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Abstract—This paper proposes a two-step prototype-face-based
scheme of hallucinating the high-resolution detail of a low-resolution
input face image. The proposed scheme is mainly composed of two
steps: the global estimation step and the local facial-parts refinement
step. In the global estimation step, the initial high-resolution face
image is hallucinated via a linear combination of the global prototype
faces with a coefficient vector. Instead of estimating coefficient
vector in the high-dimensional raw image domain, we propose a
maximum a posteriori (MAP) estimator to estimate the optimum set
of coefficients in the low-dimensional coefficient domain. In the
local refinement step, the facial parts (i.e., eyes, nose and mouth) are
further refined using a basis selection method based on overcomplete
nonnegative matrix factorization (ONMF). Experimental results
demonstrate that the proposed method can achieve significant
subjective and objective improvement over state-of-the-art face
hallucination methods, especially when an input face does not belong
to a person in the training data set.

I. INTRODUCTION

In recent years, face hallucination [1]-[3] has become an attractive
technique in super-resolving face photos because it has many
applications such as security in surveillance video, face recognition,
facial expression estimation, face age estimation, and image/video
editing which usually require face images with enough fine details.
simple interpolation schemes are difficult to achieve. Example-based
super-resolution (SR) schemes [1][5] have proven to be able to
reconstruct significantly finer details of a low-resolution (LR) image
compared to interpolation-based schemes, provided that a
comprehensive set of training images are used to collect prior
knowledge of the structures and patterns of images using machine
learning techniques.

The problem of super-resolution for face images is, however,
different from that for generic images because face images have a
unified structure which people are very familiar with. Even only few
reconstruction errors occurring in a face image can cause visually
annoying artifacts. For example, geometry distortion in the mouth
and eyes on a reconstructed face image may only reduce the image’s
objective quality slightly, whereas the subjective quality of the
reconstructed face can be degraded significantly. Therefore, both the
global face shape and textures and local geometric structures (e.g.,
mouth, nose, and eyes) need to be treated carefully in face
hallucination [2].

Example-based face hallucination schemes can be classified into
two major kinds of approaches: prototype-face-based approaches
[3][6] and model-based approaches [2][8][10]. The prototype-faces-
based methods proposed in [3] decomposes an input LR face into a
set of prototype faces (e.g., eigenfaces) as prior models using
principle components analysis (PCA). After reconstructing the HR
face, the method in [3] uses a recursive error back-propagation
method to further refine the reconstructed high-resolution (HR) face
image. The method proposed in [6] uses a similar approach but
applies a different basis decomposition scheme.

The model-based approaches generally utilize probabilistic
models to find the relationship between HR images and their
corresponding LR versions. The model-based method proposed in
[10] uses a two-step approach that captures the global and local
geometrical features of a face using a parametric Gaussian model and
a non-parametric local model based on Markov random field (MRF),
respectively. The method then uses the maximum a posterior (MAP)
approach to approximate the output HR face image under different
situations. Similarly, in the method proposed in [2], the global and
the local models are partitioned into two parts: soft and hard
constraints, which can address the problems of hallucination under
different situations (e.g., the number of training samples is
greater/less than the dimension of the training samples). Recently,
the manifold learning techniques have been wused in face
hallucination methods and more details of the hallucinated face
image can be preserved since manifold learning can preserve the
neighboring structures in the pixel domain. For example, the locality
preserving projection (LPP) is used in [8] to hallucinate a HR face
image, where the MAP approach is applied to estimate the optimal
HR face image in the LPP domain.

Besides, PCA, nonnegative matrix factorization (NMF) has also
been used for basis decomposition for face recognition [9] and face
hallucination [4]. The NMF method, like PCA, represents a facial
image as a linear combination of basis images, whereas the NMF
method can better learn localized parts-based representation for face
images. For example, NMF can yield a decomposition of human
faces into parts reminiscent of features such as lips, eyes, and nose.
Compared to NMF, the reconstruction results of PCA are not that
intuitive and hard to interpret as PCA allows subtractive
combinations of the basis images [9]. Moreover, the NMF-based face
recognition schemes have been shown to achieve better performance
than PCA-based schemes do [9], [14]. However, the NMF basis
decomposition function used in [4] is an incomplete basis since the



number of the bases is restricted by its definition. Usually, an
overcomplete bases set provides better performance in term of the
quality of the reconstructed images [13], especially in local facial
features. For example, an overcomplete NMF (ONMF) method was
proposed in [14] which can represnt the local facial features well.

