
310 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 2, FEBRUARY 2021

Uncertainty-Aware Semantic Guidance and
Estimation for Image Inpainting
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Abstract—Completing a corrupted image by filling in correct
structures and reasonable textures for a complex scene remains
an elusive challenge. In case that a missing hole involves diverse
semantic information, conventional two-stage approaches based on
structural information often lead to unreliable structural predic-
tion and ambiguous visual texture generation. To address the prob-
lem, we propose a SEmantic GUidance and Estimation Network
(SeGuE-Net) that iteratively evaluates the uncertainty of inpainted
visual contents based on pixel-wise semantic inference and optimize
structural priors and inpainted contents alternatively. Specifically,
SeGuE-Net utilizes semantic segmentation maps as guidance in
each iteration of image inpainting, under which location-dependent
inferences are re-estimated, and, accordingly, poorly-inferred re-
gions are refined in subsequent iterations. Extensive experiments
on real-world images demonstrate the superiority of our proposed
method over state-of-the-art approaches in terms of clear bound-
aries and photo-realistic textures.

Index Terms—Image inpainting, semantic guidance, semantic
segmentation, uncertainty estimation.

I. INTRODUCTION

IMAGE inpainting refers to the task of filling a missing area
with synthetic content derived from some prior knowledge

about the scene. This task has been an active topic in the field
of image processing for decades [1]–[5], because it has found a
broad range of applications such as object removal, restoration
of old films and paintings, image editing, and error concealment
in video communication. The key to producing high-quality
inpainting results lies in both semantically reasonable contexts
and visually pleasing textures [6].

Recently, deep convolutional networks have been applied
to address image inpainting problems. Most existing learning-
based inpainting methods [7]–[9] resort to an encoder-decoder
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Fig. 1. The architectures of inpainting with structural information. Note that
the skip connections are ignored in the sketch. (a) Encoder-decoder without
structures; (b) Structures are firstly completed and used as guidance for inpaint-
ing mask; (c) Our proposed architecture, in which structure map generation and
inpainting tasks are alternatively optimized during decoding.

architecture to infer the context of a corrupted image (Fig. 1(a))
and then refine the textural details on the initial inference of
a missing region [10]–[13]. This is based on the assumption
that the encoded feature of a corrupted image contains sufficient
contextual information for reconstructing the missing region of
the image, which is adequate for simple corrupted patterns since
the manifold of the context of such patterns can be reasonably
well characterized by the encoder network. However, when a
corrupted region involves multiple semantic regions, modelling
the prior distributions of different semantic categories becomes
difficult, since the relationships between the missing pixels and
its surroundings become complex. In this case, uniformly map-
ping different semantics onto a single manifold in the context-
based methods often leads to blurry boundaries and incorrect
semantic content.

An alternative approach is to infer structural information to
assist image inpainting, in which the spatial delineations derived
from the inferred structures help alleviate the blurry boundary
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problem. This kind of method [14]–[16] is typically based on
the two-step architecture illustrated in Fig. 1(b), where structures
such as edges or contours are extracted and completed in the first
step, followed by completing the corrupted image details guided
by the predicted structures in the second step. Nevertheless, these
methods ignore the modeling of semantic content, thereby usu-
ally resulting in ambiguous textures at the semantic boundaries.
Furthermore, the performance of the two-step inpainting process
highly relies on the reconstructed structures from the first step,
but the uncertainty of the edge or contour connections can largely
increase especially when multiple semantic categories appear
in the missing region. Additionally, in the second step, simply
combining the structural information with the corrupted image
as inputs usually cannot provide sufficient guidance for texture
generation [17].

To overcome these limitations, we propose to utilize semantic
priors [18], [19] in the image inpainting process and develop a
new alternative-optimization architecture that progressively up-
dates the semantic guidance and the completed image (Fig. 1(c))
in a coarse-to-fine manner. Specifically, we propose a novel
SEmantic GUidance and Estimation Network (SeGuE-Net),
in which the segmentation maps are adopted as the semantic
guidance. In this way, the object categories, locations, and shapes
contained in the segmentation map can provide the semantic
boundaries as well as guide the learning of different texture
knowledge of diverse semantic categories. Unlike the existing
method, namely, SPG-Net [16], using segmentation maps as
inpainting guidance in a two-step architecture, our proposed
SeGuE-Net makes use of multi-scale guidance on the inter-
mediate predictions at different decoding scales to alternatively
optimize the inpainting and segmentation results through their
interplay across scales. The encoded image features shared for
both tasks can be enforced to contain the semantic and spatial
information, which are valuable to learn the prior distributions
of different semantic categories.

