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Abstract— Group re-identification (G-ReID) is an important
yet less-studied task. Its challenges not only lie in appear-
ance changes of individuals, but also involve group layout and
membership changes. To address these issues, the key task of
G-ReID is to learn group representations robust to such changes.
Nevertheless, unlike ReID tasks, there still lacks comprehensive
publicly available G-ReID datasets, making it difficult to learn
effective representations using deep learning models. In this
article, we propose a Domain-Transferred Single and Couple
Representation Learning Network (DotSCN). Its merits are two
aspects: 1) Owing to the lack of labelled training samples for
G-ReID, existing G-ReID methods mainly rely on unsatisfactory
hand-crafted features. To gain the power of deep learning models
in representation learning, we first treat a group as a collection of
multiple individuals and propose transferring the representation
of individuals learned from an existing labeled ReID dataset to
a target G-ReID domain without a suitable training dataset.
2) Taking into account the neighborhood relationship in a
group, we further propose learning a novel couple representation
between two group members, that achieves better discriminative
power in G-ReID tasks. In addition, we propose a weight learning
method to adaptively fuse the domain-transferred individual
and couple representations based on an L-shape prior. Exten-
sive experimental results demonstrate the effectiveness of our
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approach that significantly outperforms state-of-the-art methods
by 11.7% CMC-1 on the Road Group dataset and by 39.0%
CMC-1 on the DukeMCMT dataset.

Index Terms— Group re-identification, domain transfer, couple
representation, video surveillance, deep learning.

I. INTRODUCTION

DUE to the fast-growing applications in security and
surveillance, person/vehicle re-identification (ReID) has

been drawing much attention [1]–[9]. While existing research
works mainly focused on re-identifying individuals, searching
out a group of multiple persons simultaneously was rela-
tively rarely studied. In many practical applications identi-
fying a group and then tracking and analyzing the group’s
behaviors and activities is of fundamental importance. Hence,
re-identifying a group of persons (Group ReID or G-ReID)
across cameras in different environments is getting more
and more important. The G-ReID problem is different from
the ReID problem from two perspectives. From the research
perspective, G-ReID poses new challenging research problems
(will be elaborated in the following) when the ReID target
becomes a group of persons. These problems cannot be
effectively addressed by existing individual ReID methods as
evidenced from the unsatisfactory performances of existing
Re-ID methods on G-ReID, and thus call for the develop-
ment of novel group representations and solutions. From the
application perspective, G-ReID is a powerful supplement to
individual ReID. For example, criminal cases are often con-
ducted by a certain group of persons rather than an individual.
Individual ReID techniques, however, often cannot identify
a whole group of suspects in such an application scenario.
The technical challenges and practical values of G-ReID have
attracted significant amounts of research efforts along this
direction.

Different from ReID, G-ReID aims at associating a certain
group across different cameras. Besides the challenge of
appearance changes for individuals, such as low-resolution,
pose variation, illumination variation, and blurred vision,
G-ReID raises novel and unique challenges. 1) Group layout
change. People in a group often change their locations under
different camera views, as Fig. 1 shows. 2) Group membership
change. Also as illustrated in Fig. 1, people will dynamically
leave or join a group, thereby making the number of persons in
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Fig. 1. Illustration of the challenges for G-ReID. Besides the challenge
of the appearance change, G-ReID brings in the challenges of group layout
and membership changes.

TABLE I

COMPARISON OF THE CHALLENGES IN REID AND G-REID

the group change over time. As a result, it is usually not a good
choice to treat the group as a whole to extract its global/semi-
global features as [10] did, because the temporal dynamics in
a group’s layout and membership will alter the visual content
of the group. 3) Lack of labelled training data. In addition,
G-ReID is a new task and lacks annotated image samples with
group IDs, i.e., the number of group images is too few to learn
robust group representations. We list a comparison of ReID
and G-ReID as shown in Table I.

