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Abstract—We propose a deep learning-based data-driven
framework consisting of two convolutional neural networks:
1) LithoNet that predicts the shape deformations on a circuit due
to IC fabrication and 2) OPCNet that suggests IC layout cor-
rections to compensate for such shape deformations. By learning
the shape correspondences between pairs of layout design pat-
terns and their scanning electron microscope (SEM) images of
the product wafer thereof, given an IC layout pattern, LithoNet
can mimic the fabrication process to predict its fabricated cir-
cuit shape. Furthermore, LithoNet can take the wafer fabrication
parameters as a latent vector to model the parametric prod-
uct variations that can be inspected on SEM images. Besides,
traditional optical proximity correction (OPC) methods used to
suggest a correction on a lithographic photomask is computation-
ally expensive. Our proposed OPCNet mimics the OPC procedure
and efficiently generates a corrected photomask by collaborating
with LithoNet to examine if the shape of a fabricated circuit opti-
mally matches its original layout design. As a result, the proposed
LithoNet–OPCNet framework can not only predict the shape of
a fabricated IC from its layout pattern but also suggests a layout
correction according to the consistency between the predicted
shape and the given layout. Experimental results with several
benchmark layout patterns demonstrate the effectiveness of the
proposed method.
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I. INTRODUCTION

AFTER IC circuit design and layout, it typically takes two
to three months to fabricate a 12-inch IC wafer, involving

a multistep sequence of photolithographic and chemical pro-
cessing steps. Among these steps, a lithography process is used
to transfer an IC layout pattern from a photomask to a pho-
tosensitive chemical photoresist on the substrate, followed by
an etch process that chemically removes parts of a polysilicon
or metal layer, uncovered by the etching mask, from the wafer
surface. Because it is hard to control the exposure conditions
and the chemical reactions involved in all fabrication steps,
the two processes together lead to nonlinear shape distortion
of a designed IC pattern, which is usually too complicated
to model. This fact urges the need for mask optimization, a
procedure that computes an optimized photomask to make the
shape of the fabricated IC wafer optimally consistent with its
source layout design.

The inevitable shape deformations on a fabricated IC due
to the imperfect lithography and etch processes often cause
IC defects (e.g., thin wires or broken wires) if an IC cir-
cuit layout is not appropriately designed, especially on the
first few metal layers. Nevertheless, in most cases, we still
cannot identify such IC defects due to inappropriate IC cir-
cuit layout until capturing and analyzing the scanning electron
microscope (SEM) images of metal layers after the wafer fab-
rication process, making the circuit verification very costly and
time consuming. It is therefore desirable to develop presimu-
lation tools, including: 1) a lithography simulation method for
predicting the shapes of fabricated metal lines based on a given
IC layout along with IC fabrication parameters and 2) a mask
optimization strategy for predicting the best mask to compen-
sate for the shape distortions caused by the lithography and
etch processes.

As for lithography simulation, there are two categories of
conventional approaches: 1) physics-level rigorous simulation
and 2) compact model-based simulation [1], [2]. Rigorous
simulation methods simulate physical effects of materials
to accurately predict a fabricated circuit and thus are very
time consuming [3], [4]. On the contrary, a compact model-
based simulation method follows loosely physical phenomena
to obtain a faster computational speed by exploiting com-
plicated, parameter-dependent, nonlinear functions. Different
from traditional methods, we aim at developing a convolu-
tional neural network (CNN)-based approach, which learns the
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Fig. 1. Relationship among OPC simulation, circuit verification on an SEM image, and our method. The OPC step, highlighted by the red dashed lines,
suggests modifications of a layout mask so that the fabricated IC could have nearly the same shape as the original layout pattern. The proposed LithoNet and
its applications are highlighted by purple contours.

parametric model of physical and chemical phenomena of a
fabrication process directly from a training dataset contain-
ing pairs of IC layouts and their corresponding SEM images.
Based on the learned CNN model, we can predict a fabricated
circuit shape more accurately and efficiently than traditional
methods.

Moreover, fab-engineers usually optimize a mask pattern
by iteratively modifying a layout design based on its lithogra-
phy simulations. However, rule-based lithography simulations
resort to linear combinations of optical computations derived
from several similar yet not identical historical fab-models.
The simulation reliability largely relies on a rich amount of
costly historical fabrication data because ground-truth fab-
models need to be gathered by fabricating a layout pattern with
all process variations exhaustively. Nevertheless, fab-plants do
not typically build models with exhaustive data but, instead,
select nominal plus some relatively small number of specific
process-window conditions over a limited number of test struc-
tures and then build models based on that. This fact may make
current standard unreliable for new layout design patterns.

The relationship among the IC fabrication process, lithogra-
phy simulator, and mask optimizer is depicted in Fig. 1, where
the optical proximity correction (OPC) block is a standard
approach to photomask correction for compensating for the
shape distortions due to diffraction or process effects as well
as guaranteeing the printability of a layout pattern, especially
at the corners of the process window [5], [6]. As shown in the
red dashed rectangles in Fig. 1, the mask used in the fabrica-
tion process is a modified version of a source layout design,
aiming to compensate for possible “shrinkages” in line shapes
due to the fabrication to mitigate the deviation of a fabricated
IC circuitry from its layout design. However, traditional OPC
methods have two primary drawbacks. First, they run simula-
tions based on those rules and patterns already known; thus, an
OPC correction may be unreliable if an unseen layout design
is given. Second, not only is the OPC correction computa-
tionally expensive but also the OPC contour simulation is a
time-consuming trial-and-error routine that is iterated until no
irregularity can be found in the OPC estimation result. Both
the OPC correction and OPC contour simulation are computa-
tionally expensive. Take the ICWB software (IC WorkBench)
developed by Synopsys [7] for example. ICWB takes, on aver-
age, about 34 s to run a contour simulation on a 4 × 1.7 μm2

layout patch with an Intel Xeon E5-2670 CPU and 128-GB
RAM. It will cost around 4 days to run one OPC contour
simulation on a 400 × 170 μm2 layout design, and such
computational cost makes a complete OPC contour simula-
tion procedure impractical. It is therefore highly desirable to
develop an efficient photomask optimization scheme.

Fig. 2. Two scenarios utilizing the proposed LithoNet and OPCNet: (a) stand-
alone LithoNet and (b) cascaded LithoNet–OPCNet network.