To further boost the accuracy of the proposed SeGuE-Net
on the progressive updating of fill-in pixels, we propose a
novel uncertainty estimation mechanism, based on the finding
that ambiguous semantic contents usually cannot lead to solid
semantic segmentation results. The estimation on semantic un-
certainty can effectively locate suspicious uncertain pixels in
the previous inpainted regions, so as to adjust the attention for
inpainting update in the next iteration. Guided by the estimation
result, those wrongly predicted pixels in the previous round of
inpainting can potentially be corrected progressively, resulting
in inpainting performance improvement.

Our contributions are summarized as follows:
1) We propose an alternative-optimization architecture to

exploit how semantic prior can significantly improve the
performance of image inpainting for a complex image
corruption. The proposed multi-scale interplay between
semantic segmentation and image inpainting effectively
overcomes several limitations of two-step architectures.

2) We are the first to propose an uncertainty estimation mech-
anism in image inpainting through semantic segmentation
to localize the predicted pixels with uncertain semantic

meanings, which enables the inpainting process to correct
wrongly predicted contexts and textures progressively.

3) Our model outperforms the state-of-the-art methods in
completing multiple missing semantic regions in the sense
of generating more realistic semantic contexts and visually
pleasing textures.

The remainder of this paper is organized as follows. We
introduce related work in Section II. The proposed SeGuE-Net
is elaborated in Section III. In section IV, experimental settings
and extensive experimental results are presented to demonstrate
the superiority of the proposed method and the model analysis
is presented in Section V. Finally, conclusions are drawn in
Section VI.

II. RELATED WORK

In this section, we briefly review related work in each of the
three sub-fields: image inpainting, structural information-guided
inpainting, and semantic segmentation.

A. Image Inpainting

Deep learning-based image inpainting approaches [7], [20]
are generally based on generative adversarial networks (GANs)
to generate the pixels of a missing region. For instance, Pathak
et al. introduced Context Encoders [7], which was among the
first approaches in this kind. The model was trained to predict the
context of a missing region, but usually leads to blurry results.
Inspired by the concept of Context Encoders, several methods
were later proposed to better recover texture details through
the use of well-designed loss functions [8], [21], neural patch
synthesis [10], residual learning [22], feature patch matching [6],
[11], [12], [23], content and style disentanglement [24], and oth-
ers [9], [25]–[27]. Furthermore, semantic attention was recently
proposed in [28] to refine the textures for inpainting. However,
most of the above methods were designed for dealing with
rectangular holes, but cannot effectively handle large irregular
holes. To tackle the problems of inpainting irregular holes, Liu
et al. [29] proposed a partial convolutional layer, that calculates
a new feature map and updates the mask at each layer. Later,
Yu et al. [13] proposed a gated convolutional layer based on
the models in [11] for irregular image inpainting. While these
methods perform reasonably well for one category of objects or
background, they can easily fail if the missing region contains a
mixture of multiple categories of scenes.

B. Structural Information-Guided Inpainting

Recently, structural information has proven to be helpful
in assisting image inpainting [30]–[32]. The most outstanding
work for bio-signals discrimination is the factorization based
method aiming at structural feature extraction of big time series
data [27] especially when tackling intensive interferences [26].
These methods are mostly based on two-step networks, where
missing structures are reconstructed in the first step and then used
to guide the texture generation in the second step. In our previous
work [14], edge maps were first introduced as a structural
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guide to the inpainting network. This idea was later adopted
and improved by Nazeri et al. [33] and Li et al. [34] in terms
of better edge prediction. Similar to edge information, object
contours were used by Xiong et al. [15] to separately reconstruct
the foreground and background areas. Ren et al. [35] proposed
using smoothed images to carry additional image information
other than edges as prior information. Considering semantic
information for the modeling of texture distributions, SPG-Net
proposed in [16] predicts the semantic segmentation map of a
missing region as a structural guidance. The above-mentioned
methods show that the structural priors effectively help to im-
prove the quality of the final completed image. However, how
to infer correct structures remains challenging, especially when
a missing region involves complex semantic structures.

