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ABSTRACT   

Video retargeting from a full-resolution video to a lower-resolution display will inevitably cause information loss. 

Content-aware video retargeting techniques have been studied to avoid critical visual information loss while resizing a 

video. In this paper, we propose a mosaic-guided video retargeting scheme to ensure good spatio-temporal coherence of 

the downscaled video. Besides, a rate-distortion optimization framework is proposed to maximize the information 

retained in the downscaled video.  
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1. INTRODUCTION  

With the rapid growth of handheld devices and wireless networks, sharing media content through these devices becomes 

more and more popular. The display size of a handheld device is typically much smaller than that of a TV or of a 

computer monitor. Spatial video scaling is therefore required to adapt visual content for the display formats of these 

handheld devices. However, uniform downsizing usually makes major objects too small to be recognized well. Moreover, 

the aspect ratio of a film is usually different from that of the display of a TV or a handheld device, making it necessary to 

scale or crop a video to adjust the aspect ratio. No matter how the visual content is resized to another lower resolution, it 

cannot prevent information loss from its full-resolution version. 

Video retargeting is a structure-level video adaptation technique that resizes a video from one resolution to another lower 

resolution without severely deforming major content. An ideal video retargeting method has to preserve major visual 

content and avoid critical visual information loss while resizing the visual content [1]. To address this problem, several 

content-aware video retargeting methods have been proposed. According to the granularity of processing unit, these 

methods can be classified into three kinds of approaches: pixel-based approaches [2][5], region/patch-based approaches 

[6]-[10], and object-based approaches [11], [12]. We shall introduce these methods in more detail in Section 2. 

Although several content-aware image retargeting methods [2], [13][15] have proven to achieve good visual quality in 

resizing a single image, directly extending these image-based retargeting methods to video applications usually causes 

severe temporal incoherence artifacts. This is because the image-based retargeting schemes deal with the resizing of 

video frames separately without taking into account the temporal consistency of neighboring frames, leading to variation 

of the scaling factor of a corresponding region in neighboring frames. Such inconsistency leads to visually annoying 

artifacts on the region such as stretching (the reverse of stretching), shrinking (repeated stretching and shrinking), and 

waving (repeated stretching and shrinking). Although several video retargeting methods have been proposed to address 

the temporal incoherence problem, camera motions and object motions make it difficult to maintain temporal coherence 

with existing video retargeting schemes. With camera motions, a region would move to different spatial locations of 

neighboring frames. If a video retargeting method does not properly consider the spatio-temporal relationship, the 

scaling factor for the region may vary significantly in neighboring frames. 

The proposed method is an extended version of our previous work [29]. Our primary goal is to solve the temporal 

incoherence problem in a systematic way, rather than resorting to numerous temporal coherence constraints. To ensure 

good temporal coherence, our proposed method first constructs a panoramic mosaic for a video shot. Besides, in order to 

keep scaling factor coherence inside each object, we adopt a semi-automatic object segmentation method to identify the 

object regions in the panorama mosaic. Based on the object masks, the mapping relationships of individual frames to the 



 

 
 

 

panorama mosaic map are used to generate scaling factor constraints. By imposing  the constraints on scaling factors and 

on scaling factor variation ins each object regions, the proposed method directly resizes the panoramic mosaic to obtain 

the optimized scaling maps of individual frames. Consequently, the scaling maps of individual frames are derived 

according to their mapping relationships to the panoramic mosaic. The proposed method avoids the iterative optimization 

procedure for individual frames by translating the video retargeting problem into an image retargeting problem under 

scaling factor constraints. 

The rest of this paper is organized as follows. Section 2 summarizes the state-of-the-art content-aware video retargeting 

approaches. Our proposed mosaic-guided scaling method is presented in Section 3. Section 4 reports and discusses the 

experimental results. Finally, conclusions are drawn in Section 5.  

2. RELATED WORK 

Several content-aware video retargeting methods have been proposed in recent years. These methods mainly aim to 

retain as much human interested regions as possible in a spatially downscaled video by trimming unimportant content, 

thereby preserving in the resized video the main concept inside the source video. The video retargeting methods can be 

classified into three kinds, namely, pixel-based approaches, region/patch-based approaches, and object-based approaches. 