Recent progress on image-to-image translation techniques
makes them suitable to tackle the lithography simula-
tion (i.e., Layout-to-SEM) and photomask optimization (i.e.,
SEM-to-Layout) problems mentioned above. However, these
two issues are more complicated than general image-to-
image translation problems. Take Layout-to-SEM prediction
for example. First, the domain of IC layout images and that
of SEM images are heterogeneous. An IC layout is a purely
man-made blueprint with only lines and rectangles on it and,
hence, it is noise-free and artifact-free. On the contrary, an
SEM image is formed from the intensity of detected signal
from raster-scanning the IC surface with a focused electron
beam. Besides the continuous shape distortions introduced by
the lithography and etching processes, the SEM imaging pro-
cess itself also suffers from several kinds of interference (e.g.,
scan-line noise and shading). This fact leads SEM images to a
significantly different domain from the layout-image domain.
Hence, this issue is essentially a cross-domain image match-
ing and translation problem. Second, in order to predict the
corresponding SEM image from an IC layout, our solution
must be capable of finding the shape correspondence between
these two domains of images. This fact raises an unsuper-
vised cross-domain image matching issue, which usually has
not been concerned in general image-to-image translation tech-
niques. Thus, it requires a more sophisticated solution, as the
concerns stated in [8] and [9]. Third, for the mask optimization
problem, it is very costly to collect a comprehensive set of ref-
erence OPC-corrected photomasks, making the training of a
photomask optimization network infeasible.

To address the above problems, as shown in Fig. 2, we
propose a fully data-driven framework involving two CNNs,
LithoNet and OPCNet, functionally complementary to each
other. In short, LithoNet is a cross-domain simulator of
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the lithography and etch processes in IC fabrication, and
OPCNet is a self-supervised mask optimization CNN using
the prediction results of LithoNet as supervision for the pur-
pose of OPC. The proposed LithoNet–OPCNet network serves
two purposes, each requiring a specific training dataset. First,
when LithoNet is used stand-alone as shown in Fig. 2(a), it
aims at image-to-image contour prediction. Because we focus
on the Layout-to-SEM (or Mask-to-SEM) contour prediction
problem, we train LithoNet on (layout, SEM) data pairs. Then,
during the inference stage, given a layout design, LithoNet pre-
dicts: 1) a deformation map and 2) an SEM prediction. Both
the deformation map and SEM prediction can be used for lay-
out risk assessment. Note that LithoNet is an image-to-image
contour predictor and thus can be trained on different kinds
of paired images for different purposes. For example, if we
need to build a model for mask-to-SEM prediction, we have
to train LithoNet on (mask, SEM) data pairs.

Second, as shown in Fig. 2(b), when OPCNet and LithoNet
are cascaded, the LithoNet–OPCNet network forms a system
for mask optimization aiming at minimizing the discrepancy
between a source layout and its SEM contour predicted by
LithoNet. The design concept is to construct a two-stage
system, where the first stage performs layout-to-X prediction
by OPCNet, where X denotes the OPC-corrected mask, and
the second stage performs X-to-SEM prediction by LithoNet.
Then, by enforcing the SEM prediction to be shape-consistent
with the target layout (i.e., the whole OPCNet-LithoNet
network behaves as an identity transform), OPCNet and
LithoNet act as if they were inverse functions of each other
mathematically. As a result, the LithoNet–OPCNet network
can be used to find an OPC-optimized mask X.

This article has four primary contributions.
1) To the best of our knowledge, we are the first to formu-

late the Layout-to-SEM deformation prediction problem
as a cross-domain image correspondence problem,
and we propose a two-step CNN-based framework to
address it.

2) Our LithoNet–OPCNet system is computationally much
more efficient than the typical optical-based contour sim-
ulation schemes, while achieving comparable prediction
accuracy. Since our method is fully data-driven, it could
enable IC fabrication plants to run a full, large-scale
screening on new IC layout designs. Note that an OPC
model is typically built for a particular process condi-
tion and operates according to interpolation. Hence, if
the process condition changes for a given process node,
whether the input layout is completely new or not, the
same OPC model may not provide a reliable prediction.

3) The proposed LithoNet is parameterized with fabrication
settings. Hence, it can also predict results under different
fabrication conditions so as to assist fabrication plants
to find the best suitable working intervals of parameters
and thus be beneficial for yield-rate improvement.

4) The proposed OPCNet overcomes the difficulty in lack
of ground-truth mask patterns. With the aid of a novel
training objective function called I/O-consistency loss,
the proposed OPCNet can well simulate the mask
optimization process in collaboration with LithoNet.

The remainder of this article is organized as follows. We
review related literature in Section II. The proposed LithoNet
and OPCNet are detailed in Sections III and IV, respectively.

Section V demonstrates and discusses our experimental results.
Finally, we draw our conclusion in Section VI.

II. RELATED WORK

A. Virtual Metrology

In IC fabrication, virtual metrology (VM) refers to the
methods for predicting wafer properties based on fabrication
parameters and sensor data from equipment without perform-
ing physical measurements on the product wafer produced by
a whole, costly fabrication process [10]. Since VM techniques
can significantly reduce the cost of IC fabrication, various
kinds of VM methods have been proposed for fabrication
quality assessment. For example, Susto et al. exploited the
knowledge collected in the process steps to improve the accu-
racy of VM prediction via a multistep strategy [11]. Besides,
the demand of VM methods has also triggered the development
of theoretical techniques. The method in [12], for instance,
models OPC mask correction as an inverse problem of opti-
cal microlithography. Optical lithography is a process used
for transferring binary circuit patterns onto silicon wafers,
and related discussions about lithography techniques can be
found in [13]. Recently, people have been attempting to inte-
grate machine learning methods with IC implementation and
VM [1], [2], [14]–[16]. Specifically, Yang et al. [15] proposed
a generative adversarial network (GAN) [17]-based inverse
method to estimate the optimal mask used in the fabrica-
tion process from an OPC simulation result. However, the
design in [15] aims only at the OPC-to-Layout problem,
which operates in an opposite direction of our Layout-to-SEM
prediction. Therefore, to the best of our knowledge, there is no
existing technique focusing simultaneously on both Layout-
to-SEM (lithography simulation) and SEM-to-Layout (mask
optimization) image translation problems. We deem that a
hybrid method of image-to-image translation or feature map-
ping techniques could compose a straightforward solution to
these two prediction problems.