Based on the considerations above, We focus on the two
most challenging problems in G-ReID: 1) the problem of
scarce training data, and 2) the problem of layout and mem-
bership changes and propose the following new representation
learning schemes:

A. Domain-Transferred Single Representations

Since global features cannot well represent dynamically
varying contents in a group, we consider to use single person
features to perform group matching as a group image can be
treated as a collection of multiple subimages of individual
group members. The reason behind is that if we find cor-
responding persons in a target group, we will search out the
target group as well. Considering that training data is difficult
to acquire, [11] exploited hand-crafted features to represent
individuals in a group. Nevertheless, hand-crafted representa-
tions usually cannot effectively address the appearance change

problem in G-ReID due to changes in environments and
video capturing conditions. As we know, there exist rich
amounts of training datasets suitable for general ReID, which
motivates us to make use of existing labeled ReID samples to
learn single-person representations. However, the domain gap
between the ReID training datasets and target G-ReID images
often cause severe performance drop. Therefore, to compen-
sate for the domain shift, we need to find a way to transfer
the model learned from existing ReID datasets to better
represent new individuals in target G-ReID images. Motivated
by the demonstrated success of [12], [13], we propose to
transfer the image style of a ReID dataset to that of target
G-ReID dataset while preserving individuals’ identities. In this
way, representative features of individuals in a group can be
properly extracted by our transferred representation model.

B. Domain-Transferred Couple Representations

In G-ReID, we can obtain additional useful information
from neighboring group members. Because of group mem-
bership changes, it is difficult to exactly determine how many
persons are in a group. Regardless of the number of persons
in a group, the group can be represented as multiple couple
relations. For example, if a group contains three persons A,
B and C , their couple relations expressed as A − B , A − C
and B − C can be used as effective features for identifying a
target group. As a result, we can search out a target group by
finding a best-match with the group’s corresponding couple
relations. Based on this consideration, we propose a couple
representation learning network to leverage the information
of neighboring individuals. The couple representation learning
can also benefit from the proposed domain-transfer technique
mentioned above. Note that, in a group, all members can be
represented as multiple one-to-one relations (couple represen-
tations). Triplet or batch relations can be also represented
by multiple one-to-one relations. That is why we choose the
couple representation, which is the simplest unit for social
relationship.

Based on the above discussions, we propose a
Domain-Transferred Single and Couple Representation
Learning Network (DotSCN), that can offline learn effective
features for representing single members and couple relations
in a group. We also propose an online feature fusion
method to adaptively combine the two kinds of features
together to obtain better group representations. Motivated
by the demonstrated success of [14], our method learns the
weights for fusing the single representations and couple
representations without supervision. As will be shown below,
our method is easy to implement, yet effective..1 Furthermore,
the simplicity of our method makes it easy to be applied to
different target domains, which is usually not the case for
sophisticated methods.

Our contributions lie in the following three aspects:
• To tackle the scarce training data problem, we propose

a novel method to transfer rich collections of individual
ReID samples to the target domain of group ReID to
enrich the training samples.

1Our code link: https://github.com/huangzilingcv/G-ReID
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• We further propose a novel couple representation to
capture the social relationship in a group to well address
the problem of layout and membership changes for the
first time.

• We propose an online fusion method to adaptively
combine the learned single and couple representation
results together for better group re-identification. Exten-
sive experimental results confirm a performance leap from
the relevant state-of-the-art techniques in the area.

Compared with its preliminary conference version [15], this
article has been significantly expended in several aspects. First,
we clarify the differences between ReID and G-ReID that
motivates this work and provide a detailed survey of related
works. Second, we fully reorganize the offline representation
learning scheme and clarify the online adaptive feature fusion
scheme based on an L-shape (turning-point) prior. Third, more
quantitative tests are conducted in the experiment section
along with insightful analyses on the quantitative evaluations.
Specifically, we analyze the effectiveness of single and couple
features and their fused representation, respectively, and the
complexities of offline representation learning and extraction
and online feature fusion. With these newly added compo-
nents, the superiority of the proposed method is thoroughly
validated.

The rest of this article is organized as follows. Some most
relevant works are surveyed in Sec. II. Sec. III presents
the proposed schemes for transferred representation learning,
couple representation learning, and feature fusion. In Sec. IV,
experimental results are demonstrated. Finally, conclusions are
drawn in Sec. V.

II. RELATED WORK

A. Deep Learning Based ReID

Deep learning-based approaches have been extensively stud-
ied in general ReID field. For example, Li et al. [16] proposed
a filter pairing neural network to jointly handle misalignment
and geometric transforms. In order to learn features from
multiple domains, Xiao et al. [17] utilized a domain-guided
dropout algorithm to improve the feature learning procedure.
Moreover, the method proposed in [18] makes full use of
human part cues to alleviate pose variations and learn robust
representations from both a whole image and its different
local parts. Chen et al. [19] formulated a unified deep ranking
framework that jointly maximizes the strengths of features and
metrics. Zhu et al. [20] integrated spatial information for dis-
criminative visual representations by partitioning a pedestrian
image into horizontal parts, and proposed a part-based deep
hashing network. Yao et al. [21] proposed a part loss network,
to minimize both the empirical classification risk on training
person images and the representation learning risk on unseen
person images. Zheng et al. [22] introduced pose-invariant
embedding as a pedestrian descriptor and designed a Pose-
Box fusion CNN architecture. The descriptor is thus defined
as a fully connected layer of the network for the retrieval task.
However, these supervised learning-based works all require
abundant labeled training data. Moreover, all of these works

mainly focused on individual person re-identification. None of
them paid attention to G-ReID with very limited training data.