The rest of this paper is organized as follows. In Section 2, we
give an overview of the proposed face hallucination scheme. Section
3 presents the proposed Bayesian global face estimation scheme
based on prototype face decomposition and ONMEF. In Section 4, we
present the proposal overcomplete basis selection scheme which can
further refine the visual quality of facial parts. Experimental results
of the proposed scheme are demonstrated in Section 5. Finally,
Section 6 concludes this paper.

II. OVERVIEW OF THE PROPOSED SCHEME

Estimating the corresponding HR details from a LR face is in
nature an ill-posed inverse problem. Therefore, priors such as spatio-
temporal consistency, sparsity of signal representation, and structures
of faces, are used to relax the ill-posedness of the HR face
reconstruction. Based on the priors, MAP estimators have been
proposed to estimate the HR face image from a learned low-
dimensional subspace with lo [2][10][12]. However, it is difficult to
estimate a HR face image accurately due to the complexness of face
images and the limited information carried in the LR input face, even
though we can use prior models to relax the ill-posedness. Therefore,
the hallucinated HR face images usually present annoying artifacts
caused by the inaccurate estimation.

Recently, it was shown in [4][S] that learning the statistical
structures of faces (e.g., the prototype faces) as priors is an effective
way to address the ill-posedness problem. The method proposed in [4]
performs an iterative back projection scheme to refine the estimated
HR details, whereas the method proposed in [5] uses sparsity priors
to obtain better estimation. Our method is built on top of the
prototype-faces-based framework proposed in [3][4]. This method
exploits a whole LR face image, rather than dividing the face into
small patches like in [5], to reconstruct the HR face. Let I, denote
the HR image to be estimated, represented as

L, = (lpodysererl g sly 4 yoly coseeeslpy) M
where j; represents the value of the j-th pixel, L and H denote the
pixel numbers of LR and HR images, respectively. The reconstructed
face image can be obtained by

I=zP-a=R (@)
where P denotes the prototype faces, a stands for the reconstruction
coefficients, and R denotes the reconstructed face.

The coefficients of the input LR face image corresponding to a set
of LR prototype faces can be obtained by using the following least-
squares projection:

a:((PL)T 'PL)_l ‘(PL)T A1, A

where P, denotes the LR prototype faces and the I, denotes the

input LR face image.

After computing the coefficients, the HR face image can be
hallucinated via a linear combination of HR prototype faces weighted
by the coefficients as illustrated in Fig. 1. The coefficients obtained
from decomposing the LR face image, however, are typically not
very accurate for synthesizing the HR counterpart. Therefore, in the
reconstruction phase, an iterative method based on back projection
was proposed in [3] to refine the estimated the coefficients
corresponding to the HR prototype faces for face hallucination.

As shown in Fig. 2, the proposed face hallucination method
consists of two phases: the training phase and the hallucination phase.
Before face hallucination, pre-processing including face alignment
using active appearance model (AAM) [7], scaling, and

normalization is performed on the LR image to ensure that the prior
models can be reconstructed well when the inputs are obtained under
different situations (e.g., different poses, environments and ages). In
the training phase of our method (see Fig. 2(a)), each LR face is
divided into a global face and a local-parts-only face containing main
facial parts (i.e., eyes, nose and mouth) extracted using masks.
Subsequently, two different prototype faces decomposition scheme,
PCA and ONMF, are applied on the two faces, respectively.
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Fig. 1 Illustration of prototype-faces-based face hallucination.
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Fig. 2 The proposed two-step face hallucination scheme consists
of two phases: (a) the training phase, and (b) the hallucination phase.

