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Abstract—This paper proposes a two-step prototype-face-based 

scheme of hallucinating the high-resolution detail of a low-resolution 

input face image. The proposed scheme is mainly composed of two 

steps: the global estimation step and the local facial-parts refinement 

step. In the global estimation step, the initial high-resolution face 

image is hallucinated via a linear combination of the global prototype 

faces with a coefficient vector. Instead of estimating coefficient 

vector in the high-dimensional raw image domain, we propose a 

maximum a posteriori (MAP) estimator to estimate the optimum set 

of coefficients in the low-dimensional coefficient domain. In the 

local refinement step, the facial parts (i.e., eyes, nose and mouth) are 

further refined using a basis selection method based on overcomplete 

nonnegative matrix factorization (ONMF). Experimental results 

demonstrate that the proposed method can achieve significant 

subjective and objective improvement over state-of-the-art face 

hallucination methods, especially when an input face does not belong 

to a person in the training data set. 

I. INTRODUCTION 

In recent years, face hallucination [1]-[3] has become an attractive 

technique in super-resolving face photos because it has many 

applications such as security in surveillance video, face recognition, 

facial expression estimation, face age estimation, and image/video 

editing which usually require face images with enough fine details. 

simple interpolation schemes are difficult to achieve. Example-based 

super-resolution (SR) schemes [1][5] have proven to be able to 

reconstruct significantly finer details of a low-resolution (LR) image 

compared to interpolation-based schemes, provided that a 

comprehensive set of training images are used to collect prior 

knowledge of the structures and patterns of images using machine 

learning techniques. 

The problem of super-resolution for face images is, however, 

different from that for generic images because face images have a 

unified structure which people are very familiar with. Even only few 

reconstruction errors occurring in a face image can cause visually 

annoying artifacts. For example, geometry distortion in the mouth 

and eyes on a reconstructed face image may only reduce the image’s 

objective quality slightly, whereas the subjective quality of the 

reconstructed face can be degraded significantly. Therefore, both the 

global face shape and textures and local geometric structures (e.g., 

mouth, nose, and eyes) need to be treated carefully in face 

hallucination [2]. 

Example-based face hallucination schemes can be classified into 

two major kinds of approaches: prototype-face-based approaches 

[3][6] and model-based approaches [2][8][10]. The prototype-faces-

based methods proposed in [3] decomposes an input LR face into a 

set of prototype faces (e.g., eigenfaces) as prior models using 

principle components analysis (PCA). After reconstructing the HR 

face, the method in [3] uses a recursive error back-propagation 

method to further refine the reconstructed high-resolution (HR) face 

image. The method proposed in [6] uses a similar approach but 

applies a different basis decomposition scheme.  

The model-based approaches generally utilize probabilistic 

models to find the relationship between HR images and their 

corresponding LR versions. The model-based method proposed in 

[10] uses a two-step approach that captures the global and local 

geometrical features of a face using a parametric Gaussian model and 

a non-parametric local model based on Markov random field (MRF), 

respectively. The method then uses the maximum a posterior (MAP) 

approach to approximate the output HR face image under different 

situations. Similarly, in the method proposed in [2], the global and 

the local models are partitioned into two parts: soft and hard 

constraints, which can address the problems of hallucination under 

different situations (e.g., the number of training samples is 

greater/less than the dimension of the training samples). Recently, 

the manifold learning techniques have been used in face 

hallucination methods and more details of the hallucinated face 

image can be preserved since manifold learning can preserve the 

neighboring structures in the pixel domain. For example, the locality 

preserving projection (LPP) is used in [8] to hallucinate a HR face 

image, where the MAP approach is applied to estimate the optimal 

HR face image in the LPP domain.  

