [21] employed
correlation consensus among multi-view data to formulate
a subspace clustering framework. Reference [27] designed
an iterative low-rank based structured optimization algorithm
to preserve the local manifold structure of heterogeneous
views. Reference [38] proposed a group-aware multi-view
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TABLE I

SUMMARY OF KEY NOTATIONS USED IN THE PAPER

fusion approach with pair-wise fusion and center-wise fusion
to improve fusion accuracy while reducing computational
complexity.

The aforementioned methods perform clustering in a sepa-
rate procedure, i.e., first learning a shared representation for
multi-view features, then employing a traditional method such
as K-means to produce the final clusters. Similar approaches
also include CCA-based multi-view clustering [11]–[13]. They
project the multi-view high-dimensional data onto one com-
mon low-dimensional space, where existing clustering meth-
ods are subsequently conducted. However, the separate clus-
tering steps usually result in suboptimal performance because
the relationship between multi-view feature learning and clus-
tering is not well exploited.

Recently, several advanced methods have been proposed.
For example, in [4], Nie et al. designed a multi-view model
to perform clustering and local structure learning simulta-
neously; In [39], they proposed a self-weighted method to
directly assign the cluster label for each data point without
any postprocessing; In [40], they presented an adaptively
weighted procrustes technique to learn an indicator matrix
for multi-view clustering. In addition, Huang et al. [41]
used kernel spaces to learn similarity relationships among
different views and perform multi-view clustering task simul-
taneously. Different from the above methods, we propose
a joint framework for multi-view data fusion and cluster-
ing assignments, where orthogonality and nonnegativity are
imposed to constrain the clustering indicator matrix, and
nuclear norm minimization is utilized to restrict the coefficient
matrices.

III. JOINT MULTI-VIEW DATA FUSION AND

CLUSTERING VIA NUCLEAR

NORM MINIMIZATION

In this section, we propose a joint learning framework
of multi-view data fusion and clustering with an effective
optimization algorithm. The key notations used in the paper
are summarized in Table I.

A. Problem Formulation

For an input of multi-view data sources {Xi }k
i=1 with the

view number k and Xi ∈ Rn×di , each view is regarded as
a consolidated description of data points. MVDFC is to fuse
all collected features into a unified representation to learn an
efficient low-dimensional embedding for the clustering task.
It is noted that all individual views share the same clustering
indicator matrix but possess diverse representation coefficient
matrices. Consequently, the objective function of MVDFC can
be abstracted as the following canonical form

min
H,W

k∑
i=1

�(Xi ,HWi )+ φ(H)+ ψ(Wi ). (1)

Here, H ∈ Rn×c is a shared clustering indicator matrix to

be learned, W = [W1, · · · ,Wk ] ∈ R

c×
k∑

i=1
di

with Wi being
the coefficient matrix associated with the i -th view, �(◦, ◦)
is a specific loss function, and φ(H), ψ(Wi ) are respective
constraints for H, Wi . Intuitively, data from various views are
inclined to capture different properties, which motivates us to
utilize an adaptive weight vector, instead of equal importance,
to highlight significant views. Therefore, the above optimiza-
tion problem is further represented as

min
α,H,W

k∑
i=1

α
γ
i �(Xi ,HWi )+ φ(H)+ ψ(Wi ). (2)

where α = [α1, · · · , αk]T ∈ Rk is the vector of weights for
the k views and γ ≥ 0 is a predefined constant to enhance the
metric learning of loss function.

Next, we will explore the specific forms of the loss function
and constraints. We aim to directly derive an indicator matrix
H for clustering assignment from a joint framework without
any postprocessing, which induces two necessary but not
sufficient conditions, i.e., HT H = I and H ≥ 0. Meanwhile,
the coefficient matrix Wi is restricted with a compact com-
pression and further represented as nuclear norm minimization
to capture the principal components of different views. When
specifying the loss function based on F-norm, the objective
function of MVDFC is written as

min
α,H,W

k∑
i=1

α
γ
i ||Xi − HWi ||2F + βi ||Wi ||∗

subject to α ≥ 0,
k∑

i=1

αi = 1,H ≥ 0,HT H = I, (3)

where the conditions α ≥ 0 and
k∑

i=1
αi = 1 jointly guarantee

the regularization of α.
Due to the orthogonality constraint HT H = I, the opti-

mization problem becomes a high-order (fourth-order) matrix
factorization problem, which makes it difficult to solve. To
address the problem, a relaxation trick is proposed. Let
H = [h1, · · · ,hc] ∈ R

n×c where hi ∈ R
n is a column vector

for i ∈ {1, 2, · · · , c}. It is clear that

hT
i h j =

{
1, i = j,
0, i �= j,

(4)
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implying
∑
j �=i

hT
i h j = 0 which is equivalently represented as

T r(H�HT ) = 0 (5)

where � ∈ Rc×c is a constant matrix, defined as

� =

⎡⎢⎢⎢⎣
0 1 · · · 1 1
1 0 · · · 1 1
...