C. Semantic Segmentation

As a widely studied means of inferring semantic contents
of an image, Semantic segmentation can predict pixel-level
semantic labels. Typical semantic segmentation networks, e.g.,
FCN [36] and SegNet [37], adopt an encoder to extract semantic
features followed by a decoder to upsample the features to
predict semantic segmentation labels. In order to improve the
segmentation performance, multi-scale features are usually as-
sembled to exploit information from different scales/layers [38],
[39]. DeepLab [40] adopts atrous spatial pyramid pooling to
encode multi-scale contexts. To iteratively optimize the results,
CiSS-Net [41] was proposed to solve the optimization as a
markov decision process based on reinforcement learning.

Semantic segmentation has achieved significant progress and
can provide semantic priors and scene layouts for image genera-
tion [42], making it suitable for deriving semantically structural
priors for guiding image inpainting. Nevertheless, the missing
part of a corrupted image introduces ambiguity to the segmen-
tation, thereby posing challenges on inferring correct segmen-
tation maps for a missing region, especially when the region
involves multiple semantic categories.

III. SEMANTIC GUIDANCE AND ESTIMATION

BASED INPAINTING METHOD

In this section, we describe the proposed image inpainting
method based on SeGuE-Net. The proposed method progres-
sively learns the inpainting task and semantic segmentation task
in an interleaved manner. Below we first introduce the core
idea, and then provide an overview of our network architecture.
Next, we dissect individual modules therein and the associated
objective function for training SeGuE-Net.

A. Motivation

Our motivation for employing alternative-optimization archi-
tecture is mainly based on the assumption that image inpainting
and semantic segmentation for a corrupted image can mutually
assist each other. Specifically, 1) segmentation maps can provide
pixel-wise delineations and semantic labels as guidance to infer
missing pixel values, as well as evaluate the already-predicted
pixels during the segmentation process; 2) image inpainting can

recover the content of missing pixels so as to extract better
features for predicting high quality segmentation maps, thereby
promoting inpainting quality. Thus our aim is to take the benefit
of iterative interplay between the two tasks: recovering the
semantic meaning of a corrupted scene and generating realistic
textures in the missing area.

As illustrated in Fig. 1(c), the image inpainting and seman-
tic segmentation interplay with each other at each decoding
scale. The inpainting process receives the previous coarser-scale
segmentation map to conduct feature inference and update the
predicted content of missing area, then extract more accurate
image features for next finer-scale segmentation. Then the seg-
mentation process takes the new image features to generate
a more accurate segmentation probability map, from which it
outputs a uncertainty mask as the evaluation result to indicate
where should be further refined, together with a segmenta-
tion map as the boundary and semantic guidance for the next
finer-scale inpainting. Since the segmentation process should be
carried out on a complete image, we start with the inpainting
block. In this way, the interplay between the two tasks can be
progressively modelled into a deep network framework via a
coarse-to-fine decoding manner, by which we can make full use
of the valuable complementary information between inpainting
and segmentation to improve inpainting quality.

B. Overview of Network Architecture

We propose an alternative-optimization architecture to utilize
the progressively optimized segmentation maps to improve the
inpainting accuracy in a coarse-to-fine manner. The network
architecture is illustrated in Fig. 2(a). The encoder (e.g., ResNet)
extracts the hierarchical contextual features of the input cor-
rupted image X . Then these features are fed into the decoder to
predict the semantic segmentation maps and inpainted images
iteratively.

In the decoder, the inpainted contextual features are progres-
sively refined under a multi-scale framework, where the seman-
tic information takes effect in two aspects. First, the confidence
scores from the probability maps inferred by the segmentation
process is used to identify from the previous inpainting results
those suspicious pixels to be further updated in the next in-
painting inference. Second, the predicted segmentation maps
are involved in the next-scale inference modules to guide the
update of the contextual features.