Generally, a content-aware video retargeting method consists of two parts: energy function and resizing algorithm. The 

energy function which, in most existing works, is constituted of low-level perceptual features (e.g., gradient, color, and 

motion) to discover visually important regions of a video frame. Accordingly, the resizing algorithm trims video frames 

non-homogeneously based on the energy values of pixels, patches, regions, or objects. 

The pixel-based approaches resize video frames in the pixel domain. The seam-carving-based methods are among the 

most representative pixel-based approaches [2], [3]. Based on an energy function, the methods continuously remove a 

spatio-temporal surface until reaching the desired video resolution. Several variants of seam carving have been proposed 

to improve the visual quality by finding suitable low-energy spatio-temporal cubes to discard, or to reduce computational 

complexity [16][18]. However, with complex camera and object motions, finding a surface that does not disturb 

important video content becomes difficult. 

Several warping-based video retargeting schemes [4], [5], [19] also belong to the pixel-based class. Wolf et al. [4] 

formulated video retargeting as solving a least squares problem with sparse linear system equations. As a result, each 

pixel of low importance is mapped to be relatively close to its neighboring pixels, whereas the distances of an important 

pixel to its neighboring pixels is retained. However, this method is only optimized at a desired resolution. It needs to re-

compute the shrinkability of each pixel when imposing another resolution constraint, making it impractical for real-time 

applications that require resolution change. To address this problem, Zhang et al. [19] improved the method by defining 

a per-pixel cumulative shrinkability map to scale each frame. The shrinkability map describes how close a pixel can 

approach to its neighboring pixels. In the method, it is not necessary to perform full computation when resizing a video 

to another video resolution, thereby achieving computation saving. To improve temporal coherence, Krähenbühl et al. [5] 

proposed to take into account the influence of scene change and object motion in a video. The method first uses a scene 

cut detector to detect discontinuities in the video and then computes bilateral temporal coherence energy accordingly for 

warp computation. Besides, it uses temporal filtering of per-frame saliency maps over a time window to account for the 

future changes of salient regions.  

The region/patch-based approaches divide each video frame into many regions/patches. The scaling factor (or sampling 

rate) of each region/patch is determined by a spatio-temporal optimization process. Kim et al. [6] proposed to split an 

image into many strips. The optimal scale of each strip is then determined based on the Fourier analysis. In this method, 

a video sequence is treated as a spatio-temporal cube. The cube is subsequently divided into many individual regions and 

the corresponding sampling rate for each region is determined according to the region’s importance. In [7], Shi et al. 

proposed a context-assisted video retargeting scheme that combines the high-level visual concepts and visual attention 

into a spatio-temporal importance map. The importance map is then incorporated with their proposed 3D rectilinear grid 

resizing scheme. The performance of the method was evaluated on sports and advertisement videos. The cropping-based 

methods proposed in [8], [9] define a target region that includes the most important part of the original video. The target 

region must have the same size of the expected resolution. The cropping-based method also needs to maintain the 

temporal coherence of the cropped regions to prevent the jittery artifact. The main weakness of cropping-based method is 

that the discarded regions often still contain important information.   



 

 
 

 

The object-based approaches segment a video frame into foreground objects and background [11], [12]. The objects and 

background are then resized by different resizing techniques. The object-based schemes rely on accurate object 

segmentation to extract all possible objects. With the foreground and background masks, individual objects are 

recomposed to the desired video sizes. However, inaccurate object segmentation will cause perceptually unpleasant 

artifacts along the boundary of an object. 

A few video retargeting methods use image registration techniques to mitigate the negative impact of object and camera 

motions on temporal coherence [18], [10]. Image registration aligns video frames by fitting a camera motion model 

between consecutive frames. The geometrical correspondence between every two consecutive frames is then established 

based on the estimated camera motion. Kopf et al. [18] proposed to construct a panoramic mosaic to track the (local) 

object motions and (global) camera motions. Based on the concept of spatio-temporal cube, the panoramic mosaic is 

used to identify robust seams to remove so as to preserve temporal coherence. However, when the object movement 

covers a large portion of a frame, only few robust seams can be found for video resizing. Wang et al. [10] proposed a 