Besides, PCA, nonnegative matrix factorization (NMF) has also 

been used for basis decomposition for face recognition [9] and face 

hallucination [4]. The NMF method, like PCA, represents a facial 

image as a linear combination of basis images, whereas the NMF 

method can better learn localized parts-based representation for face 

images. For example, NMF can yield a decomposition of human 

faces into parts reminiscent of features such as lips, eyes, and nose. 

Compared to NMF, the reconstruction results of PCA are not that 

intuitive and hard to interpret as PCA allows subtractive 

combinations of the basis images [9]. Moreover, the NMF-based face 

recognition schemes have been shown to achieve better performance 

than PCA-based schemes do [9], [14]. However, the NMF basis 

decomposition function used in [4] is an incomplete basis since the 



number of the bases is restricted by its definition. Usually, an 

overcomplete bases set provides better performance in term of the 

quality of the reconstructed images [13], especially in local facial 

features. For example, an overcomplete NMF (ONMF) method was 

proposed in [14] which can represnt the local facial features well. 

The rest of this paper is organized as follows. In Section 2, we 

give an overview of the proposed face hallucination scheme. Section 

3 presents the proposed Bayesian global face estimation scheme 

based on prototype face decomposition and ONMF. In Section 4, we 

present the proposal overcomplete basis selection scheme which can 

further refine the visual quality of facial parts. Experimental results 

of the proposed scheme are demonstrated in Section 5. Finally, 

Section 6 concludes this paper. 

II. OVERVIEW OF THE PROPOSED SCHEME 

Estimating the corresponding HR details from a LR face is in 

nature an ill-posed inverse problem. Therefore, priors such as spatio-

temporal consistency, sparsity of signal representation, and structures 

of faces, are used to relax the ill-posedness of the HR face 

reconstruction. Based on the priors, MAP estimators have been 

proposed to estimate the HR face image from a learned low-

dimensional subspace with lo [2][10][12]. However, it is difficult to 

estimate a HR face image accurately due to the complexness of face 

images and the limited information carried in the LR input face, even 

though we can use prior models to relax the ill-posedness. Therefore, 

the hallucinated HR face images usually present annoying artifacts 

caused by the inaccurate estimation.  

Recently, it was shown in [4][5] that learning the statistical 

structures of faces (e.g., the prototype faces) as priors is an effective 

way to address the ill-posedness problem. The method proposed in [4] 

performs an iterative back projection scheme to refine the estimated 

HR details, whereas the method proposed in [5] uses sparsity priors 

to obtain better estimation. Our method is built on top of the 

prototype-faces-based framework proposed in [3][4].  This method 

exploits a whole LR face image, rather than dividing the face into 

small patches like in [5], to reconstruct the HR face.  Let IH denote 

the HR image to be estimated, represented as  

1 2 1 2( , ,..., , , ,..., )H L HL Li i i i i i I                       (1) 

where ij represents the value of the j-th pixel, L and H denote the 

pixel numbers of LR and HR images, respectively. The reconstructed 

face image can be obtained by 

  I P α R                                       (2) 

where P denotes the prototype faces,  stands for the reconstruction 

coefficients, and R denotes the reconstructed face.  

The coefficients of the input LR face image corresponding to a set 

of LR prototype faces can be obtained by using the following least-

squares projection: 
T 1 T(( ) ) ( )L L L L

   α P P P I ,                       (3) 

where 
LP  denotes the LR prototype faces and the IL denotes the 

input LR face image. 

After computing the coefficients, the HR face image can be 

hallucinated via a linear combination of HR prototype faces weighted 

by the coefficients as illustrated in Fig. 1. The coefficients obtained 

from decomposing the LR face image, however, are typically not 

very accurate for synthesizing the HR counterpart. Therefore, in the 

reconstruction phase, an iterative method based on back projection  

was proposed in [3] to refine the estimated the coefficients 

corresponding to the HR prototype faces for face hallucination. 

As shown in Fig. 2, the proposed face hallucination method 

consists of two phases: the training phase and the hallucination phase. 