The corrupted image is initially completed in the feature
level through a Context Inference Module (CIM) based on
the contextual inference method [24]. After that, the decoder
gradually maps and refines the inferred contextual features
from the coarsest-scale to the finest-scale. Two branches for
image inpainting and semantic segmentation are respectively
performed based on the contextual features at each scale of the
decoder to generate multi-scale completed images Ŷ L,..., Ŷ l,...,
Ŷ 1 and their corresponding semantic segmentation maps ŜL,...,
Ŝl,..., Ŝ1. {

Ŷ l = h(ϕl)

Ŝl = g(ϕl),
(1)
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Fig. 2. Overview of the proposed SEmantic GUidance and Estimation Network (SeGuE-Net). It iteratively estimates and updates the contextual features through
the SCEM and SGIM modules in a coarse-to-fine manner, where SCEM identifies the pixels where the context needs to be corrected, while SGIM updates the
predicted features with the semantic guidance and the uncertainty mask located by SCEM.

Fig. 3. Visualization of the sample outputs from each scale of SeGuE-Net.
From the coarsest scale to the finest scale, the image inpainting and semantic
segmentation tasks alternately optimize each other, and the area of uncertainty
mask gradually reduces.

where h(·) and g(·) denote the inpainting branch and segmenta-
tion branch, respectively. ϕl is the shared contextual feature of
the l-th scale in the decoder.

To gradually update the contextual features from an initial
corrupted image to its final completed version using semantic
information, we propose the semantic uncertainty estimation and
semantic-guided inference, that correspond to the Segmenta-
tion Confidence Estimation Module (SCEM) and the Semantic-
Guided Inference Module (SGIM) in Fig. 2(a), respectively. As
illustrated in Fig. 3, from the coarsest scale to the finest scale, the
qualities of the inpainted image and the segmentation map are
gradually improved, and the area of the uncertainty mask from
the SCEM module also reduces as well, owning to the optimized
contextual feature.

C. Segmentation Confidence Estimation Module

In traditional structure-completion-first methods, the struc-
tures of a corrupted image are completed first, and then the
fill-in image contents are directly derived from the completed
structures which usually contain incorrectly predicted structures,
thereby degrading the inpainting quality. To avoid such flaw,
we propose using semantic contexts (i.e., segmentation maps)
to alternatively identify those inpainted regions with uncertain
contexts that need to be corrected, and then update the semantic
contexts, based on an underlying assumption that if meaningless
contexts and textures are generated, the segmentation model
cannot assign reliable semantic labels to the corresponding
pixels.

Specifically, as shown in Fig. 2(b), we deploy a Segmentation
Confidence Estimation Module (SCEM) at each decoding scale
and introduce a segmentation confidence scoring mechanism to
evaluate the inpainted region. We assume that the segmentation
branch outputs an intermediate soft prediction Ŝl

P at each pixel
as a pixel-wise probability distribution map among the K se-
mantic classes. The class-specific confidence score of a pixel in
the map signifies how likely the pixel be attributed to a specific
semantic label. The soft prediction is subsequently converted to
a max-probability map Ŝl

P max = maxk∈K{Ŝl
P } by assigning

each pixel with the highest confidence score over theK semantic
classes at scale l as the effective confidence score map associated
with the prediction.

Based on the confidence score map, an inpainted pixel is
considered to have an uncertain semantic label if it has low
scores for all semantic classes, resulting in an uncertainty mask.
The mask value of a pixel is decided by judging whether the
max-confidence score at each pixel location exceeds a threshold,
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which is determined by the following percentile function:

M l(p) =

{
1, Ŝl

Pmax
> P (Ŝl

Pmax
, τ l)

0, otherwise
, (2)

where P (ŜPmax
, τ) is the percentile function which returns the

τ th percentile of all pixel values of ŜPmax
as the dynamic

threshold. τ is a parameter between 0 and 100.
Compared with the soft maps like the segmentation prob-

ability map Ŝl
P and confidence score map ŜPmax

, the binary
uncertainty mask M l(p) defines a clear updating region that
indicates those pixels that are likely unreliable. In this way,
SCEM enables the model to correct the mistakes in those regions
completed at the previous coarser scale. The use of a binary
uncertain map simplifies the training of the network compared
to the vague clues offered by the soft probability and score maps.