B. Lithography Simulation

Recently, there have been a few machine learning-
based lithography simulation methods. For instance,
Watanabe et al. [1] proposed a fast and accurate lithog-
raphy simulation by determining an appropriate model
function via CNN, and Ye et al. [2] developed a GAN-
based end-to-end lithography modeling framework, named
LithoGAN, to map directly the input mask pattern to the
output resist pattern. Specifically, LithoGAN models the
shape of the resist pattern based on a conditional GAN
(cGAN) model and predicts the center location of the resist
pattern via a CNN model. LithoGAN has a dual learning
framework and, similarly, our LithoNet also adopts a dual
learning framework.

As will be detailed in Section III, we formulate the
Layout-to-SEM prediction as a cross-domain image-to-image
translation problem in the LithoNet design. Recent image-to-
image translation methods can be divided into two groups.
One requires training image pairs, e.g., [18] and [19], and
the other supports training on unpaired data, e.g., [20]. The
method in [20], based on GANs [17] and VAEs [21], was
designed for unsupervised image-to-image translation tasks,
which could be considered as a conditional image generation
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Fig. 3. Block diagram of the proposed two-step framework for cross-domain image-to-image translation. The upper step adopts CycleGAN to transfer the
training SEM images to obtain ground-truth labels. LithoNet then estimates the deformation maps between input layout patterns and their corresponding labels.

model. Besides, Pix2pix [18] consists of a Unet-like generator
and a PatchGAN discriminator. Pix2pix uses the PatchGAN
discriminator to model high-frequencies by classifying if each
patch in an image is real or fake. Therefore, it can be adopted
in various applications, such as translating a cartoon map
to a satellite image and translating a sketch to a natural
image and has become a benchmark in this field. Pix2pix was
further enhanced in [19] by taking advantage of a course-to-
fine generator, a multiscale discriminator, and an adversarial
learning objective function so as to generate high-resolution
photo-realistic images.

However, the above methods cannot address the shape
correspondence and the deformation field between two dif-
ferent domains of images, and neither do other representative
image-to-image translation methods, such as CycleGAN [22],
DualGAN [23], and [20], [24], [25]. Because characteriz-
ing the deviations of metal lines on a product IC based on
the source layout is a critical point in the IC industry, tra-
ditional image-to-image translation methods, which lack a
mechanism for precisely estimating a deformation field or the
shape correspondence between the layout and SEM images,
are not applicable to Layout-to-SEM image translation. To
serve the above purpose, the proposed LithoNet model per-
forms cross-domain image-to-image translation via learning
the shape correspondence between paired training images so
as to output a predicted deformation map for further VM
applications.

C. Mask Optimization

There also exist machine learning-based mask optimization
approaches. Notably, GAN-OPC proposed in [15] takes source
layout patterns and their reference OPC photomasks as train-
ing inputs and accordingly, for an input layout design, predicts
a corrected photomask that minimizes the deviation on the
(simulated) fabricated circuit shape from its original design.
In order to facilitate the training process and guarantee con-
vergence, GAN-OPC involves a pretrain procedure that trains
jointly the neural network and the inverse lithography tech-
nique (ILT) [26]. After GAN-OPC converges, the obtained
quasi-optimal photomask is further used as a reasonable initial

estimate for further ILT operation. In contrast, Yu et al. [16]
proposed a DNN framework to simultaneously perform sub-
resolution assist feature (SRAF) [27] and edge-based OPC.
However, the two methods require a collection of photomask
images, such as those suggested by OPC or historical data
gathered during the actual fabrication process, as the ground-
truth dataset for training. Because it is expensive and time
consuming to collect qualified mask images, the cardinal-
ity of the training dataset forms a performance bottleneck
of these methods. To eliminate such a bottleneck, we pro-
pose the OPCNet model for mask optimization, powered by
LithoNet. Because OPCNet and LithoNet are the inverse func-
tion to each other, OPCNet can be trained directly on the
SEM-styled images predicted by LithoNet without the need
for using expensive photomask images, as will be elaborated
later.

III. LITHONET: A CNN-BASED LITHOGRAPHY

SIMULATOR

As shown in Fig. 3, LithoNet consists of a CycleGAN-
based [22] domain transfer network and a deformation
prediction network. LithoNet is designed to learn how an IC
fabrication process deforms the shape contours of a layout
pattern. It can simulate the fabrication process to predict the
shape deformation for further VM applications based on: 1) a
given layout and 2) a set of fabrication parameters. One major
difficulty in learning the shape deformation model between
a layout pattern and its corresponding SEM image of fabri-
cated circuitry lies in the fact that they are from heterogeneous
domains. Specifically, an SEM image is a high-resolution,
gray-scaled image with deep depth of field (DOF), whereas
a layout is no more than a man-made binary pattern with
only rectangular regional objects on it. As a result, the goal
of LithoNet is to predict the contour shapes by learning the
pixelwise shape correspondence between every paired layout
and SEM images. Nevertheless, due to the poor contrast and
scanning pattern noise in SEM images, it is usually diffi-
cult to capture edge contours correctly from SEM images, on
which a 1-pixel-drift corresponds to a nanometer-scale dis-
placement on real IC products. Therefore, transferring the
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domain of SEM images to another intermediate domain with-
out the above-mentioned contrast and noise problems would
be beneficial.

To this end, we propose a two-step framework. In the first
step, we use CycleGAN [22] to transfer a gray-scale SEM
image to an intermediate domain, where images have SEM-
styled shape contours and layout-styled clear background.
Then, in the second step, given a source layout along with fab-
rication parameters, LithoNet predicts the shape deformation
introduced by the fabrication process. In sum, Step I learns to
bridge the gap between the SEM image and its binary layout
so that Step II can learn the shape correspondence between the
SEM image and its original layout. In the following sections,
we will introduce our design in detail.

A. Step I: Image Domain Transfer

Because the SEM and layout images are of heterogeneous
domains, we adopt an image domain transfer technique to
align their domains. By removing the interference introduced
by the SEM imaging process, e.g., bias in brightness/contrast
and scan-line noise, via CycleGAN [22], the processed SEM
image is translated to the domain of the layout. That is, the
processed SEM image retains its curvilinear shape boundaries
yet is binarized as if it were a layout.