...
...

...
1 1 · · · 1 0

⎤⎥⎥⎥⎦ . (6)

Consequently, the objective function of MVDFC is then rewrit-
ten as

min
α,H,W

k∑
i=1

α
γ
i ‖Xi −HWi‖2

F +βi‖Wi‖∗+λT r(H�HT )

subject to α ≥ 0, 1Tα = 1,H ≥ 0, (7)

where 1 ∈ R
k is a column vector whose entries are equal to

one, and λ > 0 is a parameter to weigh the importance of the
orthogonality of H. Notice that � can be extended to be any
graph Laplacian matrix.

B. Alternating Optimization Algorithm

In order to settle the aforementioned optimization problem,
two intermediate optimization matrix variables G ∈ Rn×c and

V = [V1, · · · ,Vk] ∈ R

c×
k∑

i=1
di

are introduced to separate H
and W. Consequently, Equation (7) can be rewritten as

min
α,H,G,W,V

k∑
i=1

α
γ
i ||Xi −GVi‖2

F +βi‖Wi‖∗+λTr(G�GT )

subject to α ≥ 0, 1Tα = 1,H ≥ 0,H−G=0,W−V=0.

(8)

With the alternating direction method of multipliers (ADMM),
the optimization problem can be equivalently transformed into
minimizing

L(α,H,G,W,V,Y1,Y2) =
k∑

i=1

α
γ
i ||Xi − GVi ||2F

+ βi ||Wi ||∗ + λT r(G�GT )+ Tr(YT
1 (W − V))

+ ρ1

2
||W − V||2F + T r(YT

2 (H − G))+ ρ2

2
||H − G||2F

subject to α ≥ 0, 1Tα = 1,H ≥ 0, (9)

where Y1 ∈ R

c×
k∑

i=1
di

and Y2 ∈ Rn×c can be regarded as two
penalty matrices for narrowing W − V and H − G to zero
matrix 0.

The optimization problem (9) can then be solved by the
following iterative updating rules, with initialization settings

α0, H0, G0, W0, V0, Y0
1, Y0

2:

αt+1 = arg min
α

L(α,Ht ,Gt ,Wt ,Vt ,Yt
1,Yt

2), (10)

Ht+1 = arg min
H

L(αt+1,H,Gt ,Wt ,Vt ,Yt
1,Yt

2), (11)

Gt+1 = arg min
G

L(αt+1,Ht+1,G,Wt ,Vt ,Yt
1,Yt

2), (12)

Wt+1 = arg min
W

L(αt+1,Ht+1,Gt+1,W,Vt ,Yt
1,Yt

2), (13)

Vt+1 = arg min
V

L(αt+1,Ht+1,Gt+1,Wt+1,V,Yt
1,Yt

2),

(14)

Yt+1
1 = Yt

1+ρ1(Wt+1 − Vt+1), (15)

Yt+1
2 = Yt

2+ρ2(Ht+1 − Gt+1). (16)

Next, we will find the optimal solutions to all the above
subproblems with respect to α, H, G, W and V, respectively.

Updating α when keeping H, G, W and V. Eliminating
constant terms of L(α,H,G,W,V,Y1,Y2), the subproblem
of updating α is written as

min
α

J =
k∑

i=1

α
γ
i ||Xi − GVi ||2F subject to α ≥ 0, 1Tα = 1.

(17)

Using the Lagrange multiplier method, we construct a
Lagrangian function as

L(α,μ) =
k∑

i=1

α
γ
i ||Xi − GVi ||2F − μ(1Tα − 1). (18)

Taking the derivative of L(α,μ) with respect to α and μ,

∂L
∂α i

= γα
γ−1
i ||Xi − GVi ||2F − μ,

∂L
∂μ

= 1Tα − 1. (19)

Setting ∂L
∂α = 0 and ∂L

∂μ = 0, we have

αi =
(||Xi − GVi ||2F

)1/(1−γ )

k∑
i=1

(||Xi − GVi ||2F
)1/(1−γ )

. (20)

Updating H when keeping α, G, W and V. The subprob-
lem of updating H aims to solve the minimization problem

min
H≥0

ρ2

2
||H − G||2F + T r(YT

2 (H − G)) (21)

= min
H≥0

ρ2

2
||H − G + 1

ρ2
Y2||2F − 1

2ρ2
||Y2||2F (22)

which refers to the following closed-form solution:

H∗ = [G − 1

ρ2
Y2]+ (23)

where [a]+ is the positive part of a, i.e., [a]+ = max{a, 0}.
Once the clustering indicator matrix H∗ is achieved, the clus-
tering label yi for input sample xi can be calculated by the
following decision function:

yi = arg max
j

H∗
i j .