D. Semantic-Guided Inference Module

SGIM is designed to infer and then update the contextual
features at the next scale ϕl−1. As shown in Fig. 2(c), SGIM
takes four types of inputs: two of them are the current contextual
features ϕl and the skip features of the next scale φl−1 from
the encoder. The third is the predicted segmentation map Ŝl,
which is used to enforce class-specific texture rendering under
the assumption that those regions of the same semantic class
should have similar textures. The last input is the uncertainty
mask M l. The inference process can be formulated as follows:

ϕl−1 = infer(ϕl, φl−1, Ŝl,M l). (3)

where infer(·) is the process of updating the contextual features
in SGIM.

To update the contextual features based on segmentation prob-
ability map Ŝl, one simple way is to concatenate the segmenta-
tion feature and the image feature, but this method has proven to
be ineffective in altering the behavior of CNN [17]. In this paper,
we follow the image generation approach in [42], which adopts
spatial adaptive normalization (SAN) to propagate semantic in-
formation to the predicted images for achieving effective seman-
tic guidance. The SAN learns a mapping functionM that outputs
a modulation parameter pair (γ, β) based on the semantic prior.
The learned parameter pair adaptively influences the inpainting
results by applying an affine transformation spatially to each
intermediate feature maps at each scale. Specifically, The pair
of affine transformation parameters (γ, β) is computed and the
contextural features f l−1

de−s are updated based on the semantic
prior as follows:{

γ = Mγ(Ŝ
l)

β = Mβ(Ŝ
l)

, (4)

f l−1
de−s = γ � f l−1

de−c − μ

σ
+ β, (5)

where (γ, β) is a pair of affine transformation parameters mod-
eled from segmentation probability map Ŝl, μ and σ are the
mean and standard deviation of each channel in the concate-
nated feature vector f l−1

de−c generated from φl and ϕl−1. �

denotes element-wise multiplication. Mγ and Mβ are both
implemented by two convolutional layers.

Furthermore, in order to correct the pixels classified as ‘uncer-
tain’ from the SCEM by the uncertainty mask M l, we propose
two sub-networks: base-net Fba and bias-net Fbi. The base-net
takes f l−1

de−s as input and infers a basic context feature, whereas
the bias-net is fed with the mask M l to learn the residuals to
rectify the basic context feature. The residuals are computed
by concatenating f l−1

de−s (what to correct) and the encoded mask
feature f l−1

msk of M l (where to correct). We use two convolu-
tional layers to translate the mask into a feature map. The new
contextual features at the next scale is formulated as

ϕl−1 = Fba(f
l−1
de−s) + Fbi(f

l−1
de−s ⊕ f l−1

msk), (6)

where ⊕ denotes the concatenation operation.

E. Objective Functions

We design appropriate supervised loss terms for learning
the inpainting and segmentation tasks at each scale to obtain
multi-scale predictions. For image inpainting, we adopt the
reconstruction loss to promote the fidelity of a completed image
and the adversarial loss to encourage visually realistic fine tex-
tures. As for semantic segmentation, we adopt the cross-entropy
loss to restrain the distance between the predicted and target
class distributions of pixels at each scale. Note that since the
segmentation maps do not contain fine textures, the adversarial
loss is not required in the segmentation task.

Reconstruction Loss: We use the L1 loss to encourage
per-pixel reconstruction accuracy, and the perceptual loss Lp

to penalizes the discrepancy between the extracted high-level
features [21].

L1(Y, Ŷ ) =
∑
l

‖ Y − up(Ŷ l) ‖1 (7)

Lp(Y, Ŷ ) =
∑
l

N∑
n=1

‖ Ψn(Y )−Ψn(up(Ŷ
l)) ‖1 (8)

Lre(Y, Ŷ ) = Ll(Y, Ŷ ) + λpLp(Y, Ŷ ) (9)

where l is the scale, Ψn is the activation map of the n-th layer,
up(·) is the operation to upsample Ŷ l to the same size as Y , and
λp is a trade-off coefficient. We use layered features relu2_2,
relu3_3, and relu4_3 in VGG-16 [43] pre-trained on ImageNet
to calculate the perceptual loss.