To this end, we train CycleGAN using: 1) a set of product-
ICs’ SEM images and 2) their associated segmentation masks.
The second set of images can be derived by applying either
manual labeling, advanced thresholding techniques [28], [29],
interactive segmentation [30], [31], or pseudo-background sub-
traction [32] on the source SEM images. Note that in order
to guarantee the performance of domain transfer, segmenta-
tion masks with incorrect segmentation results are discarded
under user-supervision. Finally, we utilize the well-trained
CycleGAN to transfer source SEM images into the layout
style, and these processed SEM images are further taken as
reference ground truths to train LithoNet in Step II.

Employing CycleGAN for domain transfer has two advan-
tages. First, CycleGAN is an unpaired image-to-image trans-
lation method and, hence, it can learn the majority decision of
multiple image segmentation algorithms, including the analy-
sis software provided by the SEM vendor, for SEM images
based on a collection of segmentation results of different
methods. Second, utilizing a “U-net Generator” to translate
images, CycleGAN is essentially a U-net-based segmentation
method [33] supervised by its built-in “Discriminator” through
an adversarial loss, thereby suggesting a more reliable seg-
mentation result than U-net, a state-of-the-art segmentation
benchmark. Additionally, we can simply discard some rare
incorrect CycleGAN segmentation results by quick human-
inspection to prevent LithoNet from learning incorrect shape
correspondences.

B. Step II: Shape Deformation Prediction

To learn the shape correspondence and the deformation
field between SEM and layout images, LithoNet is trained
on a collection of image pairs, each containing a layout and a
ground-truth segmentation mask, i.e., a processed SEM image,
generated by Step I described in Section III-A.

As shown in Fig. 3, LithoNet consists of a generator and a
warping module. The generator is a U-net [33]-like network
that outputs a 2-D dense correspondence map depicting the
deformation field between the training image pairs. Then,
using the sampling strategy used in the spatial transformer
network (STN) [34], the warping module synthesizes a warped
version of the given input layout to simulate wafer-fabricated
circuitry based on the deformation map. STN is a differentiable
module designed for enabling neural networks to actively spa-
tially transform feature maps so that neural network models
can learn invariance to translation, scale, rotation, and warp-
ing. Consequently, we adopt the sampling strategy of STN to
benefit our LithoNet.

Moreover, the deformation map M : R2 → R
2 describes

the pixel-to-pixel displacement from a source layout image S
to an SEM-styled image J . Therefore, after LithoNet learns to
predict the pixel-to-pixel correspondence, we apply the defor-
mation map M on the layout S to derive the deformed shape
contour. The warping process that relates S , J , and M can be
expressed as J (m, n) = S(M−1(m, n)), where (m, n) denotes
the pixel coordinate.

In contrast to common image generation networks like [18]
and [35], the advantages of LithoNet are twofold. First,
LithoNet can generate and visualize a predicted deformation
field and, therefore, what has been learned by the network,
i.e., the shape correspondences between input training image
pairs, can be verified straightforwardly. Second, based on the
visualized deformation field, it would be easier to identify pos-
sible impacts (e.g., defects), whether global or local, caused by
the layout and the configuration parameters during fabrication
process, on the physical appearance of an IC’s metal layer.
Concisely, the deformation field generated by our LithoNet
is beneficial for clarifying both global and local shape cor-
respondences between a layout and the SEM image of its
product IC.

C. Training Loss Functions

The training loss function Ltotal of LithoNet is primarily
defined in the following form:

Ltotal = Lrec + Lvar + Lsmooth + Lreg + Lpar (1)

where Lrec denotes the reconstruction loss that measures the
dissimilarity between the training ground-truth I and the syn-
thetic SEM-styled image J . Meanwhile, Lvar measures the
variability difference between a paired training image pair, and
Lsmooth guarantees the smoothness of the deformation map.
Finally, Lreg is used to penalize large displacements on the
deformation map, and Lpar is the regression loss of fabrication
parameters.

1) Reconstruction Loss: The reconstruction loss term
Lrec(I,J ) is defined as the L1-loss between the training
ground-truth I and the synthetic SEM-styled image J as
follows:

Lrec(I,J ) = 1

n
‖I − J ‖1 (2)

where n denotes the number of pixels. We derive Lrec by the
following steps: 1) densely sampling pixel positions on the
to-be-generated J ; 2) locating the correspondences of them
on the input layout according to the deformation map M that
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records the mapping relationship between pixels on I onto
their counterparts on J ; 3) using backward interpolation to
estimate the sampled pixel values on J , i.e., Ĵ (x, y) = I(x̂, ŷ)
with noninteger positions (x̂, ŷ) = M−1(x, y); and 4) gener-
ating an estimated Ĵ via bilinear interpolation1 to calculate
Lrec.

2) Total Variation Loss: The total variation loss Lvar(I,J )

is defined as the total variation [36] of the signed difference
between I and J , that is

Lvar(I,J ) =
∑

|∇(I − J )|. (3)

This term is designed to align the shape contours of J
with those of I. Without this term, the loss function might be
dominated by the reconstruction loss described in (2), and con-
sequently LithoNet would generate a bizarre synthetic image
J , which can produce a high overlap ratio compared with
ground-truth image I but has unnaturally jiggling contours.
In other words, Lvar aims to retain the shape similarity.

3) Smoothness Loss: The smoothness loss is a penalty
term defined as the L1-norm of the weighted gradient of the
deformation map

Lsmooth = ‖(∇M) ◦ W‖1 (4)

where ◦ denotes the Hadamard product, and W is an edge-
aware weighting matrix defined as

W(x, y) = e−(|∇S(x,y)|+|∇I(x,y)|). (5)

Note that contour edges on the input layout S and the
ground-truth layout-styled SEM image I result in discontinu-
ities in the deformation map M. Because such discontinuities
contribute to an unnecessary smoothness penalty, Lsmooth
should be suppressed appropriately according to the gradient
information of both layout and SEM images.

4) Regularization Loss: The regularization loss is defined
as the L1-norm of deformation map M

Lreg = ‖M‖1. (6)

This term reflects the fact that the deformation caused by
wafer fabrication tends to be small, as will be discussed in
Section V-D2.