∀i = 1, 2, · · · , n. ∀ j = 1, 2, · · · , c. (24)
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Updating G when keeping α, H, W and V. The subprob-
lem of updating G is formulated as

min
G

J =
k∑

i=1

α
γ
i ||Xi − GVi ||2F + λT r(G�GT )

+ Tr(YT
2 (H − G))+ ρ2

2
||H − G||2F . (25)

Notice that the above optimization problem is unconstrained,
hence its optimal solution is attained at ∂J

∂G = 0. Setting the
derivative of J with respect to G to zero, we have

∂J
∂G

=
k∑

i=1

α
γ
i (−2Xi VT

i + 2GVi VT
i )+ 2λG�

− Y2 + ρ2(G − H) � 0 (26)

which leads to the optimal value

G∗=
(

k∑
i=1

α
γ
i Xi VT

i + Y2

2
+ ρ2H

2

)(
k∑

i=1

α
γ
i Vi VT

i +λ�+ ρ2I
2

)−1

.

(27)

Updating W when keeping α, H, G, and V. The subprob-
lem of updating W is equivalent to

min
W

J =
k∑

i=1

ρ1

2
||Wi − Vi ||2F + T r(YT

1,i(Wi − Vi ))

+ βi ||Wi ||∗ = min
W

k∑
i=1

ρ1

2
||Wi − Vi + 1

ρ1
Y1,i ||2F

+ βi ||Wi ||∗ − 1

2ρ1
||Y1,i ||2F (28)

where Y1 = [Y1,1, · · · ,Y1,k] with Y1,i ∈ Rc×di . The above
equation follows a closed-form solution with

W∗
i = UDβi/ρ1(�)V

T (29)

in which Vi − 1
ρ1

Y1,i = U�VT is the singular value decompo-
sition (SVD) and Dτ (�) is the soft-thresholding operator [42],
i.e.,

Dτ (�) = diag(
[[�11 − τ ]+, · · · , [�cc − τ ]+

]
). (30)

Updating V when keeping α, H, G, and W. The subprob-
lem of updating V is transformed into

min
V

J =
k∑

i=1

α
γ
i ||Xi − GVi ||2F + T r(YT

1 (W − V))

+ ρ1

2
||W − V||2F . (31)

Similar to Problem (25), the above optimization issue is
unconstrained, hence its optimal value is attained by setting
∂J
∂V = 0. Taking the derivative of J with respect to Vi ,
we obtain
∂J
∂Vi

=αγi (−2GT Xi +2GT GVi )−Y1,i +ρ1(Vi −Wi). (32)

Setting ∂J
∂Vi

= 0, we can compute the optimal solution as

V∗
i =

(
2αγi GT G+ρ1I

)−1 (
2αγi GT Xi +Y1,i +ρ1Wi

)
. (33)

Algorithm 1 Algorithm for MVDFC

Summarizing the aforementioned analyses of respective
optimal solutions to all subproblems, an algorithm for
MVDFC is presented in Algorithm 1.

The proposed algorithm employs the ADMM strategy to
decompose the multi-variable optimization problem into sev-
eral small solvable sub-problems. At each iteration, we obtain
the closed-form solution of Ht+1 and Wt+1. In [43], the con-
vergence of ADMM has already been proven. Accordingly,
the proposed algorithm converges as well. Meanwhile, exper-
imental evidence on real data also validates the good conver-
gence behavior.

As to the computational complexity of the proposed method,
computing H and G consumes O(nc) and O(n2c + ndc).
Simultaneously, updating W and V respectively requires
O(c3 + dc2) and O(ndc). Considering that the number c of
clusters is much smaller than d and n, the overall computa-
tional complexity is O(n2 + nd).

IV. EXPERIMENTAL RESULTS

In this section, comprehensive experiments on real-world
image and video datasets are conducted for performance
evaluation of the proposed method.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 24,2020 at 05:31:50 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: MULTI-VIEW DATA FUSION ORIENTED CLUSTERING VIA NUCLEAR NORM MINIMIZATION 9605

Fig. 3. An illustration of samples images from three selected datasets.