B. G-ReID

Recently, relatively fewer works have focused on G-ReID
tasks [10], [11], [23]–[26], compared to general ReID
tasks. Some of them mainly attempted to extract global or
semi-global features. For example, Cai et al. [23] proposed
a discriminative covariance descriptor to obtain both global
and statistical features. Zheng et al. [24] proposed semi-global
features by segmenting a group image into several regions.
Since persons in a group often change their locations under
different views (i.e., layout-change), global and semi-global
features are usually sensitive to such changes. In order to make
use of individuals’ features in the groups, Zhu et al. [25] intro-
duced patch matching between two group photos. However,
it requires prior restrictions on vertical misalignments, making
it unworkable under certain circumstances. Lin et al. [11]
leveraged multi-grain information and attempted to fully cap-
ture the characteristics of a group. This approach, how-
ever, involves too much redundant information and employs
common hand-crafted features, thereby making its accuracy
not satisfactory enough. In contrast to the aforementioned
methods, our previous work [26] focused on handling the
changes on layout and membership of group members using
a graph-based group representation. Specifically, it treats a
group of individuals as a graph, where each node denotes
the individual feature and each edge represents the relation
between a couple of individuals. Graph samples are then used
to train a graph neural network (GNN) to learn a graph group
representation for G-ReID.

C. Domain Transfer

Recently, Generative Adversarial Networks (GANs) have
been applied to transfer image styles from a source domain to a
target domain [27]–[31]. Gatys et al. [27] separated the image
content and image style apart and recombined them afterwards,
so that the style of one image can be transferred into another.
Taigman et al. [30] proposed a domain transfer network to
translate images to another domain while preserving original
identities. By making use of the existing domain-transfer
techniques, we are able to take advantage of the abundant
ReID datasets to improve the performance of our method.

III. DOMAIN-TRANSFERRED SINGLE AND

COUPLE REPRESENTATION LEARNING

In a G-ReID task, we have a probe image p containing
a group of N persons. We aim at finding the corresponding
group of probe image p in a set of gallery images G = {gt},
where gt represents the t-th group image in gallery G. Let
g j

t denote the j -th person in group image gt . As depicted in
Fig. 2, the proposed framework consists of three major parts.
First, a domain transfer method is used to transfer the styles
of the training ReID dataset into that of the target G-ReID
images. In the offline learning process, three sets of transferred
training data are respectively constructed: the single-person
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Fig. 2. Proposed architecture. The proposed Domain-transferred Single and Couple Network (DotSCN) consists of two parts: the offline learning process
and the online feature fusion process. Here, we take DukeMTMC group dataset as the example target-domain dataset. In the offline learning process, we first
transfer the style of source-domain dataset (e.g., Market-1501) to that of the target one (e.g., DuketMTMC). We construct three sets of transferred training
data: the single-person set, couple-person set and group set. We then train DotSCN on the transferred single-person set and couple-person set. The group Set is
utilized to verify the L-shape property. In the online identification process, the persons in the group set are cropped to construct the testing single-person and
couple-couple sets. Through evaluating the L-shape fitness of the curves, DotSCN learns to fuse the single and couple features to obtain the final representation.
Consequently, DotSCN extracts the single and couple representations of all individual members and couple combinations in a group image, and then measures
the distance of the fused single and couple representation to that of gallery groups.

set, couple-person set, and group set. We train the proposed
DotSCN on the single-person set and couple-person set.
The group Set is utilized to verify the L-shape property as
will be explained later. In the online identification process,
the features extracted by the Single Representation Learning
Network (SRLN) and the Couple Representation Learning
Network (CRLN) are adaptively fused so that one group
can be accurately identified by using the fused single and
couple representations. Note that we follow the idea and
setting of [11] to make the definition of a group in this
article, different from that of [32]. We treat all persons in one
image as a “group”. If two cross-view images from different
cameras share more than 60% members in common, they are
considered to contain the same group.