Adversarial Loss: As revealed in [9], [44], although the
perceptual loss can make the generated image sharper than
simply using L1 loss, high-frequency detailed information is
still missing, which can be recovered by adopting the adversar-
ial loss. We use a multi-scale PatchGAN [24] to classify the
global and local patches of an image at different scales. The
discriminator at each scale is identical and only the input is
a differently scaled version of an image. Each discriminator
is a fully convolutional PatchGAN which outputs a vector of
real/fake predictions, each corresponding to a local image patch.
We only use the final completed image Ŷ and its ground-truth
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imageY to train the discriminator for improving the realisticness
of the final completed textures. The adversarial loss is defined
as:

Lad(Y, Ŷ ) =
∑

t=1,2,3

(Ept
Y ∼Y t [logD(ptY )]+

Ept
Ŷ
∼Ŷ t [1− logD(pt

Ŷ
)]), (10)

where D(·) is the discriminator, ptY and pt
Ŷ

are the patches in

the t-th scaled versions of Y and Ŷ .
Cross-Entropy Loss: This loss is used to penalize the devi-

ation of Ŝl from the ground-truth labels S at all scales.

Lse(S, Ŝ) = −
∑
l

∑
p∈S

S(p) log(up(Ŝl)(p)). (11)

where p is the pixel index in segmentation map S.
Overall Training Loss: The overall training loss function for

our network is defined as the weighted sum of the reconstruction
loss, adversarial loss, and cross-entropy loss.

Loverall = Lre(Y, Ŷ ) + λαLad(Y, Ŷ ) + λsLse(S, Ŝ), (12)

where λα and λs are the weights for the adversarial loss and the
multi-scale cross-entropy loss, respectively.

IV. EXPERIMENTAL COMPARISONS

A. Experimental Settings

1) Datasets: We mainly evaluate the effectiveness of the pro-
posed inpainting method on Outdoor Scenes and Cityscapes
with segmentation annotations. We also extent the test of
our trained models on the commonly evaluated datasets for
inpainting.

Outdoor Scenes: The dataset [17] consists of 10 200 outdoor
scenes image with semantic labels. 9900 of them are used for
training and the remaining 300 images for testing. The images
are attributed to 8 categories and more than 85% of the dataset
are selected from the ADE dataset [45].

Cityscapes: The dataset [46] contains 5000 street view im-
ages attributed to 20 categories. In order to enlarge the number
of training image of this dataset, we use 2975 images from the
training set and 1525 images from the test set for training, and
test on the 500 images from the validation set. Since the test
set lacks public semantic annotations, we generate them as the
ground-truth for training by the state-of-the-art segmentation
model Deeplab [47].

We resize each training image to ensure its minimal
height/width to be 256 for Outdoor Scenes and 512 for
Cityscapes, and then randomly crop sub-images of size 256×
256 as inputs to our model. While training our model, we
use common data augmentation strategies, including cropping,
scaling, flipping and rotating, to increase the diversity of data.
All the inpainting results are directly obtained from our model
without any post-processing.

Paris StreetView and Places2: To test the generalization of
our trained model on handling images without segmentation

annotations, we test the already trained model from Outdoor
Scenes on Paris StreetView and the subset of Places2 which
have similar categories with that of Outdoor Scenes. The results
can be found in the last part of this section.

2) Baseline Methods: We list all the baselines with their
abbreviation and a brief introduction as follows:

GntIpt [11]: Contextual attention for leveraging the sur-
rounding textures and structures, without any auxiliary structural
information.

GatedConv [13]: Gated convolution for free-form image
inpainting, without any auxiliary structural information.

EdgeConnect [33]: Two-step inpainting with edges as low-
level structural information.

SPG-Net [16]: Two-step inpainting with a semantic segmen-
tation map as high-level structural information.

We use GatedConv and EdgeConnect fine-tuned on each
dataset and re-implement the model of SPG-Net by ourselves
since there is no released model. Since the training of GntIpt
assumes availability of the bounding boxes of the holes, which
would not make sense for the irregular mask, we directly use
their released pre-trained models.