TABLE II

SUMMARY OF THE EVALUATION DATASETS

A. Dataset

Six publicly available datasets are employed to conduct fair
evaluations for all the compared methods. These datasets are
derived from real-world applications and are appropriate for
exploring multi-view learning issues.

ALOI is a collection of color images with small foreground
objects, which are taken with various viewing angles, illu-
mination directions, and object orientations. Its features are
extracted from four views, including RGB color histograms,
HSV color histograms, color similarity and Haralick texture
features1.

Caltech101 is an image database with 101 categories, from
which we select the most widely used 20 classes, a total
of 2,386 samples, each with 3,766 features from six views,
including 48-D Gabor feature, 40-D wavelet moments features,
254-D CENTRIST features, 1,984-D HOG features, 512-D
GIST features, and 928-D local binary pattern (LBP) features2.

MNIST is a collection of handwritten digits, from which
10,000 samples are used for testing, along with three views of
features produced by IsoProjection with 30 dimensions, linear
discriminant analysis with 9 dimensions, and neighborhood
preserving embedding with 30 dimensions3.

MSRC-v1 is a set of 210 images with 7 classes, each class
containing 30 images4. We extract visual features from several
views, namely 24-D CMT features, 576-D HOG features,
512-D GIST features, 254-D CENTRIST features, and
256-D LBP features.

NUS-WIDE is a web image database for object anno-
tation and retrieval5. For better fitting multi-view learning
problems, we select 1,600 images from 10 categories, each
with 160 images. The extracted features consist of 64-D

1http://aloi.science.uva.nl/
2http://www.vision.caltech.edu/Image_Datasets/Caltech101/
3http://yann.lecun.com/exdb/mnist/
4https://www.microsoft.com/en-us/research/project/image-understanding/
5https://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

color histogram, 144-D color correlogram, 75-D edge direction
histogram, 128-D wavelet texture, 225-D block-wise color
moments, and 500-D bag-of-words.

Youtube is a dataset of multi-view video games6.
2,000 samples are selected, each being described from six
views consisting of both audio features (mfcc, volume stream,
and spectrogram stream) and visual features (cuboids his-
togram, hist motion estimate, and hog features).

Several sample images are demonstrated in Fig. 3 and a
brief description of the aforementioned datasets is presented
in Table II.

B. Compared Algorithms and Parameter Selection

In order to fairly evaluate the effectiveness and efficiency
of the proposed algorithm, we compare our method with
the following six representative and state-of-the-art clustering
approaches.

K-means is a classical data clustering method and usually
serves as a benchmark of clustering tasks. It is inclined to
cluster data into spherical distributions and is sensitive to
initial values.

MVCC (multi-view concept clustering) [44] exploits com-
plementary knowledge from multi-view data, rather than solely
relying on an individual view. It casts multi-view clustering
as the problem of concept decomposition with local manifold
structure regularization.

AMGL (auto-weighted graph learning) [36] is founded
on multi-graph spectral clustering and searches the optimal
weight of each graph. Moreover, it further extends the multi-
view clustering problem to semi-supervised learning, and
recasts it as a convex optimization problem with a global
solution.

MLAN (multi-view learning with adaptive neighbors) [45]
is a framework to address multi-view learning and local

6http://archive.ics.uci.edu/ml/datasets/YouTube+Multiview+Video+
Games+Dataset
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structure embedding simultaneously, that yields an optimal
graph with a certain number of connected components, corre-
sponding to exact clustering assignments.

MVKSC (multi-view kernel spectral clustering) [30] uti-
lizes a weighted kernel canonical correlation method to exploit
complementary information from multiple views so as to
improve performance.

MSC-IAS [46] first utilizes multi-view information to learn
an intact space, then constructs the intactness-aware similarity
matrix in the space by HSIC, finally employs the spectral clus-
tering on the obtained similarity matrix to perform clustering.