Before face hallucination, pre-processing including face alignment 

using active appearance model (AAM) [7], scaling, and 

normalization is performed on the LR image to ensure that the prior 

models can be reconstructed well when the inputs are obtained under 

different situations (e.g., different poses, environments and ages). In 

the training phase of our method (see Fig. 2(a)), each LR face is 

divided into a global face and a local-parts-only face containing main 

facial parts (i.e., eyes, nose and mouth) extracted using masks. 

Subsequently, two different prototype faces decomposition scheme, 

PCA and ONMF, are applied on the two faces, respectively.  

 
Fig. 1  Illustration of prototype-faces-based face hallucination. 
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Fig. 2  The proposed two-step face hallucination scheme consists 

of two phases: (a) the training phase, and (b) the hallucination phase. 

The proposed face hallucination method consists of two major 

steps: the MAP-based global face estimation and the local features 

refinement. As illustrated in Fig. 2(b), the input LR face is again 

divided into a whole face and a facial-parts-only portion. The whole 

face is used to estimate the global face while the local-parts-only 

portion is used to guide the selection of local-parts-based prototype 



faces (i.e., ONMF) so as to reconstruct fine facial parts. In the global 

face estimation step, the input face is initially decomposed using the 

LR PCA prototype faces obtained in the training phase using least-

squares projection. The LR PCA coefficient vector is then projected 

to a low-dimensional Orthogonal Locality Preserving Projection 

(OLPP) feature domain. The HR PCA coefficient vector is estimated 

from the low-dimensional OLPP feature vector using a MAP 

estimator. As a result, the global face is obtained using the estimated 

HR PCA coefficient vector. 

In the local feature refinement step, a set of ONMF bases is used 

to represent the individual facial parts. The facial parts of the input 

LR face including eyes, nose, and mouth, are extracted using a facial 

mask. The entropy values of the individual local parts are calculated 

and are then used to guide the selection of ONMF bases that best 

represent the individual facial parts. The coefficients corresponding 

to the selected bases are computed accordingly. 

After the two steps, the local facial parts are hallucinated using 

the selected set of ONMF bases and the corresponding coefficients. 

The remaining facial region is subsequently hallucinated using the 

result of the global face estimation step. Finally, the boundaries of 

the two hallucinated results are blended. 

III. BAYESIAN GLOBAL FACE ESTIMATION 

Fig. 3 shows the flowchart of the proposed global face estimation 

step.  At the training stage, the prototype faces are trained as prior 

models by applying PCA on the training set. The initial coefficients 

for HR face image reconstruction can be calculated from LR PCA 

prototype images by using least-squares approximation. The initial 

coefficient vector is then projected to a low-dimensional feature 

subspace using OLPP. As a result, the final HR PCA coefficients for 

hallucination are then estimated using the MAP estimator. Finally, 

the HR global face image is hallucinated using the estimated 

coefficients. Different from the methods in [2][8][10], the proposed 

MAP estimator is applied in the OLPP coefficient domain rather than 

in the pixel domain.  
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Fig. 3 Flowchart of global face estimation. 

After the initial coefficient vector g

Lα  for reconstructing the global 

face is calculated by (3) with PCA prototype faces, the coefficients 

can be further refined using a MAP estimator. Recall the 

hallucination formulation in [2], the HR face image can be 

downscaled using a downscaling matrix by 
g g

L HI AI ,                                          (4) 

where A denotes the transformation matrix for downscaling an image 

from HR to LR. As a result, the relationship between the coefficients 
g

Lα  and g

Hα  can be formulated as 

g g

L L H HP α AP α ,                                       (5) 

where LP  and HP  denote the matrices of LR and HR prototype 

faces, respectively. 

The least-squares estimate of g

Lα  becomes 

1

LS( )g T T g g

L L L L H H H

 α P P P AP α A α ,                   (6) 

where 1

LS ( )T T

L L L H

A P P P AP .  