5) Regression Loss for Fabrication Parameters: Because
the configuration parameters of a fabrication process are con-
tinuous variables that influence the physical appearance of the
wafer layer, we formulate the relationship between the fab-
rication parameters and the appearance of wafer layer as a
regression problem. The regression loss Lpar is defined as

Lpar = ‖Dy(G(S|y)) − y‖2︸ ︷︷ ︸
Generator loss

+ ‖Dy(Iy) − y‖2︸ ︷︷ ︸
Discriminator loss

(7)

where I is the ground-truth shape segmented from the SEM
image used for training; y is the fabrication parameter vector
corresponding to Iy; S denotes the input layout; and G(S|y) is
the predicted deformed shape. Therefore, this loss term aims to
train: 1) a generator able to predict a synthesized SEM-styled
image based on the given S and y and 2) a discriminator able

1Ĵ (x, y) = I(x̂, ŷ)

≈
[ �x̂	 − x̂

x̂ − 
x̂�
]t[ I(
x̂�, 
ŷ�) I(
x̂�, �ŷ	)

I(�x̂	, 
ŷ�) I(�x̂	, �ŷ	)
][ �ŷ	 − ŷ

ŷ − 
ŷ�
]

, where �·	 and 
·�
denote ceiling and floor functions, respectively.

to discriminate whether each entry of the extracted parameter
vector Dy(Iy) is identical to the corresponding entry within
the ground-truth fabrication parameter vector y.

IV. OPCNET: A CNN-BASED PHOTOMASK CORRECTOR

As described in Section II-C, the major challenge in
developing a learning-based mask optimizer is to collect a
comprehensive amount of ground-truth mask data, e.g., well
OPC-corrected photomasks of various layout patterns, lead-
ing to desired shapes of fabricated circuitry. This is, however,
very costly and time consuming. To overcome this difficulty,
as shown in Fig. 2(b), we utilize a pretrained LithoNet as
an auxiliary module to train our photomask optimizer, i.e.,
OPCNet. Given an IC layout pattern, OPCNet aims to predict
an OPC-corrected mask pattern so that, after being deformed
by the lithography and etching processes that are simulated
by LithoNet, the predicted deformed shape will be as close
as possible to the original layout pattern. By regarding the
LithoNet–OPCNet network as a composite function f = h ◦ g
with h and g denoting, respectively, LithoNet and OPCNet, this
design can be expressed as min ‖S− f (S)‖, where S and f (S)

are, respectively, the input layout and the final prediction pro-
duced by the LithoNet–OPCNet network. Therefore, because
such minimization optimizes to f = 1, which implies h◦g = 1,
OPCNet and LithoNet should be the inverse functions of each
other. As a result, for a desired layout pattern, we can use
the predicted output of OPCNet as the input of LithoNet,
and the desired layout itself as the corresponding input of
OPCNet. Consequently, we can train OPCNet without the need
for collecting the “ground-truth” OPC-corrected photomasks.

Specifically, given a layout design pattern S , OPCNet aims
to generate a photomask K, whose lithography and etching
simulation result J predicted by LithoNet best matches S .
This design makes our OPCNet “ground-truth-free” during
the training stage, assuming LithoNet is already well-trained.
In addition, with the design of the input–output consistency
loss used to measure the dissimilarity between a layout
design pattern S and its lithography simulation result J ,
OPCNet becomes a self-supervised learning method. The
whole pipeline of our mask optimization method is illustrated
in Fig. 2(b). Note that: 1) the pretrained LithoNet is fixed while
training OPCNet and 2) OPCNet is intrinsically a generator
for translating a layout pattern S into its optimal photomask
K based on the wafer fabrication model learned by LithoNet.

A. Application Scenarios

The LithoNet–OPCNet network can serve two purposes.
First, when LithoNet is well pretrained on a comprehensive set
of (layout, SEM) pairs if during IC fabrication no OPC is per-
formed, or on a set of (mask, SEM) pairs if OPC is performed,
LithoNet can accurately predict the shape deformations due
to the lithography and etch processes. Since OPCNet is the
inverse function of LithoNet, it can be used to predict the OPC-
optimized mask for a target layout pattern that would minimize
the discrepancy between the fabricated IC shape and the tar-
get layout pattern without the need for collecting ground-truth
OPC-optimized masks. In this way, the LithoNet–OPCNet
network potentially can replace the function of current OPC
prediction models.
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Second, if the training samples are not comprehensive
enough to train a fully reliable LithoNet model, the LithoNet–
OPCNet may not be able to completely replace current OPC
prediction models. However, if LithoNet can achieve a reason-
able accuracy, the LithoNet–OPCNet network can still be used
to verify if there is any inconsistency between the optimized
mask prediction and the conventional OPC mask—an obvious
inconsistency implies the fab-plant need to update the OPC
model by collecting specific process-window conditions over
the input layout structure.

B. Training Loss Functions for OPCNet

The overall training loss LK of OPCNet is defined as

LK = LIO + LKvar + LKsmooth (8)

where LIO denotes the input–output consistency loss measur-
ing the dissimilarity between input layout S and LithoNet’s
output J , LKvar represents the total variation loss on the dif-
ference between S and J , and LKsmooth denotes the mask
smoothness loss for ensuring the smoothness of the obtained
photomask patterns K.

1) Input–Output Consistency Loss: The input–output con-
sistency loss LIO(S,J ) aims to guide the learning of OPCNet
so that the shape predicted by LithoNet J best matches the
desired input layout S , provided that the source layout is OPC-
corrected by the learned OPCNet. The loss term is defined as
follows:

LIO(S,J ) = 1

n
‖S − J ‖1 (9)

where n denotes the number of pixels.
2) Total Variation Loss: Similar to (3), the total variation

loss LKvar(S,J ) is defined as the total variation of signed
difference between the input layout S and the prediction of
LithoNet J

LKvar(S,J ) =
∑

|∇(S − J )| (10)

which is again an empirical term used to avoid unnatural pat-
terns on the predicted shapes. LKvar prevents LK from being
dominated by the I/O-consistency loss LIO. Without this term,
the OPCNet may produce a unnatural correction.

3) Mask Smoothness Loss: The mask smoothness loss
is defined to be the L1-norm of the gradient of the mask
prediction, that is

LKsmooth = ‖∇K‖1. (11)

This term penalizes the discontinuity on the corrected pho-
tomask K to guarantee the smoothness of shape contours of K.
Note that LKsmooth does not incorporate with an edge-aware
weighting matrix, since there are no ground-truth masks that
define true contour edges in the training dataset.

In practice, there are some restrictions on what kind mask
shapes can be made by a mask shop. We can integrate such
mask manufacturing rules checking (MRC) with OPCNet in
two ways: 1) formulating the MRC as training loss functions of
OPCNet or 2) using a post-processing step based on the MRC
rules to modify the OPC-corrected layout patterns generated
by OPCNet. The second method is commonly used in practice,
but OPCNet has the capability to adopt the first method or a
combination of the two methods.