There are several algorithmic parameters need to be set in
advance. For the proposed MVDFC, we treat the regularization
parameter for each view equally, and its parameters are fixed as
follows: the nonlinear factor γ = 2, regularization parameter
βi = 1, and weighted coefficient λ = 10. For all the algorithms
for comparison, we implement them through the source codes
provided by authors and adopt their default settings if feasible.
Due to the initialization sensitivities of clustering methods,
all the compared methods are repeated 20 times with random
initializations and the corresponding mean values and standard
deviations are reported. For single-view clustering method
K-means, we concatenate feature vectors of different views
together for the all-view clustering setting. As to MVCC,
we set the regularization parameter α = 100, and two trade-off
coefficients β = 100 and γ = 10. For AMGL, the maximal
number of iterations is fixed as 100, and the number of nearest
neighbors for similarity matrix construction is tuned as 5.
Regarding MLAN, the number of adaptive neighbors is set
as 9, and the maximal number of iterations is set as 30. For
MVKSC, the regularization parameter and kernel parameter
are set as 1 and 0.1, respectively. For MSC-IAS, its parameters
are fixed as follows: λ2 = 0.1, the dimension of intact space
d = 500 and the nearest neighbor number k = 3.

C. Evaluation Metrics

In order to assess the clustering performances of all
compared methods, we adopt four widely-used objective
quality metrics including clustering accuracy (ACC), normal-
ized mutual information (NMI), purity (Purity), and adjusted
rand index (ARI).

Given data points {xi }n
i=1, let pi and qi be the predicted

clustering label and the ground truth, respectively. ACC is
defined as

ACC =
∑n

i=1 δ(pi ,map(qi ))

n
(34)

with δ(a, b) = 1 if a = b, and δ(a, b) = 0 otherwise. Herein,
map(◦) is the best permutation mapping from the predicted
clustering label onto an equivalent label of the dataset, which is
frequently represented as a maximum matching problem [47].

Assuming the predicted clustering results C̃ = {C̃i }̃c
i=1 and

the ground-truth labels C = {C j }c
j=1, NMI is defined as

NMI(C, C̃)=
∑c̃

i=1
∑c

j=1 |C̃i ∩ C j |log
n|C̃i∩C j |
|C̃i ||C j |√

(
∑c̃

i=1 |C̃i |log |C̃i |
n )(

∑c
j=1 |C j |log

|C j |
n )

. (35)

A merit of NMI is that it does not necessarily increase with
the number of clusters, which makes it a popular metic of
clustering quality.

Purity is computed by counting the maximal number of
correctly clustered data. Formally, it is represented by

Purity(C, C̃) = 1

n

c̃∑
i=1

max
j

|C̃i ∩ C j |. (36)

Here, it is assumed that each predicted cluster is assigned with
the class that is the most frequent in the cluster.

As a widely used metric in clustering performance valida-
tion, ARI evaluates the similarity between two data clusterings.
Let ni j = |C̃i ∩ C j |, ai = ∑c

j=1 ni j and b j = ∑c̃
i=1 ni j for

all i ∈ {1, · · · , c̃} and j ∈ {1, · · · , c}, from which it follows

ARI(C, C̃)= �i j
(ni j

2

) − [�i
(ai

2

)
� j

(b j
2

)]/(n
2

)
1
2 [�i

(ai
2

) +� j
(b j

2

)] − [�i
(ai

2

)
� j

(b j
2

)]/(n
2

) . (37)

It is worth mentioning that the aforementioned c̃ and c are
not necessarily equal. Moreover, ACC, NMI, Purity, and ARI
range between 0 to 1, and are positively correlated to the
clustering performance.

D. Results and Analyses

We compare the performances of the proposed MVDFC
algorithm against that of the other six state-of-the-art algo-
rithms in terms of the four widely used metrics on ALOI,
Caltech101, MNIST, MSRC-v1, NUS-WIDE, and Youtube
datasets, as reported in Table III, where the numbers in
the parentheses are the standard deviations. From the table,
we have the following observations.

First, MVDFC outperforms the other state-of-the-art multi-
view clustering methods in most cases. Specifically, MVDFC
significantly outperforms the other methods on ALOI, MNIST,
MSRC-v1 and Youtube, though it just achieves comparable
performances on Caltech101 and NUS-WIDE. The superiority
of MVDFC lies in the fact that the proposed joint learning
framework facilitates to learn a compact low-dimensional rep-
resentation and make an accurate clustering assignment simul-
taneously. Meanwhile, the nuclear norm minimization step
effectively adjusts the low-dimensional embedding towards
enhancing the robustness of the learned data fusion subspace.

Second, the compared methods also exhibit respective
strengths in various scenarios. MSC-IAS is a subspace cluster-
ing model which can avoid the information loss for insufficient
views. By recovering an intact space from multi-view data,
MSC-IAS exceeds all the compared algorithms in terms of
NMI and Purity on NUS-WIDE. MLAN and AGML are
parameter-free methods. They can automatically allocate the
weight for each view without additional parameters. They per-
form well on Caltech101 and MSRC-v1, but achieve limited
performances on NUS-WIDE. This instability may due to the
constructed graphs are easily affected by the type and quality
of data.