A. Domain Transfer

Because the total number of people in a collection of
G-ReID images is usually rather limited, it is difficult to train
a useful network directly based on those available samples.
To learn effective representations, we should make use of
external information. There exists a rich collection of ReID
datasets of individual persons that can help to learn good
feature representations. Nevertheless, the domain gap between
the existing ReID datasets and the target G-ReID images,
caused by their different capturing conditions, can significantly
degrade the effectiveness of representation learning. To address

this problem, given a training ReID dataset S = {si }Ns
i=1,

we propose utilizing domain transfer to learn a mapping
function G : S → G from the style of ReID dataset S to that of
G-ReID dataset G so that the distribution of G(S) can be indis-
tinguishable from that of dataset G. In our work, we exploit
the CamStyle,2 method [13] to generate the dataset G(S) from
the dataset S.

In this way, the dataset G(S), where ys
k ∈ G(S) denotes

the k-th image of the s-th person in the dataset, can be
used to train the SRLN F sin. In addition, we construct the
co-occurrence relations r s1s2 = {(ys1

k1
, ys2

k2
)|s1, s2 = 1, . . . , Ns ,

k1 = 1, . . . , Ns1 , k2 = 1, . . . , Ns2 , s1 �= s2} between pairs
of persons. These co-occurrence relations are used to train
the CRLN Fcou.

The two networks are then respectively used to extract the
single and couple features of gallery images gt and probe
image p. For probe image p, let F sin(pi ) and Fcou(pi1i2 )
represent its single and couple features, respectively, where
pi1i2 = {(pi1 , pi2 )|i1, i2 = 1, . . . , N, i1 �= i2} denotes all
couple pairs of probe image p. For gallery image gt , its
single and couple features are respectively represented as
F sin(g j

t ) and Fcou(g j1 j2
t ), where g j1 j2

t = {(g j1
t , g j2

t )| j1, j2 =
1, . . . , Nt , j1 �= j2} denotes the couple relations of a gallery
image.

2We refer to the code https://github.com/zhunzhong07/CamStyle.
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B. Offline Representation Learning

The offline Representation Learning Framework consists of
two parts: SRLN for extracting single-person features, and
CRLN for extracting joint features between two members
in a group. We select ResNet-50 as the backbone CNN
structure, since it is the most popular CNN network used in
general ReID. Detailed settings about training the network are
presented in the experiment section.

To match a group in a collection of group images, the most
straightforward method is to find every corresponding people
between two groups. We take advantage of an abundance of
existing ReID datasets G(S) = {ys

k} to train the SRLN F sin,
for which two loss terms are used in the loss function: a
cross-entropy loss for classification and a triplet loss for
similarity learning.

For G-ReID, besides the personal features of individual
group members, the joint features between two co-appearing
members are also useful as the co-occurrences of group mem-
bers have proven to be effective features for characterizing
the social relationship in a group [33], [34]. As we know,
no matter how many people in an group, they can always be
represented as relations between every two group members.
In our work, we focus on the relations between two members
co-occurring in a group regardless of their spatial distance in
the group image as their locations vary in a group dynamically
under different camera views. Based on the above discussion,
we propose to represent the couple relations between every
two group members by the difference of their personal features
to compactly encode the co-occurrence of the two members
with only their discrepancy, since the subtraction operation
removes their common features. By contrast, the co-occurrence
of group members can also be represented by other operations
like addition and concatenation. However, adding two person’s
features magnifies their common features and makes the repre-
sentations less discriminative, whereas concatenation doubles
the number of parameters, thereby significantly increasing the
complexity of network training. Specifically, our experimental
results show that adopting concatenation for training our
model makes it difficult to converge.

Based on the above considerations, the goal of the CRLN
Fcou is to learn effective occurrence representations of couple
pairs of members in a group. To this end, after extracting
the features of individual members by the SRLN, the CRLN
then pairs all two-member couples in the G(S), and for each
couple, subtracts one member’s features from the other’s to
represent their co-occurrence features r s1s2 . Similar to SRLN,
a loss function involving a cross-entropy loss term for classi-
fication and a triplet loss term for similarity learning is used
to train the CRLN.

To utilize the cross-entropy loss to train the CRLN,
we assign a unique label to each couple pair of the
couple-person set based on a mapping function �cou(i, j),
where i and j (i �= j ) denote the two person labels in a couple-
pair. The mapping function �cou(i, j) should satisfy (i) the
commutative property: �cou(i, j) = �cou( j, i); and (2) the
uniqueness property: �cou(i1, j1) = �cou(i2, j2) if and only
if {i1, j1} = {i2, j2}. There are multiple choices of �cou

meeting the above requirements. In our implementation, the

couple-pair ID is obtained by

�cou(i, j) = 1

2
max(i, j)2 − 1

2
max(i, j) + min(i, j). (1)

Taking (1) as an example, suppose we have three identities
1, 2, 3 in a group. The couple-pair ID between samples from
person 1 and person 2 is obtained as �cou(1, 2) = 1

2 · 22 − 1
2 ·

2 − 1 = 0. Subsequently, the couple features r s1s2 along with
their unique couple-pair IDs are used to train Fcou to learn
the representations of couple pairs.