B. Implementation Details

SeGuE-Net is mainly composed of an encoder, a decoder,
and CIM between them. The encoder takes 3-channel image
and 1-channel mask as input, and gradually down-samples the
contextual feature. We build the encoder based on ResNet-50
with five blocks (Conv1, Conv2_x, Conv3_x, Conv4_x, and
Conv5_x), which is pre-trained on ImageNet. CIM is used to
initially infer, from the contextual features extracted by the
encoder, the features for completing an image in the decoder. The
decoder gradually updates and refines the inferred contextual
features using the SCEM and SGIM from the coarsest scale to
the finest scale. To better infer and update the contextual features,
we adopt dilated convolution layers to expand the receptive
field. At each scale, the inpainting branch consists of two 3× 3
convolutional layer for image generation. The segmentation
branch generates aK-channel segmentation probability map Ŝl

P

after two convolutional layers and a softmax classifier. K is the
number of semantic classes.

We implement the SeGuE-Net using the Pytorch toolbox and
optimize it and the discriminator using the Adam algorithm
with β1 = 0.5, β2 = 0.999, and a learning rate of 0.0001
following [24]. In all experiments, we use a batch size of 4 and
set the training iterations to 500 000. The loss weight λp, λa and
λs are set to 1, 0.1, and 5 respectively. The percentile parameters
τ l used to generate the uncertainty mask are set to 75, 50, 25
for scale 2 to scale 4, respectively. Taking the 25 in scale 4, for
example, it means the thresholds τ4 equals to the value, which
is greater than 25% of the values in the max-probability map.

C. Performance Comparisons

In this section, we compare our method with the baseline
methods from both quantitative and qualitative aspects. We also
conduct a user study to assess the quality of the inpainting
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Fig. 4. Qualitative comparisons of inpainting results on image samples from Outdoor Scenes (rows 1–3) and Cityscapes (rows 4–6).

results, and evaluate the effect of scene complexity on inpainting
performance.

1) Qualitative Comparisons: The subjective visual compar-
isons of the proposed SeGuE-Net with the four baselines (Gn-
tIpt, GatedConv, EdgeConnect, SPG-Net) on Outdoor Scenes
and Cityscapes are presented in Fig. 4. The corrupted area is
simulated by sampling a central hole (128× 128 for Outdoor
Scenes and 96× 96 for Cityscapes) or placing masks with
random shapes. We use the 12 000 masks from [29] for training
and testing. As shown in Fig. 4, the baselines usually generate
unrealistic shapes and textures. Obviously GntIpt cannot well
handle irregular holes, as evidenced from the many matchless
and meaningless textures it produces. GatedConv, EdgeConnect
and SPG-Net are effective in handling irregular holes, but unsat-
isfactory boundaries and over-smooth results in some regions are
still often noticeable. In contrast, the proposed method generates
more realistic textures and better boundaries between semantic

regions than all the baselines, thanks to its semantic guidance
and Estimation mechanism.

2) Quantitative Comparisons: We also compare our method
quantitatively with the competing methods on the two datasets.
Table I shows the numerical results based on three quality
metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Sim-
ilarity Index (SSIM) and Fréchet Inception Distance (FID) [48].
FID measures the Wasserstein-2 distance between a ground-
truth and its inpainted version using a pre-trained Inception-V3
model [49]: the lower the FID value, the higher the fidelity.
Overall, our SeGuE-Net achieves the best objective scores than
the baselines, especially in PSNR and SSIM.