Third, multi-view clustering is evidently more promising
than single-view one, as can be evidenced from the fact that
each multi-view clustering method outperforms single-view K-
means. This also indicates that the complementary knowledge
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TABLE III

PERFORMANCE COMPARISON OF DIFFERENT MULTI-VIEW CLUSTERING ALGORITHMS.
THE BEST RESULTS ARE HIGHLIGHTED IN BOLD (THE HIGHER THE BETTER)

Fig. 4. Visualizations of different multi-view clustering methods on the selected sample dataset.

gained from multiple data sources can provide a beneficial
potential for a more accurate unsupervised learning.

Fig. 4 also illustrates the learning performances for different
multi-view clustering approaches on HW which consists of
handwritten numerals from 0 to 9 digit classes, with total
2,000 patterns from 6 heterogeneous views, labeled with
10 classes. We stack the feature vectors of 6 views together.
Then the high-dimensional feature is mapped onto a 2D
subspace by a well-known dimension reduction method t-
SNE [48]. Finally, we color the mapped 2D data with the
cluster results obtained by different methods to visualize
the performances of different multi-view clustering methods.
Evidently, a better performance should be closer to the ground
truths. In this sense, the visualized results shown in Fig. 4
reflect that the proposed MVDFC can effectively group similar
samples into the same clusters.

E. Model Discussions

1) Runtime Analyses: The run-time of each compared multi-
view clustering method is reported in Table IV. Note that

we record the averaged time consumption of each algorithm
by repeating 20 times with random initializations. From the
table, K-means is the fastest, which is consequently adopted
as an unsupervised initialization technique in many cases. On
the contrary, AMGL consumes the longest time on almost
all datasets. MVDFC performs reasonably well in terms of
run-time.

2) Convergence Analyses: To further validate the con-
vergence property of our method, we respectively com-
pute the objective function values on ALOI, Caltech101,
MNIST, MSRC-v1, NUS-WIDE and Youtube datasets.
The corresponding curves are presented in Fig. 5. From the
figure, we can see the objective function values decrease
with the iteration number and converge stably and quickly.
It suggests that the proposed algorithm has fast and stable
convergence behavior.

Fig. 6 shows the evolution of view weights on different
test datasets from the 1st iteration. At the beginning, we treat
each view equally and set αi = 1

k as initialization, where
αi is the i -th view weight and k is the number of views.

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on October 24,2020 at 05:31:50 UTC from IEEE Xplore.  Restrictions apply. 



9608 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

TABLE IV

TIME CONSUMPTION OF THE PROPOSED METHOD AND SIX COMPARISON ALGORITHMS (IN SECONDS)

Fig. 5. Convergence curves of MVDFC on all datasets.

From Fig. 6, we can clearly find that the weight curves rapidly
converge after a limited number of iterations. It can also be
seen from Fig. 6 that there are dominating views on ALOI,
Caltech101 and MSRC-v1 datasets after learning the weights
for individual views. To investigate its impact, we conduct
a comparison between MVDFC and the method utilizing the
features of individual views only. From the results in Fig. 7,
integrating different views together can significantly improve
the performance compared with single-view clustering running
on any specific view. It further validates the effectiveness of
MVDFC, proving that MVDFC can adequately fuse different
views and assign appropriate weights to explore the hidden
complementary information among multi-view data.

3) Parameter Sensitivity: In order to verify the robust-
ness of the proposed method with respect to different set-
tings, parameter sensitivity analyses are conducted, as shown
in Figs. 8, 9 and 10. We employ a grid searching strategy to
find the best choices for all parameters on each test dataset, and
then select an appropriate uniform value for each parameter
to implement multi-view clustering in all benchmark datasets.

While keeping βi = 1 and γ = 2, the clustering perfor-
mance of the proposed method is reported in Fig. 8, where
the weighting coefficient λ ranges in {10−4, 10−3, · · · , 104}.
This figure shows that the best clustering results of MVDFC
are attained at λ ∈ [0.1, 10] with high probability. Specifically,
MVDFC achieves the best performances on ALOI and Cal-
tech101 with λ = 1, and with λ = 10 on MNIST, MSRC-v1,
and Youtube. Notice that λ is positively correlated to the
clustering performance on NUS-WIDE, and λ = 1×104 leads
to the best result.

With fixed λ = 10 and γ = 2, the experimental results
of the proposed method are presented in Fig. 9, in which the
regularization parameter βi varies in {10−4, 10−3, · · · , 104}.