V. EXPERIMENTAL RESULTS

A. Dataset and Settings

Images demonstrated in this work are selected from two
datasets provided by United Microelectronics Corporation
(UMC). These two UMC datasets consist of pairs of images,
each containing one layout image patch and its wafer’s SEM
image patch. UMC dataset #1 contains SEM images taken
from wafers fabricated with the same fabrication parameters,
and UMC dataset #2 contains SEM images taken from wafers
fabricated with seven various normalized parameter settings
ranging from −0.9 to +0.9. In total, UMC dataset #1 con-
tains: 1) a 928-pair training subset and 2) a 114-pair blind
testing subset, whereas UMC dataset #2 contains: 1) a subset
comprising 1057 × 7 pairs2 for training and 2) another sub-
set comprising 12 × 7 pairs for blind testing. All images in
the blind testing set are collected from historical fabrication
data. Compared with those in the training sets, the blind test
images are of much larger sizes and contain unseen design
patterns. We trained CycleGAN for style-transfer in Step I
on the UMC dataset #1, and LithoNet on UMC datasets #1
and #2. As for OPCNet, it was trained on paired data, each
of which contains: 1) a layout image S in the first dataset
and 2) its fabricated IC shape J predicted by feeding S into
a pretrained LithoNet. In our experiments, all image patches
are downscaled from 512 × 512 to 256 × 256 to reduce the
computational complexity. Each 512×512 source image corre-
sponds to a 2×2 μm2 region, so aliasing will not occur in this
case. The five loss terms described in (1) are weighted empiri-
cally by (100, 0.001, 150, 0.002, 10). Meanwhile, the weight-
ing coefficients for OPCNet described in (8) are (50, 0.001,
50). These weighting coefficients are determined according
to the following two steps. First, because the reconstruction
loss and the smoothness loss in (1) and (8) are more consid-
erable than the others, we assign them with larger weighting
coefficients and adjust the weighting coefficients until reaching
reasonable results. In this step, the coefficients of other loss
terms are temporarily set to be zero. Second, we assign the
other loss terms with much smaller coefficients initially and
then adjust them to make the training process easily converge.

B. Architecture and Run-Time Information

Fig. 4 shows the architectures of subnetworks constituting
LithoNet, including: 1) the encoder of the generator; 2) the
decoder of the generator; and 3) the discriminator. OPCNet
shares the same architecture as LithoNet’s generator. On aver-
age, LithoNet and OPCNet take 0.0156 and 0.0150 s to run a
simulation on a 256×256 image on an NVIDIA 2080Ti GPU,
respectively. The whole training process takes about 1.5 days
on a server equipped with one NVIDIA P100 GPU. Note that
on the server, it takes about 34 s to run OPC contour simulation
for a 4 × 1.7 μm2 layout patch.

C. Performance Metrics

The performance of our model is evaluated objectively
in terms of some widely used similarity metrics, including
intersection over union (IOU), SSIM [38], and per pixel error

2There are 1057 layouts and 7 different settings per layout, so 7399 pairs
of images in total.
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Fig. 4. Network architecture of LithoNet. Its generator consists of an encoder
and a decoder. OPCNet is architecturally identical to LithoNet’s generator.

rate. These three metrics are defined below

IOU(x, y) = ∩(x, y)

∪(x, y)
(12)

ErrorRate = FP + FN

TP + TN + FP + FN
and (13)

SSIM(x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
(14)

where ∩ and ∪ denote, respectively, the set intersection and
set union; and TP, TN, FP, and FN stand for true positive, true
negative, false positive, and false negative, respectively. The
SSIM index measures the structural similarity between two
images. In the equation above, μx and σx denote the average
and the variance of image x, σxy denotes the covariance, and
C1 and C2 are variables stabilizing the division.

Finally, we also utilize the contour-to-contour distance,
hereafter abbreviated as C2Cdist, to approximate the edge
placement error (EPE) and the edge displacement error used
in [2]. This metric, methodologically similar to EPE, measures
the mean contour-to-contour distance between a lithography
prediction and its SEM contour ground truth. We utilize this
strategy because an SEM prediction usually contains multiple
irregular regions whose bounding boxes may be overlapped,
and thus bounding boxes cannot suggest a fair distance mea-
sure for the whole SEM prediction. The C2Cdist metric,
measured in pixels, is illustrated in Fig. 5 and available for
download at [39]. We will demonstrate in detail that our model
outperforms other image-to-image translation methods and the
standard OPC approach.

D. LithoNet

1) Image Domain Transfer: In Fig. 6, we compare our
image domain transfer results with images derived by the

Fig. 5. Illustration of contour-to-contour distance (C2Cdist). (a) Ground truth
(GT); (b) contour of GT; (c) distance map [37] of GT’s contour obtained by
MATLAB function bwdist; (d) input; (e) contour of the input; (f) overlay of
(e) on GT’s distance map. Then, C2Cdist can be derived by averaging distance
values collected along the input’s contour.

Fig. 6. Comparison between the segmentation masks obtained by
CycleGAN [22] trained on the UMC dataset #1 and traditional Otsu thresh-
olding.

traditional Otsu thresholding method [29]. Obviously, the
source SEM images contain typical complications from the
SEM imaging process, such as bias in brightness/contrast prob-
ably due to gain-shift and scanning-pattern noise. It is thus
difficult for common methods to threshold an SEM image
appropriately. By exploiting a well-trained translator, e.g.,
CycleGAN [22], an SEM image can be transferred into a
layout-styled format with its contour shapes unchanged.

2) Prediction Results: Fig. 7 illustrates the deformation
map predicted from the input layout, the predictions of fab-
ricated IC shapes based on the deformation map, and the
corresponding ground truths of fabricated IC shapes extracted
from their associated SEM images. The deformation maps
show that LithoNet successfully learns to widen lines within
open areas and to condense lines otherwise. Because such
information is the key to the metrology applications, such
as layout scoring and OPC simulation described in Fig. 1,
this experiment also demonstrates that LithoNet can be used
to bridge computer vision techniques with both fields of
semiconductor manufacturing and computer-aided-design.
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Fig. 7. Comparison of the input layout patterns, the predicted deformation maps, the predictions of fabricated IC shapes based on the deformation maps, and
the ground truths of fabricated IC shapes extracted from their associated SEM images. The second row illustrates every deformation map M(m, n) = xmî+ynĵ

as its per-pixel magnitude
√

x2
m + y2

n pointing to the deformation direction v̂ = (xmî + ynĵ)/
√

x2
m + y2

n.