method of achieving motion-aware temporal coherence for video retargeting. The method also uses frame alignment to 

tackle the problem of camera and object motions. In order to track important content across neighboring frames, frame 

alignment is performed to blend the importance (saliency) map. The estimated camera motions are subsequently used to 

constrain the object and camera motions as well as to prevent content deformation. However, it may produce false 

camera motion due to an insufficient number of frames used to blend the importance map. Our previous work [29] 

proposed to construct a panorama mosaic for a video shot to keep spatio-temporal coherence in the shot. The panoramic 

mosaic is used to derive the shot-level global scaling map. The local scaling map of each frame is first extracted from the 

global scaling map after aligning the frame to the mosaic, and is further refined subject to predefined spatial coherence 

constraints. However, the method proposed in [29] requires an iterative optimization procedure to derive the local scaling 

maps of individual frames, which is time consuming and the resizing result is sensitive to the influence of sudden 

saliency change. 

Different from the existing schemes, our proposed mosiac-guided scaling scheme is a hybrid approach. Our scheme 

constructs a panoramic mosaic from a spatio-temporal cube (e.g., a video shot) to record the object and camera motions. 

The proposed method then directly resize the panorama mosaic map to derive the optimal scaling maps of individual 

frames. This is achieved by imposing the avalable scaling budget constraints in the panorama mosaic map. As a result, 

the new retargeting approach makes a more robust global decision of scaling factors so as to mitigate the influence of 

object and camera motions. 

3. PROPOSED VIDEO RETARGETING SCHEME 

Assume we resize a video from resolution W H  to W H  , where W and H are the width and height of the original 

video, and W   and H   are the width and height of the resized video. Suppose that a spatio-temporal cube (e.g., a video 

 

Figure 1. Flow diagram of the proposed method. 

 



 

 
 

 

shot) consists of N frames which are denoted as   in in
1

N
t

t
I


I  and the corresponding resized frames are denoted as 

  out out
1

N
t

t
I


I . Video retargeting is to find a transform     out in

t t
I I Т  which can preserve in the resized frame the most 

important content while maintaining spatio-temporal coherence. As illustrated in Fig. 1, the proposed method involves 

six major operations to tackle the video retargeting problem: energy map generation, shot-level panoramic mosaic 

construction, semi-automatic object segmentation, initial scaling map generation, iterative constrained optimizatione, and 

frame resizing. The detailed operations of the proposed retargeting scheme are elaborated below. 

3.1.1 Initialization 

The proposed mosaic-guided scaling method needs four kinds of maps for resizing a video shot: the frame-level energy 

maps, the shot-level panoramic mosaic, the shot-level energy map, and the object masks. 

3.1.2 The Frame-Level Energy Maps 

The energy function, which is used to represent the visual importance (saliency) of a pixel in each video frame, plays an 

important role in content-aware image/video retargeting. With an appropriate energy function, one is able to apply 

optimization techniques to minimize the energy loss caused by the removal of image content. The proposed method 

adopts the PQSM model [20] to generate the saliency map. PQSM consists of three steps, including visual attention 

features integration, post-processing, and motion suppression, to generate a visual sensitivity map. The saliency map 

generated by PQSM provides fairly accurate locations, whereas the detected region boundaries are not sharp enough, 

leading to difficulty in preserving the content structure. Therefore, we propose using an energy fusion function to 

combine the gradient energy and the PQSM-based saliency map as 

  1 2, ( , ) ( . )e i j Gradient i j PQSM i j      (1) 

where e(i,j) represents the energy value of the (i,j)-th pixel. The values of Gradient(i,j) and PQSM(i,j) are both 

normalized to [0, 1] using the min-max normalization. The two weights, 1 and 2 are both set as 0.5. Therefore, the 

energy value ranges within [0, 1]. 

3.1.3 The Shot-Level Panoramic Mosaic 

Typically, a panoramic mosaic is generated by using three steps: feature points detection, camera motion estimation, and 

frame registration. Our method uses SIFT [21] to select feature points in each video frame, because SIFT is robust to 

scaling change (e.g., zoom-in and zoom-out manipulations). Camera motion estimation has been extensively studied and 

there exist several sophisticated models [21]. For the sake of simplicity, we use a simplified affine model with only 

scaling and translation parameters. Although it cannot characterize all possible camera motions, our experiments show 

that the simplified model achieves reasonably good accuracy in constructing a panoramic mosaic for a video shot. 