The proposed face hallucination method consists of two major
steps: the MAP-based global face estimation and the local features
refinement. As illustrated in Fig. 2(b), the input LR face is again
divided into a whole face and a facial-parts-only portion. The whole
face is used to estimate the global face while the local-parts-only
portion is used to guide the selection of local-parts-based prototype



faces (i.e., ONMF) so as to reconstruct fine facial parts. In the global
face estimation step, the input face is initially decomposed using the
LR PCA prototype faces obtained in the training phase using least-
squares projection. The LR PCA coefficient vector is then projected
to a low-dimensional Orthogonal Locality Preserving Projection
(OLPP) feature domain. The HR PCA coefficient vector is estimated
from the low-dimensional OLPP feature vector using a MAP
estimator. As a result, the global face is obtained using the estimated
HR PCA coefficient vector.

In the local feature refinement step, a set of ONMF bases is used
to represent the individual facial parts. The facial parts of the input
LR face including eyes, nose, and mouth, are extracted using a facial
mask. The entropy values of the individual local parts are calculated
and are then used to guide the selection of ONMF bases that best
represent the individual facial parts. The coefficients corresponding
to the selected bases are computed accordingly.

After the two steps, the local facial parts are hallucinated using
the selected set of ONMF bases and the corresponding coefficients.
The remaining facial region is subsequently hallucinated using the
result of the global face estimation step. Finally, the boundaries of
the two hallucinated results are blended.

III. BAYESIAN GLOBAL FACE ESTIMATION

Fig. 3 shows the flowchart of the proposed global face estimation
step. At the training stage, the prototype faces are trained as prior
models by applying PCA on the training set. The initial coefficients
for HR face image reconstruction can be calculated from LR PCA
prototype images by using least-squares approximation. The initial
coefficient vector is then projected to a low-dimensional feature
subspace using OLPP. As a result, the final HR PCA coefficients for
hallucination are then estimated using the MAP estimator. Finally,
the HR global face image is hallucinated using the estimated
coefficients. Different from the methods in [2][8][10], the proposed
MAP estimator is applied in the OLPP coefficient domain rather than
in the pixel domain.
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Fig. 3 Flowchart of global face estimation.

After the initial coefficient vector ¢¢ for reconstructing the global

face is calculated by (3) with PCA prototype faces, the coefficients
can be further refined using a MAP estimator. Recall the
hallucination formulation in [2], the HR face image can be
downscaled using a downscaling matrix by

I = AT, “
where A denotes the transformation matrix for downscaling an image
from HR to LR. As a result, the relationship between the coefficients
ai’ and gf;’_] can be formulated as

Pof = AP0, (©))
where P, and P, denote the matrices of LR and HR prototype
faces, respectively.

The least-squares estimate of al becomes
of =(P/P,)"'P/AP, 0% = A 0, . (©)
where A  =(P/P,)"'P/AP, -

As explained above, in general, dimensionality reduction
algorithms are used to project the face images to a low-dimensional
subspace (e.g., a feature space). The purpose of dimensionality
reduction is to extract the intrinsic features from the original high
dimensional data. As a result, we can easily address optimization
problems in the feature domain. In this work, we use OLPP for
reducing the dimensionality of PCA coefficient vectors. The OLPP

seeks the embedding which can preserve the manifold structure by
measuring the “neighboring distance information” using the &-NN

algorithm.
Given a set of PCA coefficient vectors of N HR images in the
training set 4, ={a;, a5 ,,..,a5 } and its LR counterpart

4

AL = {af O 2,...,(li 5 where N is the number of training face

images. As a result, the estimated HR coefficient vector Yy, is

expressed by
Y =BoumpAf > ™
=B

3 3 T
is an orthogonal transform, that is, B oLpp

where B oLPP

OLPP

The a posteriori model p(a ,|a,) can be factorized into a
likelihood term and a prior term by applying Bayes' rule as follows.

plo, o)< p(a, a,)p(a,) ®)

The ill-posed problem of maximizing the a posteriori probability

plo, |a,)p(a,) in () can Dbe approximated by

maximizing p(a Ayoply,) - Therefore, we can reformulate the
MAP problem as

Yy =argmax p(a, |¥,)p(y,) ©)
where y;[ denotes the optimal projected OLPP coefficients.