C. Online Feature Fusion

Since the proposed DotSCN extracts both individuals’ fea-
tures and pairs’ features, the two kinds of features need to be
adequately fused to obtain better representations for G-ReID.
Inspired by [14] which shows that given the learned repre-
sentations for traditional ReID are discriminative, the rank-
distance curve between a probe image and all gallery images
sorted in the ascending order will exhibits an “L” shape, and
vice versa. The L-shape property means that there exists a
turning point at which the rank-distance curve is significantly
flattened out. This property gives a clue for finding a way of
fusing the two kinds of features in DotSCN. As our work is
focusing on G-ReID rather than individual ReID, we need to
make sure if the L-shape property still holds with G-ReID
features.

To verify the aforementioned property, we use the existing
Person-ReID datasets to simulate groups. Specifically, if two
images contain the same group of members, they are labeled as
the same group. In this step, we have the domain-transferred
dataset G with Ns person IDs which are divided into Nsub

subgroups equally, each containing Nu = � Ns
Nsub

� persons in

total and being assigned with a unique group ID, where
�·� means the floor function. Based on the consideration
above, we assume that a set of r0 × Nu , where r0 ∈ [0, 1],
members randomly picked from a group keep staying in the
group, whereas the remaining Nu − r0 × Nu members may
dynamically join or leave the group. No matter how they
change their locations or how many people are in the group,
they share the same group ID. In this section, we randomly
select one combination for each group as a probe image,
denoted p, the rest of combinations are treated as gallery
images, denoted gt .

Let {F sin(pi )}�
Ns

Nsub
�

i=1 denote the single features of all indi-
viduals in a probe image and {F sin(g j

t )}Nt
j=1 denote the features

of all individuals in the t-th gallery image gt . The distance
between probe image p and gallery image gt is defined as

dsin
t = 1

N

N∑

i=1

min {D(F sin(pi ),F sin(g j
t )| j = 1, 2, . . . , Nt },

(2)

where D(·) denotes the distance metric (say, Euclidean dis-
tance in this work). Similarly, we also calculate the couple
distance dcou

t between probe image p and gallery image gt

by replacing the single features with the couple features
in (2).
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Fig. 3. Logarithmic rank-distance curves for different probes. Each curve
indicates all the distances (sorted in the ascending order) between a probe and
all the gallery groups. The top figure shows the results with single features,
and the bottom one is generated using couple features. Note that the green
lines indicate the representations achieving a good retrieval accuracy, whereas
the red lines represent low-accuracy ones. All the high-accuracy curves
(i.e., the features are discriminative) are L-shaped, but the property does not
hold for the low-accuracy curves.

The logarithmic rank-distance curves are shown in Fig. 3.
We select � Ns

Nsub
� = 10 and r0 = 0.3 randomly. The green

curves indicate the matching distances with discriminative
features, while the red ones indicate the matching distances
with poor features. Obviously, the green curves are L-shaped,
while the red ones are not. And the green curves enclose larger
areas compared with the red ones. Based on the fact above,
we propose to fuse the single and couple features to obtain
the final distance by applying the following weighted sum:

d total
t = wsin × dsin

t + wcou × dcou
t , (3)

where the weights are determined by the enclosed areas
of the distance curves with the single and couple features,
respectively:

w = e
∑

r dt , (4)

where r denotes the rank (i.e., the x-axis of the the curves
in Fig. 3). The higher the enclosed area, the more discrimina-
tive the features, and the larger the weight.

Based on (2), the best-match gallery image can be identified
by searching for that with the lowest matching distance:

dp = min{d total
t |t = 1, 2, .., Nt }. (5)

D. Computational Complexity Analyses

The proposed DotSCN consists of two parts. In the offline
learning process, the majority of computation is consumed
by learning the single and couple representation networks
whose complexities depend on the number of training sam-
ples. Suppose that there are Ns person images in the train-
ing set, the computational complexity of training the single
representation network is O(Ns ), and that of training the
couple representation network is O(N2

s ). Since, in practical
applications, we usually extract single and couple features

for all gallery images offline in advance, their computation
complexities become O(Nt · N) and O(Nt · N2), respectively,
where Nt denotes the number of persons in the gallery image
set and N denotes the average number of persons in each
image.