Camera motion estimation and frame registration are essential steps of constructing a panoramic mosaic. We use 

RANSAC [22] to estimate camera motion between neighboring frames. Although RANSAC can prevent false model 

fitting from ill-featured correspondences, when most part of a frame is occupied with foreground regions, the chosen 

feature correspondence set is probably taken from the foreground regions, leading to frame misalignment and a polluted 

panoramic mosaic. To avoid the problem, we filter out those ill-featured correspondences of foreground regions by 

resorting to the saliency map. If the saliency value of a feature correspondence is larger than a predefined threshold 

(empirically set as 0.6), it is likely to be an object point and therefore should be removed from the RANSAC 

computation. In the frame registration in a shot, the panoramic mosaic is generated by using the estimated camera 

motions of the frames. 

3.1.4 The Shot-Level Energy Map 

In order to obtain the initial scaling factor value, we adopt a linear programming solver to solve the constrained 

optimization problem to obtain the initial scaling maps. The solver takes a shot-level energy map as the guide to derive 

the initial scaling maps. Therefore, the shot-level energy map is generated by fusing every frame-level energy maps 

based on the corresponding locations inside the panorama mosaic map. 



 

 
 

 

Let 
 tH  denote the projective transform of the t-th frame,  
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i j i j  H . The shot-level energy map is simply obtained as the union of energy 

values after the transformation, as expressed by 

  
    

   
  in

, ,

', ' , ,
t

in M

tt

M
t i j i j
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(2) 

where   ,
M

e i j   represents a set of energy values corresponding to pixel  ,i j   of the panoramic mosaic. Note, the 

union operation in (2) is a many-to-one mapping, that is,  ,
M

i j   may correspond to the energy values from different 

video frames and different pixels of the original video. 

To obtain a single-valued mapping, we choose the mean energy value in the set defined in (2) as the energy value for 

pixel  ,
M

i j   of the global scaling map as follows:
 
 

      ', ' mean ', 'G M M
e i j e i j .

 
 (3) 

  

3.1.5 The Semi-automatic object segmentation 

Since the scaling factors of pixels/patches in an object should be kept consistent, we adopt an object segmentation tool to 

identify objects. However existing automatic object segmentation tools are still not very mature and reliable and may 

have over-segmentation or under-segmentation problems. To avoid these problems, we let user can participate in the 

segmentation process. As illustrated in Fig. 2(b), the segmentation result by the automatic segmentation tool proposed in 

[28] still has over-segmentation problem. Therefore, the user can scribble the segmentation image with different colors to 

merge the regions that belong to the same object. Fig. 2(c) shows the user scribbled image and Fig. 2(d) shows the final 

object segmentation result. 

Although the proposed method uses a semi-automatic object segmentation tool to segment all objects in the panorama 

mosaic image, it still can be used in on-line retargeting system. The segmentation can be performed off-line, and the 

segmentation masks cane be stored as metadata. The metadata are subsequently used to significantly reduce computation 

while performing on-line retargeting at the encoder/decoder, thereby relaxing the complexity constraint as well as 

achieving a good tradeoff between visual quality, format flexibility, and on-line complexity. 

 

Panorama Mosaic Image Object Segmentation [28] Scribbled Image Final Segmentation Result 

    
(a) (b) (c) (d) 

Figure 2. An example of object segmentation for the panoramic mosaic image via a semi-automatic object segmentation method. (a) 

Panorama mosaic image; (b) Automatic object segmentation result [28]; (c) User scribbled image; (d) The final segmentation result. 

 



 

 
 

 

3.2 Mosaic-Guided Video Retargeting 

The scaling factor change between the resized frames should be constrained by fitting the mapping model. To this end, a 

panoramic mosaic is constructed for a video shot to maintain the temporal coherence of video resizing under camera and 

object motions. The initial scaling maps of frames in the video shot then derived from the panoramic mosaic. We then 

perform an iterative optimization procedure to generate the optimal scaling maps of individual frames based on the initial 

scaling maps, scaling budget constraints, and spatial coherence constraints. In this section, we first introduce the method 

of generating the initial scaling maps and then present the iterative constrained optimization process of generating the 

scaling maps of individual frames. 