As explained above, in general, dimensionality reduction 

algorithms are used to project the face images to a low-dimensional 

subspace (e.g., a feature space). The purpose of dimensionality 

reduction is to extract the intrinsic features from the original high 

dimensional data. As a result, we can easily address optimization 

problems in the feature domain. In this work, we use OLPP for 

reducing the dimensionality of PCA coefficient vectors. The OLPP 

seeks the embedding which can preserve the manifold structure by 

measuring the “neighboring distance information” using the k-NN 

algorithm. 

Given a set of PCA coefficient vectors of N HR images in the 

training set 
,1 ,2 ,

{ , ,..., }
g g g

H H H H N
A  α α α  and its LR counterpart 

,1 ,2 ,
{ , ,..., }

g g g

L L L L N
A  α α α where N is the number of training face 

images. As a result, the estimated HR coefficient vector 
H

y is 

expressed by 

OLPP

T g

H Hy B A ,                                      (7) 

where 
OLPPB  is an orthogonal transform, that is, 1

OLPP OLPP

T B B .
 

The a posteriori model ( | )L Hp α α  can be factorized into a 

likelihood term and a prior term by applying Bayes' rule as follows. 

( | ) ( | ) ( )H L L H Hp p pα α α α α                       (8) 

The ill-posed problem of maximizing the a posteriori probability 

( | ) ( )L H Hp pα α α  in (8) can be approximated by 

maximizing ( | ) ( )L H Hp pα y y . Therefore, we can reformulate the 

MAP problem as 

                    
* arg max ( | ) ( )

H

H L H Hp p
y

y α y y                      (9) 

where *

Hy  denotes the optimal projected OLPP coefficients. 

Assume the prior term can be simply modeled as a Gaussian 

distributed function [10] as 

11
( ) exp{ }

T

H HHp
Z


  y y y                       (10) 

where  denotes a diagonal matrix and Z is a normalization constant. 

Similarly, the likelihood term can also be formulated as 
2

OLPP|| ||1
( | ) exp

g
g X H L
L Hp

Z 

 
  

 

A B y α
α y           (11) 

The optimization problem is to minimize the following cost 

function: 

 1 2

LS OLPParg min || ||
H

T g

H H H H L    
y

y y y A B y α    (12) 

To obtain the optimal solution for (12), we take the partial 

derivative of (12) with respect to 
H


y , and set the partial derivative to 

zero. This leads to 

 
1

1

OLPP LS LS OLPP OLPP LS

T T T T g

H L


   y B A A B B A α              (13) 

The optimal coefficients g

H


α  can then be calculated by 

g

H H

 
α By                                         (14) 

Finally, the global HR face image 
g

H



I  can be reconstructed via a 

linear combination of the optimal coefficients g

H


α  and the HR PCA 

prototype faces PH.  



IV. LOCAL REFINEMENT USING LOCAL-PARTS-GUIDED BASIS 

SELECTION 

When an input LR face is significantly different from those in the 

training database, the prototype-faces-based approach usually cannot 

do a good job because it is difficult to reconstruct the HR face well 

using the prototype faces that lack of the local features of the input 

face. This problem can be resolved using an overcomplete basis set 

which can well capture the local structures of facial parts (e.g., eyes, 

nose, and mouth) since the individual facial parts of an input face 

usually look similar to the combination of the parts from different 

faces, even if the face is largely different from the training faces. 