In the online fusion process, the majority of computation
is spent on extracting the features of the probe image, cal-
culating the distances between the probe image and gallery
images based on the extracted features, and deriving the fusion
weights. For each probe image, the time cost depends on the
amount of probe and gallery features. Suppose that there are
N persons in the probe image, the computation complexity
will be O(N · Nt · N + N2 · Nt · N2) or O(N4 · Nt ). This shows
that the online computation complexity counts more on the
average number of persons N in each image, implying that
the scene complexity of the image dominates the complexity
of our algorithm, and the number of gallery images also makes
impact.

IV. EXPERIMENTAL RESULTS

A. Datasets and Experiment Setting

1) Datasets: Our method is evaluated on two public
G-ReID datasets available in [11]. Some examples are shown
in Fig. 4. The DukeMTMC Group dataset contains 177 group
image pairs selected from a 8-camera-view DukeMTMC
dataset [35]. The Road Group dataset contains 162 group
pairs taken from a two-camera crowd road scene. These
two datasets both include severe object occlusions and large
layout & group membership changes. Following [11], half of
each dataset is evaluated under the protocol in [25], and the
Cumulative Matching Characteristic (CMC) metrics [11] are
used for performance evaluation. Moreover, we define two
cross-view groups as the same one when they have more
than 60% members in common.

We also use the Market-1501 dataset [36] as the
source-domain ReID dataset due to its large amount of training
instances: 15,936 images for 751 individuals. In our work,
we transfer the domain of Market-1501 dataset to those of
DukeMTMC Group and Road Group, respectively, as illus-
trated in Fig. 4.

2) Setting for Domain Transfer: In our work, we transfer the
domains of existing ReID datasets to that of the target G-ReID
datasets (e.g., DukeMTMC Group and Road Group), prior
to training the representations. We use the CycleGAN [37]
to transfer the domain for each target G-ReID dataset. As a
result, we obtain the DukeMTMC-style Market-1501 dataset
and the Road-style Market-1501 dataset. In the training stage,
we resize all input images to 256 × 256 and use the Adam
optimizer. The batch size is 10, and the learning rates are
0.0002 and 0.0001, respectively, for the Generator and the
Discriminator.

3) Setting for CNN Models: In both SRLN and CRLN,
the ResNet-50 with two additional fully connected layers is
used as the backbone. The learning rate is set to 0.01, and
the dropout rate is set to 0.5. The input images are resized

2The authors from the universities (in Taiwan and Japan) completed the
experiments on the datasets
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Fig. 4. Snapshots of the utilized datasets. From left to right, the datasets are respectively Market-1501 (ReID), DukeMTMC Group and Road Group
(G-ReID). Each row of each dataset shows a few snapshots with the same person/group ID.

Fig. 5. Snapshots of domain-transferred samples. The images in the third row are from the source domain Market-1501. The images in the first and fifth
rows are cropped respectively from the target domain DukeMTMC Group and Road Group. The second row shows the generated images with DukeMTMC
style, and the fourth row shows the generated images with Road style.

to 256 ×128. We use the SGD solver to train the CNN model
and set the batch-size to 24. To construct the training set,
we pick 100 identities from the domain-transferred dataset,
where each identity contains 14 − 16 samples. If we use
identity 1 and identity 2 to form paired samples for a couple
class, which contain C1 and C2 samples respectively, we can
generate C1 × C2 couple-pairs for training.

B. Performance of Domain-Transferred Representation
Learning

We conduct experiments to show the effectiveness
of domain-transferred representation learning, respectively

exploiting the single representations and couple representa-
tions learned on Market-1501 with/without domain transfer,
respectively. For the testing datasets for G-ReID, we use
DukeMTMC/Road samples as the target-domain samples for
domain transfer, as illustrated shown in Fig. 5.