It shows that βi = 1 brings out the best performance of the
proposed method on ALOI, Caltech101, MNIST, and Youtube.
Interestingly, this best parameter setting changes to λ = 0.1 on
MSRC-v1 and λ = 10 on NUS-WIDE. Overall, the proposed
method performs well when βi ranges in [0.1, 10].

Setting λ = 10 and βi = 1, the empirical studies of the
proposed method are demonstrated in Fig. 10. Herein, the non-
linear factor γ ranges in {1, 2, · · · , 9}. The figure shows that
we can mostly reach the best clustering performances when
γ = 2 or γ = 3 on ALOI, Caltech101, MSRC-v1, NUS-
WIDE and Youtube, then the performances sharply decrease
when γ ∈ [5, 9]. It may be attributed to the following reason.
As we know, αi ∈ [0, 1] and the first term α

γ
i ||Xi − HWi ||2F

in our model aims to learn a shared clustering indicator matrix
with a minimal fitting error. When γ is large, the coefficient αγi
is small, which indicates that a larger fitting error is allowed.
Therefore, it is reasonable that the clustering performance
curves dramatically rise to a maximum value then start to drop
afterwards.

Overall, the above experiments indicate that the perfor-
mance gains from the sufficiency of information but would
be hurt by the redundancy.

V. EXTENSION TO SUPERVISED AND SEMI-SUPERVISED

MULTI-VIEW LEARNING

In this section, we show the extensions of the pro-
posed unsupervised multi-view clustering framework to semi-
supervised and supervised multi-view classification.

A. Semi-Supervised Multi-View Classification

Traditional clustering methods refer to unsupervised ones.
However, there are often a small amount of labeled training
samples available in many computer vision and machine
learning tasks. Semi-supervised learning can leverage the
limited supervised information to guide the learning. In
semi-supervised multi-view scenarios, recent works such
as hypergraph-based [49] and parameter-free [50] semi-
supervised multi-view classification have been developed.
In fact, the framework represented in Equation (3) can be
extended to tackle semi-supervised classification problems.

Denote the given training data as {{Xi}k
i=1,Y} with the i -

th view data matrix Xi ∈ Rn×di and class label Y ∈ Rl

where l 
 n implies that the number of labeled samples is
much smaller than that of total samples. Certainly, we aim
to make full use of the labeled samples to improve the
learning performance. Naturally, the predicted classification
results for such labeled samples should be as close as possible
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Fig. 6. The evolution of view weights on different test datasets.

Fig. 7. Comparison between MVDFC and such method utilizing only one specific views feature.

Fig. 8. Performances of MVDFC with various weighting coefficient λ ranging in {10−4, 103, · · · , 104} while fixing βi = 1 and γ = 2.

to the given labels. Towards this end, the small amount of
labeled samples serve as prior knowledge, which can then
be embedded into the formulated classification optimization
problem, defined by

min
α,H,W

k∑
i=1

α
γ
i ||Xi − SHWi ||2F + βi ||Wi ||∗

subject to α ≥ 0,
k∑

i=1

αi = 1,H ≥ 0,HT H = I (38)

where S ∈ Rn×n is a predefined matrix to preserve the prior
knowledge from data distribution. Without loss of generality,
it is assumed that the first l data points are labeled and the
number of classes is c. The embedded matrix S = [Si j ]n×n is
then defined as the following block matrix

S =
[

Ll×c Ol×(n−c)

O(n−l)×c I(n−l)×(n−c)

]
. (39)

Herein, Ol×(n−c) and O(n−l)×c are respectively l × (n −
c) and (n − l) × c zero matrices, I(n−l)×(n−c) is a
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Fig. 9. Performance of MVDFC with various regularization parameter βi ranging in {10−4, 103, · · · , 104} while fixing λ = 10 and γ = 2.

Fig. 10. Performances of MVDFC with various nonlinear factor γ ranging in {1, 2, · · · , 9} while fixing λ = 10 and βi = 1.

(n − l) × (n − c) identity matrix, and Ll×c ∈ {0, 1} contains
the labeled information, where the (i, j)-th entry of Ll×c is
equal to one if and only if the i -th data point belongs to the
j -th class. Consequently, the embedded matrix ensures that
the optimization problem above tends to learn a consistent
clustering indicator H with the given S. Notice that the above
semi-supervised multi-view data fusion oriented classifica-
tion (semi-MVDFC) optimization problem can be solved by
MVDFC framework.