TABLE I
ABLATION STUDY OF DIFFERENT LOSS SETTINGS ON THE UMC
DATASET #1 (DATA IN PARENTHESES ARE FROM TRAINING SET)

3) Ablation Study of Loss Terms: Here, we examine and
discuss the effectiveness of individual loss terms in (1). First,
we made numerical comparisons among different loss settings
in Tables I and II, each of which corresponds to a differ-
ent dataset. The values in parentheses are final loss values on
the training set during training. The results shown in Table I
were derived by LithoNet trained on the UMC dataset #1,
whereas Table II shows the performance of LithoNet trained
on a small subset of the UMC dataset #1 containing 480 train-
ing patches (obtained from 16 image samples by using only
overlapped-cropping to obtain 30 patches for each sample for
data augmentation). From Tables I and II, we can observe that
the total-variation loss, Lvar, contributes significantly to the
performance improvement. Moreover, Lsmooth is beneficial to
improve the objective performance when only a very limited
amount of training samples is provided, as shown in Table II.
On the contrary, as listed in Table I, Lsmooth contributes less
effectively to the objective performance when a comprehensive
enough training dataset is given. We demonstrate the SEM-
styled images predicted according to small training dataset
without using the smoothness loss Lsmooth in Fig. 8, where

TABLE II
ABLATION STUDY OF DIFFERENT LOSS SETTINGS ON A SMALL SUBSET

OF THE UMC DATASET #1

Fig. 8. Prediction results by LithoNet trained on the UMC dataset #1 without
the smoothness loss term Lsmooth.

unexpected artifacts are highlighted in red rectangles. This
experiment set shows the necessity of Lsmooth, especially in
cases of a small training set.

The visual effect brought by the total-variation loss Lvar is
demonstrated in Fig. 9, where the “Baseline” column demon-
strates images derived using Ltotal − Lvar, whereas the “Full”

Authorized licensed use limited to: National Tsing Hua Univ.. Downloaded on April 21,2021 at 07:27:25 UTC from IEEE Xplore.  Restrictions apply. 



966 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 5, MAY 2021

Fig. 9. Subject visual quality comparison of LithoNet with and with-
out the total-variation loss Lvar, where the “Baseline” column demonstrates
images derived using Ltotal − Lvar and the “Full” column shows predictions
synthesized using Ltotal.

column shows predictions synthesized using Ltotal. This exper-
iment set shows how Lvar improves the visual quality of
synthetic SEM-styled images. Take regions highlighted by red
rectangles in Fig. 9 for example. Without Lvar, LithoNet tends
to produce straight-line edges and sharp corners, although
there are no such patterns on the training images produced
by a real IC fabrication process, as shown in “Ground truth”
column. By adding Lvar to the total loss function, such artifacts
can be largely mitigated, thereby more faithfully predicting the
shapes of SEM images. Finally, note that LithoNet’s Lvar and
Lreg can be regarded as regularization terms to prevent over-
fitting. As listed in Tables I and II, when LithoNet was trained
on Ltotal, its testing performance is close to that of the train-
ing data; and, such situation may not hold for other settings,
including Pix2pix.

4) Comparison With Pix2pix: As LithoNet is a kind
of image-to-image translation scheme, we compare it with
Pix2Pix [18], a representative GAN-based image-to-image
translation method. This experiment set was designed for two
purposes. One is to verify if LithoNet is able to learn special
shape correspondences between layout and SEM images, and
the other is to check if LithoNet is more advantageous than
Pix2Pix in this regard.

As shown in Table I, Pix2pix achieves slightly higher objec-
tive metric values than LithoNet. This situation, however,
arises from the fact that these objective metrics mainly reflect
the effect of the reconstruction loss term. Nevertheless, com-
pared to Pix2pix, our total loss function described in (1)
contains several additional loss terms, including Lreg, Lpar,
and Lsmooth, which do actually lead to better visual quality as
will be explained later.

As illustrated in Fig. 10, Pix2pix produces artifacts like
blurred and jiggled contour edges, whereas LithoNet is able
to generate clear and smooth ones. Since both Pix2pix and
LithoNet utilize L1-norm to guarantee a global shape similar-
ity, this phenomenon would probably be due to the different
control strategies over local shapes. Specifically, LithoNet
makes use of the total-variation loss, smoothness loss, and

Fig. 10. Subjective visual quality comparison between Pix2pix and LithoNet,
both trained on the UMC dataset #1.

Fig. 11. Subjective visual quality comparison between Pix2pix and LithoNet,
both trained on the UMC dataset #1, for some unseen layout patterns of a
different observation scale.

regularization loss to control the local deformations, whereas
Pix2pix relies on its discriminator architecture, the so-called
PatchGAN design that penalizes a structure at the scale of
patches, to handle local deformations. Consequently, because
PatchGAN does not put any penalty on blurred and jiggled
edges and learns only to classify if each generated patch looks
realistic, such artifacts are reasonable tradeoffs of Pix2pix’s
PatchGAN design.

Fig. 11 compares the prediction results of feeding LithoNet
and Pix2pix with test images containing significantly distinct
layout patterns from those in the training image set. Moreover,
the source dimension of these testing images is much larger
than the training data. Therefore, through this experiment, we
can appraise the reliability and robustness of LithoNet and
Pix2pix in mimicking an IC fabrication process when the input
layout is a brand new, unseen pattern of a different scale. We
can observe from Fig. 11 that, for unseen layout patterns of a
different scale, LithoNet significantly outperforms Pix2pix in
terms of the clarity and integrity of shape boundaries, although
the predictions of LithoNet still cannot perfectly match the
ground truth for lack of suitable training samples. Finally,
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Fig. 12. Predictions by LithoNet trained on the UMC dataset #2 driven by different configuration parameter values for wafer fabrication. We focus on one
configuration parameter which is inversely proportional to the degree of etching: the larger the parameter value, the lower the degree of etching, and the wider
the metal lines. Those parameters values used in the training dataset are colored black, whereas those values not used in training are colored red.

Fig. 13. Illustrations of inter-relationship between the shapes of metal lines
and their local neighborhood.

Fig. 14. Prediction results of LithoNet: (a) comparison between a layout and
the prediction based on the layout and (b) conceptual illustration of “Necking”
and “Rounding” where the necking effects are highlighted by red boxes and
arrows and the rounding effects are indicated by blue arrows.