Since ONMF [14] is a parts-based basis decomposition scheme, it 

can better represent individual facial parts compared to global 

decomposition schemes such as PCA. An overcomplete basis set 

denotes the number of the bases is greater than the dimensionality of 

the bases. In general, the overcomplete bases contain more 

information from the training set [13]. The ONMF algorithm is 

formulated as the following optimization problem: 

 * * 2

2
arg min || || + ( )s S  

W,H

W , H D WH H             (15) 

s.t.  0, 0 W H , 

where 
n m

D  denotes data matrix, 
n r

W  and 
r m

H  

denote bases and coefficients matrix, respectively, S denotes a 

sparsity constraint for the coefficients, and s is a weight for the 

sparsity constraint. The solution for (15) can be obtained through the 

following updating rules [14]:  

,[ ( ) ]

[ ( ) ]

T

i j

ij ij T

i j s

T

ij i i j j

i

j j T

ij i i j j

i

H H

H

H

D W

R W

V R W W

W W
R V W W

                   (16) 

where R WH , 1 ,1  and 1i r j m t n . Note that 

the sparseness function can constrain the norm of  H.   

The local refinement step aims to reconstruct a HR face image 

with fine and natural facial parts using the ONMF prototype faces. 

To this end, the LR facial-parts-only image can be formulated as 
l l l l

L L L LI W α = R ,                                 (17) 

where l

LI  denotes the masked facial-parts-only image and 

l n r
W  denotes the local basis matrix of ONMF as given in (16). 

The corresponding coefficients 
l

Lα  for the facial-parts-only image 

can then be obtained by 

                        
1

.
T

l l l l l

L L L L L



   α W W W I                      (18)
 

The HR facial-parts-only image 
l

HI  is then obtained by 
l

l l
H H LI W α                                        (19) 

The proposed basis selection algorithm is shown in Fig. 4. First, 

a facial mask is used to extract the facial parts, including eyes, nose, 

and mouth, of an input LR face. The entropy values of individual 

facial parts and computed and sorted. Second, some bases not contain 

all of the facial features. Therefore, the unnecessary bases should be 

removed for each facial feature. If one of the facial features in the 

prototype faces are not presented, then their entropy are 

corresponding low. Therefore, the entropy-based bases selection 

method is proposed. 

Input LR 
face image

Facial parts 
extraction

Basis 
selection

HR face 
hallucination

Sorting by 
entropy values

ONMF bases

Eyes, nose, 
and mouth 

bases  

Fig. 4  Flowchart of the proposed local-parts-guided basis selection. 

Let 
,

l

L mI  denote the m-th facial feature (e.g., 1l

LI , 2l

LI , and 3l

LI  are 

eyes, nose and mouth, respectively.) and mlW  the corresponding 

basis matrix, respectively. The entropy value of the ONMF can be 

calculated for each facial part as 

     ( ) logm m m

m

l l l

k k k

i Mask

H p i p i


  W W W                 (20) 

where ml

kW  represents the k-th ONMF prototype face for the m-th 

facial part, i stands for the pixel index and Maskm indicates the region 

of the  m-th facial part. 

Subsequently, the bases are sorted by their entropy values. 

Therefore, the prototype faces with the K largest entropy values 

corresponding to the m-th facial part are obtained as follows. 

0 1

1 2

{ , ,..., }  

s.t.  ( ) ( ) ... ( )

m
m m m

m m m

l l l l

K

l l l

KH H H



  

W W W W

W W W

         (21) 

Therefore, the m-th HR facial part image 
ml

HI  can be 

reconstructed by using the corresponding basis matrix 
ml

W  without 

unnecessary information. The final HR face image can be 

represented as 
l g

H H H I I I                                      (22) 

Note, to perverse the sharpness edges and smoothness global 

faces, we only take non-facial-parts region of the global face (defined 

by the mask as mentioned previously) as  
g

HI . Then, the boundaries 

between the global face image and the facial-parts-only image are 

smoothed using a Gaussian smoothing filter. 

V. EXPERIMENTAL RESULTS 

Our training set contains 482 images with the resolution of 6464 

which are selected from the PAL (Productive Aging Lab) face 

database. These face images were aligned using AAM which is a 

semi-automatic process before being used for training with PCA and 

ONMF. We first downscaled the images to the resolution of 1616 

and then hallucinated them to the original resolution. The numbers of 

ONMF and PCA prototype faces are 800 and 100, respectively. 