Fig. 11 presents an intuitive illustration of semi-MVDFC
on the HW dataset. Evidently, a better performance should be
closer to the ground truths. From the figure, semi-MVDFC can
well boost the utilization of label information to obtain more
accurate class labels compared with MVDFC, which indicates
the good scalability of MVDFC.

B. Supervised Multi-View Classification

Benefiting from the label information, supervised multi-
view classification has attracted increasing attention in recent
years. For example, [51] proposed a new discriminative
regression to address the multi-view feature learning problem,

Fig. 11. Visualization of semi-MVDFC on HW with t-SNE.

which was further enhanced to be more discriminative for
subsequent classification. Huang et al. [52] combined multi-
view canonical correlation analysis (MCCA) and multi-view
spectral embedding (MSE) for supervised PoISAR image clas-
sification. We also can extend MVDFC to address supervised
multi-view classification problems.

Under a supervised scenario, we denote the given multi-
view training data as {{Xi}k

i=1,Y} with the i -th view data
matrix Xi ∈ Rn×di and class label Y ∈ Rn . In this sense,
the class label information is available for guiding the search-
ing directions of learning algorithms.
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Fig. 12. Visualization of supervised-MVDFC on MNIST with t-SNE.

By contrast, H = [Hi j ]n×c denotes a given matrix from
the training data, representing an indicator for the class label
assignment, defined by

Hi j =
{

1, the sample xi belongs to the j -th class;
0, otherwise.

(40)

As a consequence, Equation (3) for the supervised multi-view
classification problem can be rewritten as

min
α,W

k∑
i=1

α
γ
i ||Xi − HWi ||2F + βi ||Wi ||∗

subject to α ≥ 0,
k∑

i=1

αi = 1 (41)

where α is a weighted vector for all views, and

W = [W1, · · · ,Wk] ∈ R

c×
k∑

j=1
d j

is a coefficient matrix for
the multi-view data.

To obtain an explicit solution to the test data, the optimiza-
tion problem above is rewritten as

min
α,W

k∑
i=1

α
γ
i ||Xi WT

i − H||2F + βi ||Wi ||∗

subject to α ≥ 0,
k∑

i=1

αi = 1 (42)

where α and W are parameters to be learned from the training
data. The optimization problem above can also be solved by
MVDFC framework. We denote the learned optimal α and
W as α̂ and Ŵ, respectively. With given multi-view test data
{Xtest

i }k
i=1 with Xi ∈ RN×di and N being the number of test

samples, the classification task is to provide the predicted class
label Ytest ∈ {0, 1}N of {Xtest

i }k
i=1.

As mentioned before, the class labels for all test data can
be predicted by solving the following optimization problem

min
H

J (H) =
k∑

i=1

α̂
γ
i ||Xtest

i ŴT
i − H||2F + βi ||Wi ||∗. (43)

Since J (H) is an unconstrained objective function, the optimal
solution of (43) is attained at ∂ J (H)/∂H = 0, that is

∂ J (H)
∂H

=
k∑

i=1

α̂
γ
i (H − Xtest

i ŴT
i ) = 0. (44)

As a result, the optimal solution Ĥ becomes

Ĥ =
∑k

i=1 α̂
γ
i Xtest

i ŴT
i∑k

i=1 α̂
γ
i

, (45)

which suggests the class label assignments Ytest . Fig. 12
illustrates the performances of the extended supervised multi-
view data fusion oriented classification (supervised-MVDFC)
method on MNIST. Herein, we randomly produce 2,000 sam-
ples from MNIST for better visualization. A better perfor-
mance should be closer to the ground truths. The visualized
results shown in Fig. 12 reflect the fine classification ability
of the supervised-MVDFC, which further indicates MVDFC
can be effectively generalized to supervised multi-view
learning.

VI. CONCLUSION

In this paper, we proposed an efficient multi-view cluster-
ing method by nuclear norm minimization, which achieves
compression of principal components for the learned feature
representation. In the proposed formulation, multi-view data
fusion and clustering are integrated into a unified framework.
Besides, we further proposed an alternating optimization algo-
rithm based on dual ADMM framework with a closed-form
solution to each subproblem. Comprehensive experimental
results validate the effectiveness and efficiency of the proposed
method. Furthermore, we have also shown the extension of the
proposed framework to semi-supervised and supervised multi-
view learning tasks. Recently, deep learning models exhibit
strong ability in dealing with various kinds of supervised
learning tasks. In the further work, we will devote more efforts
to connecting with neural networks to address multi-view
semi/fully supervised classification problems.
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