Assume the prior term can be simply modeled as a Gaussian
distributed function [10] as

1 T -1
piyy)= E@Xp{—yﬁ 2y, (10)

where X denotes a diagonal matrix and Z is a normalization constant.
Similarly, the likelihood term can also be formulated as

| AyBowpyy — 05 Hz } (11)

A

The optimization problem is to minimize the following cost
function:

YZ = argrrylin(ﬂ“yz z_l Yot || ALSBOLPPyH _ai ||2) (12)

1
pe;|y,) =ECXP{—

To obtain the optimal solution for (12), we take the partial
derivative of (12) with respect to 'y :, , and set the partial derivative to

zero. This leads to

« e

Yu = (BSLPPAESALSBOLPP +AX ) BipAL0] (13)
The optimal coefficients ¢ can then be calculated by

o =By, (14)

Finally, the global HR face image : can be reconstructed via a
linear combination of the optimal coefficients ¢f’ and the HR PCA

prototype faces Py.



IV.LOCAL REFINEMENT USING LOCAL-PARTS-GUIDED BASIS
SELECTION

When an input LR face is significantly different from those in the
training database, the prototype-faces-based approach usually cannot
do a good job because it is difficult to reconstruct the HR face well
using the prototype faces that lack of the local features of the input
face. This problem can be resolved using an overcomplete basis set
which can well capture the local structures of facial parts (e.g., eyes,
nose, and mouth) since the individual facial parts of an input face
usually look similar to the combination of the parts from different
faces, even if the face is largely different from the training faces.
Since ONMF [14] is a parts-based basis decomposition scheme, it
can better represent individual facial parts compared to global
decomposition schemes such as PCA. An overcomplete basis set
denotes the number of the bases is greater than the dimensionality of
the bases. In general, the overcomplete bases contain more
information from the training set [13]. The ONMF algorithm is
formulated as the following optimization problem:

{W‘,H‘} =argmin || D— WH ||| +4_-S(H) (15)
st W>0,H>0,
where D€ R denotes data matrix, WER and HER

denote bases and coefficients matrix, respectively, S denotes a
sparsity constraint for the coefficients, and A is a weight for the

sparsity constraint. The solution for (15) can be obtained through the
following updating rules [14]:

r\T‘xz_

b= O /

oV +
16
b W, 1 (16)

©
L

where R = 1< < < < < < . Note that

the sparseness function can constrain the norm of H.

The local refinement step aims to reconstruct a HR face image
with fine and natural facial parts using the ONMF prototype faces.
To this end, the LR facial-parts-only image can be formulated as

I ol 1l

I,=W,a, =R, 17)
where I’L denotes the masked facial-parts-only image and
W eR

The corresponding coefficients alL for the facial-parts-only image

denotes the local basis matrix of ONMEF as given in (16).

can then be obtained by

T -1
L=((w) W) wie as)

The HR facial-parts-only image -, is then obtained by
gy (19)
The proposed basis selection algorithm is shown in Fig. 4. First,
a facial mask is used to extract the facial parts, including eyes, nose,
and mouth, of an input LR face. The entropy values of individual
facial parts and computed and sorted. Second, some bases not contain
all of the facial features. Therefore, the unnecessary bases should be
removed for each facial feature. If one of the facial features in the
prototype faces are not presented, then their entropy are
corresponding low. Therefore, the entropy-based bases selection
method is proposed.

ONMF bases
Input LR Facial parts »  Basis »/ HR face
face image extraction > selection >hallucination

B S0 -

Eyes, nose, c n
ar};d mouth 3% Sorting by
bases —entropy values

Fig. 4 Flowchart of the proposed local-parts-guided basis selection.
Let I’L ,, denote the m-th facial feature (e.g., IZI{,IZZ, and I[Z are

eyes, nose and mouth, respectively.) and W' the corresponding

basis matrix, respectively. The entropy value of the ONMF can be
calculated for each facial part as

HOWe) == 3 p(We (1)) log p (W (7))

ieMask,,

(20)

where W,f represents the k-th ONMF prototype face for the m-th

facial part, i stands for the pixel index and Mask,, indicates the region
of the m-th facial part.

Subsequently, the bases are sorted by their entropy values.
Therefore, the prototype faces with the K largest entropy values
corresponding to the m-th facial part are obtained as follows.

i
W' ={Wr W, Wk

21
st. H(Wr)> H(Wr)>..> HWh)
Therefore, the m-th HR facial part image : can be

reconstructed by using the corresponding basis matrix W " without
unnecessary information. The final HR face image can be
represented as

A 2)
Note, to perverse the sharpness edges and smoothness global
faces, we only take non-facial-parts region of the global face (defined

by the mask as mentioned previously) as s Then, the boundaries
between the global face image and the facial-parts-only image are
smoothed using a Gaussian smoothing filter.