Table III lists the numerical comparisons between LithoNet
and Pix2pix for this case.

Note that there is still no widely accepted objective metric to
assess the quality of a predicted SEM-styled contour for an IC

Fig. 15. Illustrations of masks predicted by the mask generator and their
lithography simulation outputs. The mean C2Cdist values between layout and
lithography simulation of these three cases (from top to bottom) are 10.71,
5.50, and 0.34; and, the standard deviations are 22.73, 16.99, and 0.58.

layout patch with respect to its SEM ground truth. Some con-
ventional metrics, e.g., IOU and SSIM, measure the similarity
globally but ignore local shape discrepancies which may lead
to significant impact on IC manufacturability, whereas others,
e.g., EPE and EDE [2], though designed for shape compar-
ison, still cannot capture local shape discrepancies well. We
here leave the problem of developing metrics capable of char-
acterizing both local and global discrepancies and measuring
the manufacturablity of a layout pattern simultaneously and as
an open problem for future research.

5) Fabrication Parameters: Fig. 12 compares the
predictions by LithoNet trained on the UMC dataset #2
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Fig. 16. Input layout S, predicted mask K, lithography simulation J , and the C2Cdist(S, J ) value.

TABLE III
COMPARISON BETWEEN LITHONET AND PIX2PIX, BOTH TRAINED ON

THE UMC DATASET #1, FOR UNSEEN LAYOUT PATTERNS OF A

DIFFERENT SCALE

driven by different configuration parameter values for wafer
fabrication.

In this experiment set, we fix the focus and adjust the energy
strength of the scanner in the lithography process to obtain the
training samples, and then train LithoNet on them. We focus
on one configuration parameter, i.e., energy, normalized to the
range of [−0.9, 0.9]. This parameter is inversely proportional
to the degree of etching: the larger the parameter value, the
lower the degree of etching. This experiment set shows that
LithoNet is capable of predicting the width of metal wires by
using regression and the discriminator.

Those parameter values used in the training dataset are col-
ored black, and those values not used in training are colored
red. This experiment shows that the proposed LithoNet, thank
to the regression loss term Lpar described in (7), does learn the
relationship between the line width and the fabrication param-
eter used to control the degree of etching in the fabrication
process. Concisely speaking, the larger the parameter is, the
wider the metal line should be. Hence, our LithoNet model is
able to mimic the fabrication process and generate parameter-
dependent prediction results. This is an important aspect of
LithoNet design, and such design makes LithoNet suitable for
semiconductor manufacturing simulations.

6) Model Generality: Here, we examine LithoNet’s range
of applicability. The image pair in the top row of Fig. 13
shows that, in an open area, the general fabrication process
typically produces a metal line wider than its layout design,

as highlighted by the red rectangle. The predicted image shown
in the bottom row of Fig. 13 demonstrates that LithoNet learns
the shape correspondence between paired training images, so
it predicts a wider line in an open area and a narrower one
in between two neighboring lines. Consequently, LithoNet can
be expected to forecast fabrication results as long as a large
enough amount of training data is given.

We also design another experiment to show that LithoNet
can learn the “necking” and “rounding” effects that usu-
ally occur in IC fabrication, as highlighted by red rectangles
in Fig. 14(a) and indicated by the red and blue arrows in
Fig. 14(b). Necking is a high-risk pattern caused by either a
tip-to-line or a line-end too close to another line on the lay-
out design. As illustrated in Fig. 14(b), such situations may
result in a line narrower than designed after fabrication. Hence,
this experiment set provides further evidence that a well-
trained LithoNet is capable of mimicking the semiconductor
lithography and etch processes.

E. OPCNet

1) Impacts of Loss Functions: As described in Section IV,
given a layout design pattern S , OPCNet aims to generate a
mask K whose lithography simulation result J predicted by
LithoNet is most similar to S . OPCNet is controlled jointly
by the IO-consistency loss LIO, the total-variation loss LKvar,
and the mask smoothness loss LKsmooth. The former two loss
terms measure the dissimilarity between S and J , and the
third focuses on the smoothness of K. Here, we examine how
LKvar and LKsmooth contribute to the mask prediction task.

Shown in Fig. 15 are three columns of images, each of
which corresponds to one loss setting. Comparing the mask
predicted by using LIO with that by LIO +LKvar, we can find
that LKvar guarantees the quality of shape contour in the lithog-
raphy simulation. No matter the Lvar of LithoNet or the LKvar
of OPCNet, such total variation loss accounts for the differ-
ence between predicted contours and their ground truth and
focuses on k pixels around the contour pixels. This term helps
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LIO to guarantee the similarity between the input layout and
the lithography simulation and also avoid unexpected arti-
facts at contours. Finally, comparing the mask predicted by
LIO + LKvar with that by LIO + LKvar + LKsmooth, we find
that LKsmooth can globally suppress unexpected artifacts on
the predicted mask image. The mask prediction derived by
Lmask described in (8) can thus be artifact-free and smooth.

2) Mask Prediction Results: Finally, demonstrated in
Fig. 16 are the masks predicted by OPCNet. Given a well-
trained and accurate lithography simulator LithoNet, Fig. 16
provides evidence that OPCNet successfully performs the
mask optimization task in a self-supervised learning man-
ner without the need of collecting ground-truth OPC-corrected
masks. With OPCNet, a layout pattern can be adequately cor-
rected so that the resulting circuit shape best matches the
source layout pattern, after an IC-fabrication process.

VI. CONCLUSION

In this article, we proposed a data-driven framework involv-
ing two CNNs: LithoNet and OPCNet. First, by learning the
shape correspondence between paired training images, i.e., IC
layout designs and their fabricated IC SEM images, LithoNet
can predict the shape deformation field of the layout and
then generate a lithography simulation result. Second, with
pretrained LithoNet, OPCNet can learn a mask optimization
model without ground-truth OPC-corrected masks based on
the proposed input–output consistency loss. Experimental
results evidently demonstrate that, in the lithography simula-
tion issue, our method outperforms existing image-to-image
translation schemes and the standard compact model-based
simulations. In the mask optimization problem, OPCNet can
correctly predict the mask whose lithography simulation image
matches the expected layout. One on-going extension of this
work is to establish a scoring system, based on the deforma-
tion map or SEM-styled image derived by our method, so that
a VM system for IC circuit layout quality assessment can be
developed.
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