3.2.1 The Initial Scaling Factor 

Our method uses an energy-based frame resizing approach to determine the initial scaling factor values. The initial 

scaling map of panorama mosaic is obtained by solving a constrained energy-preserving optimization problem that is to 

maximize the energy retained in a resized panorama mosaic by 

  
     *

', ' ' 1 ' 1
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s e i j s i j
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 

 
 

'

 s.t. ( ', ') ,ini

G M

i

s i j W  and    ( ', ') ( ', ' 1) ,ini ini
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(4) 

where 
*ini

Gs  represents the optimal initial scaling factor map,   ', 'G M
e i j  denotes the energy magnitude at pixel 

 ', '
M

i j  of the saliency map.   ', 'ini

G M
s i j denotes the initial local scaling factor for pixel  ', '

M
i j  in the panorama 

mosaic, where   0 ', ' 1ini

G M
s i j  , and W’ is the target width. The threshold for the imposed spatial constraint 

0.06sTH   for all input videos. 

 

3.2.2 Scaling Budget Constraints 

The total available scaling budget is limited when resizing an image. For example, suppose there is an image line of size 

800x1. If the line is downscaled by two, no matter how we adjust scaling factors of pixels on the line, the resized line 

length is constrained to 400. Therefore, we can resize a video by directly resizing the panorama image according to the 

available scaling budget. As mentioned in Section 3.1.3, the projection of a coordinate is given by 

     
 

in
, ,

tt

M
i j i j  H . Because we use a simplified affine model with only scaling and translation parameters, the 

horizontal scaling factor resource constraint form the t-th frame is given as follows:  
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p j W j H  denote the left and right coordinates of the 

corresponding positions of the t-th frame. Similarly, the vertical scaling factor resource constraint form the t-th frame is 

given as follows:  
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3.2.3 Information Loss Constraint 

A video retargeting method should avoid critical visual information loss. The information loss after resizing the 

panorama mosaic map can be measured by the energy distortion between the original image and the resized one as 

follows: 

      ( )

' 1 ' 1

1 ', ' ', '
G GH W

n

Info G GM M
j i

D e i j S i j
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    (7) 

  ', 'G M
e i j  and   ( ) ', 'n

G M
S i j  respectively represent the energy value and the n-th round scaling factor of pixel 

 ', '
M

i j  in the panorama mosaic map, and   ( )0 ', ' 1n

G M
S i j  . 

3.2.4 Spatial Coherence Constraints 

In the optimization process, we impose the following constraints to prevent the spatial incoherence distortion. 

1) Object Deformation Constraint. Directly extending an image retargeting method to video retargeting usually leads 

to temporal incoherence artifacts, especially when a video contains camera motions or large object motions. Due to 

the camera or object motions, the corresponding patches/pixels in neighboring frames may have different spatial 

locations, sizes, and shapes, thereby being scaled differently. Such inconsistent scaling for corresponding 

patches/pixels in neighboring frames results in temporal incoherence artifacts such as stretching, shrinking, and 

waving of object or background. To prevent the temporal artifacts, the scaling factors of the same visual content 

should be kept as consistent as possible in neighboring frames. Besides, to maintain spatial coherence, the scaling 

factors within each object should also be made consistent. To do so, we define a set 
1 2 3{ , , ,..., }KO O O OO  

consisting of all objects in the panorama mosaic map, where K is the number of extracted objects. To maintain the 

consistency of each object size, the following spatial scaling inconsistency distortion should be minimized: 
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where  ( )n

G kS O  denotes the n-th round average scaling factor of object 
nO . In brief, we minimize the variation of 

scaling factors in each object to maintain the consistency of each object size. 