Fig. 5 compares the subjective visual qualities of the reconstructed 

face images obtained from three schemes: the proposed global face 

compensation scheme, the PCA prototype-faces-based scheme 

proposed in [3] with and without iterative back projection, and the 

NMF prototype-faces-based scheme with sparsity prior proposed in 

[4]. The mean-squared error (MSE) values between the reconstructed 

HR faces and the ground-truth are also indicated. As shown in Fig. 

5(c) and 5(d), although the HR faces hallucinated using [3]’s method 

look smooth and clear, some facial parts (e.g., the eyes, nose, and 

mouth) actually are not similar to the ground-truth. The NMF-



prototype-faces-based scheme [4] results in sharper facial details due 

to the sparsity prior used, while also generating unnatural and 

annoying artifacts as can be observed from Fig. 5(e). Besides, the 

hallucinated facial parts are also not similar to the ground-truth. The 

proposed scheme achieves significant subjective and objective 

improvement over the other methods in terms of the similarity with 

the ground-truth and the reconstruction error (MSE).  

(a) (b)

(e)(d)

(c)

(f)
 

Fig. 5  Subjective quality comparison:  (a) Input LR face image, (b) 

HR ground-truth, and the faces reconstructed using  (c) [3]’s method 

without iterative back projection (MSE: 184.7), (d), [3]’s method 

with iterative back projection (MSE: 172.1) (e) [4]’s method (MSE: 

242.3), (f) the proposed global estimation method (MSE: 161.3). 

(e) (f) (g) (h)

(i) (j) (k) (l)

(a) (b) (c) (d)

 
Fig. 6 Subjective and objective quality comparison: (a), (c) the 

two input LR face images, (b), (d) their corresponding ground truths, 

and the hallucinated HR face images using (e), (i) the proposed 

method (MSE: 99.1/115.5), (f), (j) [3]’s method (MSE: 222.0/164.6), 

(g), (k) [2]’s method (MSE: 143.3/150.1), and (h), (l) [4]’s method 

(MSE: 212.0/232.5). 

Fig. 6 compares the subjective qualities for two test face images 

hallucinated with the proposed two-step method, and the two other 

methods proposed in [3] and [8], respectively. We can observe that 

the mouth in Fig. 6(e), compared with the mouths in Fig. 6(f)~(h), is 

much more similar to the ground-truth in Fig. 6(b). Besides, the 

eyebrows, eyes, nose in the HR face hallucinated with the proposed 

method look more similar to the ground-truth than the others. 

Similarly, the hallucinated HR face in Fig. 6(e) shows better 

subjective visual quality than those in Fig. 6(j)~(l). In addition to the 

improved subjective quality, the proposed method also achieves 

better objective qualities for the two test images in terms of 

reconstruction error.  The proposed method results in MSE values of 

99.1 and 115.5 for the two test images whereas the others result in 

222.0 and 164.6, 143.3 and 150.1, and 212.0 and 232.5, respectively. 

Evidently, the proposed method achieves significantly better 

subjective quality of the reconstructed face images. 

VI. CONCLUSION 

In this paper, we proposed a prototype-faces-based face 

hallucination method. The proposed method consists of MAP-based 

estimation for global face hallucination and entropy-based basis 

selection for local facial part refinement. In the training phase, PCA 

and ONMF are used to decompose the prototype faces for the global 

face and local (facial-parts-only) face, respectively. In the 

hallucination phase, the coefficients for global HR face image are 

estimated using a MAP estimator in the OLPP feature domain. 

Furthermore, the entropy-based bases selection is applied to choose 

the representative bases for individual facial parts to reconstruct the 

HR facial parts. Finally, the output HR face image can be obtained 

by fusing the global face and the local facial parts together.  

Experimental results demonstrate that the proposed method achieve 

significant subjective and objective improvement over other existing 

schemes. 
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