V. EXPERIMENTAL RESULTS

Our training set contains 482 images with the resolution of 64x64
which are selected from the PAL (Productive Aging Lab) face
database. These face images were aligned using AAM which is a
semi-automatic process before being used for training with PCA and
ONMF. We first downscaled the images to the resolution of 16x16
and then hallucinated them to the original resolution. The numbers of
ONMEF and PCA prototype faces are 800 and 100, respectively.

Fig. 5 compares the subjective visual qualities of the reconstructed
face images obtained from three schemes: the proposed global face
compensation scheme, the PCA prototype-faces-based scheme
proposed in [3] with and without iterative back projection, and the
NMF prototype-faces-based scheme with sparsity prior proposed in
[4]. The mean-squared error (MSE) values between the reconstructed
HR faces and the ground-truth are also indicated. As shown in Fig.
5(c) and 5(d), although the HR faces hallucinated using [3]’s method
look smooth and clear, some facial parts (e.g., the eyes, nose, and
mouth) actually are not similar to the ground-truth. The NMF-



prototype-faces-based scheme [4] results in sharper facial details due
to the sparsity prior used, while also generating unnatural and
annoying artifacts as can be observed from Fig. 5(e). Besides, the
hallucinated facial parts are also not similar to the ground-truth. The
proposed scheme achieves significant subjective and objective
improvement over the other methods in terms of the similarity with
the ground-truth and the reconstruction error (MSE).

SIS
S

Fig. 5 Subjective quality comparison: (a) Input LR face image, (b)
HR ground-truth, and the faces reconstructed using (c) [3]’s method
without iterative back projection (MSE: 184.7), (d), [3]’s method
with iterative back projection (MSE: 172.1) (e) [4]’s method (MSE:
242.3), (f) the proposed global estimation method (MSE: 161.3).
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Fig. 6  Subjective and objective quality comparison: (a), (c) the
two input LR face images, (b), (d) their corresponding ground truths,
and the hallucinated HR face images using (e), (i) the proposed
method (MSE: 99.1/115.5), (), (j) [3]’s method (MSE: 222.0/164.6),

(g), (k) [2]’s method (MSE: 143.3/150.1), and (h), (1) [4]’s method
(MSE: 212.0/232.5).

Fig. 6 compares the subjective qualities for two test face images
hallucinated with the proposed two-step method, and the two other
methods proposed in [3] and [8], respectively. We can observe that
the mouth in Fig. 6(e), compared with the mouths in Fig. 6(f)~(h), is
much more similar to the ground-truth in Fig. 6(b). Besides, the
eyebrows, eyes, nose in the HR face hallucinated with the proposed
method look more similar to the ground-truth than the others.
Similarly, the hallucinated HR face in Fig. 6(e) shows better
subjective visual quality than those in Fig. 6(j)~(1). In addition to the

improved subjective quality, the proposed method also achieves
better objective qualities for the two test images in terms of
reconstruction error. The proposed method results in MSE values of
99.1 and 115.5 for the two test images whereas the others result in
222.0 and 164.6, 143.3 and 150.1, and 212.0 and 232.5, respectively.
Evidently, the proposed method achieves significantly better
subjective quality of the reconstructed face images.

VI. CONCLUSION

In this paper, we proposed a prototype-faces-based face
hallucination method. The proposed method consists of MAP-based
estimation for global face hallucination and entropy-based basis
selection for local facial part refinement. In the training phase, PCA
and ONMEF are used to decompose the prototype faces for the global
face and local (facial-parts-only) face, respectively. In the
hallucination phase, the coefficients for global HR face image are
estimated using a MAP estimator in the OLPP feature domain.
Furthermore, the entropy-based bases selection is applied to choose
the representative bases for individual facial parts to reconstruct the
HR facial parts. Finally, the output HR face image can be obtained
by fusing the global face and the local facial parts together.
Experimental results demonstrate that the proposed method achieve
significant subjective and objective improvement over other existing
schemes.
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