2) Spatial Smoothness Constraint. If two vertically (or horizontally) adjacent pixels/patches are resized in different 

factors, the vertical (or horizontal) structures will be distorted. To avoid such spatial structural distortion, we need to 

constrain the difference between the scaling factors of two spatially adjacent pixels/patches. Assuming an image is 

downscaled in the horizontal dimension, we limit the sum of the differences between the scaling factors of every two 

vertically adjacent pixels/patches on a line as follows: 
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3.2.5 Iterative Optimization Procedure 

After obtaining the first round scaling factor map  1 *ini

L Gs s , an iterative optimization procedure is performed to find a 

converged solution *

Gs  subject to three smoothness constraints: (7), (8), and (10). The final refined scaling maps of 

individual frames are derived iteratively from (11) using an iterative optimization solver. 
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where 1  and 2  are the weighting factor for SOD  and SSD , respectively. In our implementation, we set 
InfoD , 

SOD , 

and 
SSD  equally important (i.e., 

1 2 1   ). The threshold for spatial constraint 
SSTH , similar to the case in (4), is 

empirically set to be 0.06. 

 

3.2.6  Frame Resizing Based on the Optimized Scaling Factor Map 

After obtaining the optimal local scaling map of a frame, the frame is scaled accordingly. When the video has room-

in/out effect, the mapped size of each frame may not be the same as its original frame size. As a result, after getting the 

scaling factor from *

Gs , it needs to apply the inverse mapping, 
( )tH' , to derive the final local scaling map so as to fit the 

target video size as given below: 

  * * ( )( , ) ', 't

L G M
S i j S i j H'  (12) 

After obtaining the final local scaling maps, the resized frame is generated by the pixel fusion based image downscaling 

proposed in [13]. The method is summarized below. First, after resizing, each pixel in the image is treated as a 

component whose width is scaled from unity (the original pixel) to a fractional number (i.e., the scaling factor), assuming 

the resizing is performed horizontally. The value of a resized pixel (i.e., a unit width of the joined pixels) is obtained by 

the linear combination of the values of the pixels that compose the unit width weighted by the widths of the component 

pixels.  

4. EXPERIMENTS AND DISCUSSION 

To evaluate the performance of our proposed method, we select test sequences that involve rich types of camera and 

object motions from cinema and drama videos. In the experimental settings, each test video is resized to the half size of 

the original width. We compare the proposed method with three exiting schemes including the uniform scaling the 

resizing scheme with motion-aware temporal coherence [9], our previous work [29]. For subjective performance 

comparison, readers can obtain the complete set of test results from our project website [24]. 

 

4.1 Performance Evaluation 

First, to evaluate the impact of object segmentation on maintaining the consistency of object size, we compare the global  

scaling maps obtained with the proposed method and with our previous method [29]. Fig. 3(a) to Fig. 3(c) illustrate the 

panorama mosaic image, the shot-level energy map; and the semi-automatic object segmentation result, respectively. As 

can be observed in Fig. 3(d) and Fig. 3(e), the proposed method successfully keeps the coherence of each object size 

compared to our previous method [29] that may over-trim some areas in the background region. The proposed method 

uses semi-automatic method to separate objects of the panorama mosaic image. It not only mitigates the artifacts due to 

camera and object motions but also preserves the consistency of object size after resizing. Besides, the method in [29] is 

sensitive to sudden saliency change, which might lead to slight false-shift artifacts. In contrast, the proposed method 

derives the optimal scaling factor by directly retargeting the panorama mosaic image, making the global decision 

procedure more robust and thereby eliminating the false-shift artifact. 
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Figure 3. Comparison of scaling factor maps: (a) Panorama mosaic image; (b) Shot-level energy map; (c) Segmentation result; (d) The 

global scaling map obtained with the method in [29]; (e) The global scaling map of obtained with the proposed method. 

In Fig. 4, we compare our method with the uniform scaling, Wang et al.’s approach [10], and our previous work [29]. 

Obviously, uniform scaling is immune to spatio-temporal incoherence distortion caused by any types of camera and 

object motions. It, however, results in small sized objects and background in important regions. Wang et al. [10] 

proposed to impose a set of temporal constraints to retain the original object and camera motions as well as to prevent 

content deformation. Their method blends the aligned saliency map within a sliding window to localize the moving area 

of an object in the blended saliency map so that the object’s size in the moving area can be kept consistent. In this 

method, the window size cannot be large; otherwise, the blended saliency map will be mostly occupied by moving 

objects, thereby making it degenerate to the uniform scaling method. However, due to the limited window size for the 