Table II shows the CMC results of the single and couple
representations with and without domain-transferred learning,
denoted ‘SCN’ and ‘DotSCN’, respectively. From the table,
we find that the deep learning features, i.e., ‘SCN(s)’ and
‘SCN(c)’ beat all the hand-crafted feature based schemes
in representing a group. We can also observe that the
domain-transferred representation learning (i.e., ‘DotSCN(s)’
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TABLE II

PERFORMANCE EVALUATION OF THE DOMAIN-TRANSFERRED REPRESENTATION LEARNING ON DUKEMTMC GROUP
AND ROAD GROUP. THE SUFFIX ‘S’ INDICATES THE RESULTS WITH SINGLE REPRESENTATIONS,

AND THE SUFFIX ‘C’ INDICATES THE RESULTS WITH COUPLE REPRESENTATIONS

Fig. 6. Effect of the selection of the subtraction layer for couple representation learning. The curves show the G-ReID accuracy of different network
designs of subtraction layers. The two figures respectively show the results (CMC-1) on DukeMTMC Group and Road Group, respectively.

and ‘DotSCN(c)’) outperforms the non-transferred learn-
ing ones. The single representation learning on top of
the ResNet50 backbone network achieves 5.7% and 2.5%
CMC-1 accuracy improvements on DukeMTMC Group and
Road Group, respectively. The couple representation learning
achieves 12.5% and 19.8% CMC-1 accuracy improvements on
DukeMTMC Group and Road Group, respectively. Simi-
larly, our method on top of Resnet101 also achieve significant
improvements.

C. Performance of Couple Representation Learning

The CRLN is constructed by the ResNet50 network
pre-trained on the domain-transferred data. We divide
ResNet50 into six parts based on [38]. The difference of the
feature maps of different parts can be obtained by subtraction,
and is then sent to the rest of the network. The output of the
fully-connected layer is taken as the couple representations.
The results are shown in Fig. 6, that shows that if the feature
map subtraction is placed closer to the front (conv1), we can
obtain better results. That is, the CRLN performs better in

representing the relations of low-level feature maps, rather than
in the high-level individual features.

Moreover, although Table II shows that the average
accuracy with single representations is generally better
than that with couple representations, in some cases (e.g.,
significant appearance variations of individuals due to changes
on pose, membership and layout) the couple representations
will do a better job and thereby effectively improve the
discriminating power via adaptive feature fusion. For example,
Fig. 7 illustrates two queries selected from the results of
DukeMTMC Group and Road Group, respectively, for
which couple representations are more discriminative than
single representations. The first column of Fig. 7 shows the
probe image. The following columns show the top three
matches, where the samples highlighted by red bounding
boxes indicate the negative results, while those highlighted by
green bounding boxes indicate the positive results. The two
examples show that, in case that the single representations
lose their effectiveness, the couple representations take their
responsibility and offer better predictions. Here we also
compare the couple representations formed by (1) subtraction
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TABLE III

PERFORMANCE EVALUATION OF DIFFERENT COUPLE REPRESENTATIONS RESPECTIVELY CONSTRUCTED BY SUBTRACTION AND ADDITION ON
DUKEMTMC GROUP AND ROAD GROUP. THE ABBREVIATION ‘ADD.’ MEANS THE COUPLE REPRESENTATIONS CONSTRUCTED

BY PERFORMING ADDITION ON FEATURE MAPS, AND ‘SUB.’ MEANS THE COUPLE REPRESENTATIONS

CONSTRUCTED BY PERFORMING SUBTRACTION ON FEATURE MAPS

TABLE IV

PERFORMANCE EVALUATION ON DIFFERENT FUSION METHODS ON DUKEMTMC GROUP AND ROAD GROUP. THE SUFFIX ‘S’ REPRESENTS THE

RESULTS WITH SINGLE REPRESENTATIONS, AND THE SUFFIX ‘C’ REPRESENTS THE RESULTS WITH COUPLE REPRESENTATIONS,
BOTH EXTRACTED BY RESNET50 BACKBONE, ‘EQ.’ DENOTES THE FUSION RESULTS OBTAINED WITH EQUAL WEIGHTS,

AND ‘AD.’ DENOTES THE FUSION RESULTS OBTAINED WITH THE ADAPTIVE WEIGHT IN (3)

Fig. 7. Two visual examples showing the effectiveness of couple represen-
tations. These two examples are selected from the results of DukeMTMC
Group and Road Group, respectively. The first column shows the probe
image. The following columns show the top three matches. The samples
highlighted by red bounding boxes indicate the negative results, while those
highlighted by green bounding boxes indicate the positive results. ‘Single’
and ‘Couple’ represent that the results are obtained respectively by the
single or couple representation learning. These two examples show that,
in some cases that the single representations lose their effectiveness, the couple
representations take their responsibility and offer better predictions.

operation ‘DotSCN(c) SUB.’ and (2) addition operation
‘DotSCN(c) ADD.’. Table III shows that the subtraction-
based couple representation learning ‘DotSCN(c) SUB’
outperforms the addition-based learning ‘DotSCN(c) ADD’.