blended saliency map, the temporal information of video content collected by the method may be too few to generate 

temporally coherent scaling allocation. As a result, the method may render false camera motion (i.e., shows camera-

motion-like effect but there is no camera motion in the original video). Fig. 4(7c) and Fig. 4(8c) show a sequence for that 

the method proposed in [10] generates the false camera motion artifact (refer to [25]). Furthermore, the method in [10] 

does not consider the coherence of scaling factors of neighboring patches, which leads to the structure deformation 

artifact. As shown in Fig. 4(1c) and Fig. 4(2c) where the backgrounds contain several quads, the inconsistent allocation 

of scaling factors to the quads introduces obvious structure deformations. 

Our previous work [29] separates each frame into foreground and background. However if there are visually important 

areas in background, it may cause uncomfortable artifacts. Fig. 4(1d) and Fig. 4(2d) show the artifact on the right-hand-

side desk. Besides, the resizing result might cause slight false-shifting artifact. The main cause is, to satisfy the boundary 

constraints in a frame, the scaling factors for the same object between adjacent frames may be different, thereby causing 

unnatural artifact in the temporal domain. In contrast, the proposed method can meet both the scaling factor resource 

constraint and the boundary constraints in each frame by evaluating the scaling factor only once, so as to avoid the false-

shifting artifact.  

Our method was implemented on a personal computer with Intel Core 2 Quad Q6600 CPU and 6 GB memory. For a 

320x160 test sequence with 184 frames, scaling the video to 160x160 resolution takes around 3 seconds to obtain the 

initial scaling factor map (does not include the time of mosaicking) and 251 seconds (1.36 sec/frame) to derive the 

optimized scaling factor map. Because the shot-level mosaicking consumes most memory, memory requirement is 

dependent on the length of a video shot used for constructing a panoramic mosaic. 
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4.2 Limitations 

Our method also has its limitations. The proposed method uses the semi-automatic object segmentation method to 

segment the panorama mosaic image into many object regions. When the visual importance of different regions varies 

significantly, the proposed method tends to keep the size of importance regions while over-trimming the other 

Original video Uniform scaling Wang et al. [10] Yen et al. [29] Proposed method 

     

     

     

     

     

     

     

     
Figure 4. Subjective comparison of the proposed method with the uniform scaling, the video resizing with motion-aware temporal 

coherence [10], our previous work [29], and the proposed method. 
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unimportant regions, leading to uncomfortable visual artifact. Fig. 5 shows an example of the situation. As can be 

observed in Fig. 5(b), the energy value of the arch rock is intentionally emphasized in the panorama mosaic image. Our 

method preserves the content of the arch rock and trims the regions at left and right sides. The resized result looks not 

nature and does not keep the room-out effect of the video well. Besides, the accuracy of frame alignment will influence 

the accuracy of final scaling factor values and scaling factor resource constraints. In our method, the frame alignment is 

based on 2D camera motion estimation which does not consider the distances of feature points to the camera. The simple 

method may cause misalignment of frames for feature points of different depths. 
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Figure 5. A video retargeting example when the visual importance of each region is too different. (a) Panorama mosaic image; (b) 

Energy map that highlights the energy of the arch rock; (c) User defined object regions; (d) Snapshots of resized frames (frames #24, 

#51, #78, #105, and #132). 

5. CONCLUSION 

To tackle the spatio-temporal incoherence problem which often occurs in video retargeting, we proposed a novel 

content-aware video retargeting method for structure-level video adaptation. The proposed method, is comprised of six 

major operations: energy map generation, shot-level panoramic mosaic construction, semi-automatic object segmentation, 

initial scaling map generation, scaling map refinement, and frame resizing. We have presented a constrained energy-

preserving optimization method to generate initial scaling maps based on panorama mosaic and shot-level saliency map. 

Besides, we have proposed a mosaic-based global scaling mapping scheme which can systematically maintain temporal 

coherence of a resized video. The spatial coherence in each frame is further ensured by imposing scaling factor resource 

constraints on the scaling map refinement procedure. Our experimental results show that the proposed method achieves 

good energy preservation and high spatio-temporal coherence while resizing a video, thereby ensuring good subjective 

visual quality of the resized video, even when the video contains significant camera motions and object motions. 
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