D. Effectiveness of Adaptive Feature Fusion

In our method, the final results are generated by fus-
ing results of single and couple representations with (3).

The fusion weights indicate the importance of the represen-
tations for the given probe image. To evaluate the proposed
adaptive feature fusion ‘DotSCN AD.’ of single and couple
representations, we compare it with (1) equal-weight feature
fusion ‘DotSCN EQ.’, (2) transferred single representations
only ‘DotSCN(s)’, and (3) transferred couple representations
only ‘DotSCN(c)’. Table IV shows that the adaptive fusion
scheme presented in Section III-C outperforms the other
compared methods in all CMC metrics. In contrast, the equal-
weight fusion performs the same as transferred single rep-
resentations on DukeMTMC Group, but slightly worse on
Road Group. The results demonstrate the effectiveness of the
adaptive weighting scheme guided by the enclosed areas of
the rank-distance curves associated with the single and couple
features.

Specifically, to investigate how our method assigns a higher
weight to a useful representation, we visualize some typical
examples in Fig. 8. The results of id = 14 show an example
for which both the single and couple representations work
well, since one person in the group wears a yellow coat, which
is salient making the single and couple representations both
discriminative. The results of id = 41 show an example for
which the single representation does not work well, since all
the persons in the group wear clothes in very common colors.
By contrast, the results of id = 10 show an example for
which the couple representation fails, as the group members
wear very similar clothes, making the discrepancy of different
persons small. These examples demonstrate that with the
proposed online feature fusion scheme, a larger weight will
be assigned to the more salient/discriminative representation.

E. Comparison With State-of-the-Art Methods

Table V compares the performances of our method
and several state-of-the-art methods on DukeMTMC
Group and Road Group. The compared methods include
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Fig. 8. Examples showing the selection of single or couple representations. In each row, from left to right, four sub-figures are (a) the logarithmic rank-distance
curve generated by the single representations of the given probe image, (b) the logarithmic rank-distance curve generated by the couple representations of
the given probe images, (c) the given probe image from camera A, and (d) the matched image of the same group from camera B, respectively. Note that the
red curve in (a) indicates that the images (c) and (d) are not perfectly matched by using single representation, whereas the red curve in (b) indicates that the
images (c) and (d) are not perfectly matched by using couple representation.

TABLE V

COMPARISON WITH THE STATE-OF-THE-ART G-REID METHODS ON DUKEMTMC GROUP AND ROAD GROUP

CRRO-BRO [24], Covariance [23], PREF [10], BSC+CM [25]
and MGR [11]. The results show that our method significantly
outperforms all existing G-ReID methods, thanks to the
proposed transferred representation learning and adaptive
feature fusion. In particular, compared with the best state-of-
the-art method, our method achieves improvements by 11.7%
CMC-1 on Road Group and 39.0% CMC-1 on DukeMTMC
Group.

To evaluate the effectiveness of the proposed group rep-
resentation that adaptively fuses single and couple features,
we compare it with the graphical group representation model
proposed in our previous work [26] that employs a graph
neural network (GNN) to represent a group of individuals. The
GNN-based framework in [26] involves a graph generator for

constructing the pool of graph samples with the individuals’
representations as nodes and a GNN model trained on the pool
of graph samples for classifying the group IDs. The GNN
plays the role of fusing all individuals; features together.

We implement the ‘DotGNN’ model that employs the
GNN-based group representation model in [26] along with
the domain-transfer method used in this work. As demon-
strated in Table V, the adaptive single and couple feature
fusion of DotSCN achieves significantly better performance
than the GNN-based group representation of DotGNN in all
CMC metrics. Specifically, DotSCN achieves CMC-1 per-
formance improvements by 33.0% and 9.9%, respectively,
on DukeMTMC Group and Road Group compared to Dot-
GNN, because additional multi-person relations (e.g., triplets
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and quadruplets) other than the couple representation may
contain too many similar features, making the GNN difficult
to distinguish. On the contrary, the couple representation can
capture more unique features, effectively complementing the
single representation to improve the G-ReID performance.

V. CONCLUSION

In this article, we addressed an important but rarely stud-
ied problem: group re-identification. We have proposed a
domain-transferred representation learning and a couple rep-
resentation learning scheme to respectively overcome the two
major challenges with group re-identification: the limited
training data challenge and the membership and layout change
challenge. We have also proposed an adaptive fusion method
to combine the single and couple representations to achieve
better group re-identification. Our experimental results have
confirmed a performance leap from the relevant state-of-the-
art techniques in the area.
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