3) User Study: In addition to the quantitative and qualitative
comparisons, we also conduct a user study based on paired
comparisons. we randomly select 100 images from the two
datasets (50 from Outdoor Scenes and 50 from Cityscapes)
and invite 30 subjects with image processing expertise to
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TABLE I
QUANTITATIVE QUALITY COMPARISON OF FIVE METHODS IN TERMS OF PSNR, SSIM, AND FID ON OUTDOOR SCENES AND CITYSCAPES

(↑: HIGHER IS BETTER; ↓: LOWER IS BETTER)

TABLE II
QUANTITATIVE PERFORMANCE COMPARISON OF THREE INPAINTING METHODS

FOR DIFFERENT SCENE COMPLEXITIES ON 100 IMAGES FROM OUTDOOR

SCENES AND CITYSCAPES.

rank the subjective visual qualities of images completed by
five inpainting methods (GntIpt, GatedConv, EdgeConnect,
SPG-Net, and our SeGuE-Net). They are not informed of any
mask information. For each test image, its five inpainting results
are presented in a random order, and each subject is asked to rank
the five methods from the best (score: 1) to the worst (score:
5). The result shows that our method receives 54.1% favorite
votes (i.e., the top-1 in 1623 out of 3000 comparisons) and
average rank of 1.72, largely surpassing 21.4% and 2.42 with
EdgeConnect [33], 15.7% and 2.88 with GatedConv [13], 7.3%
and 3.64 with SPG-Net [16], and 1.4% and 4.35 with GntIpt [11].
Note, the higher the percentage of favorite votes and the lower
the average rank, the better the subjective evaluation. Hence, our
method outperforms the other methods.

4) Performance Vs. Scene Complexity: Since our method
mainly focuses on completing areas with multiple semantic
categories, we also verify its performance on images with dif-
ferent scene complexities. We conduct this analysis by dividing
all 100 images used in the user study into three levels of se-
mantic complexities: 1) low-complexity scenes containing 28
images with 1–2 semantic categories; 2) moderate-complexity
scenes containing 51 images with 3–4 semantic categories; 3)
high-complexity scenes containing 21 images with more than
4 semantic categories. We present the numerical comparisons
(see Table II) and visual comparisons (see Fig. 5 and Fig. 6) of
SeGuE-Net with two structure-guided baselines (i.e., EdgeCon-
nect and SPG-Net) on the three levels of semantic complexity.
The quantitative performance comparison based on PSNR and
SSIM in Table II demonstrates that our method outperforms the
other methods, especially for high-complexity scenes. Fig. 5
and Fig. 6 also show that the performance gain achieved by
SeGuE-Net increases with the scene complexity.

Fig. 5. Qualitative comparisons of test results on image samples with 2 to
5 dominant semantic categories from Outdoor Scenes. From left to right:
Corrupted image, images completed by EdgeConnect [33], SPG-Net [16] and
SeGuE-Net (ours).

5) Results on Paris StreetView and Places2: For a fair com-
parison with GatedConv and EdgeConnect, we also conduct
performance evaluation on Places2 dataset, which was used
for evaluation by both GatedConv and EdgeConnect. Since it
contain images with similar semantic scenes to Outdoor Scenes,
we use our model trained on Outdoor Scenes to complete the
images with similar scenes in Places2. More comparisons with
those baselines on Paris StreetView are also conducted. The
qualitative results in Fig. 7 show that SeGuE-Net is still able to
generate proper semantic structures, owing to the introduction of
semantic segmentation, which provides better prior knowledge
about the scenes.
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Fig. 6. Qualitative comparisons of test results on image samples of 4 to 7
dominant semantic categories from Cityscapes. From left to right: Corrupted
image, EdgeConnect [33], SPG-Net [16] and SeGuE-Net (ours).

Fig. 7. Qualitative comparisons on image samples from Paris StreetView and
Places2. SeGuE-Net is trained on Outdoor Scenes dataset.

V. MODEL ANALYSIS

A. Ablation Studies

The two core components of the proposed method, uncertainty
estimation and semantic-guided inference, are implemented by
SCEM and SGIM, respectively. In order to investigate their

Fig. 8. Qualitative comparisons on three variants to show the effects of SGIM
and SCEM.

TABLE III
QUANTITATIVE PERFORMANCE COMPARISON ON THE PERFORMANCES OF

SGIM AND SCEM IN TERMS OF THREE METRICS ON OUTDOOR SCENES
WITH A CENTRAL HOLE

Fig. 9. Visualization of the spatial normalization parameters γ (Row 2) and β
(Row 3) based on the segmentation probability (Row 1).

effectiveness, we conduct an ablation study on three variants:
a) Basic-Net (without SCEM and SGIM); b) SG-Net (without
SCEM but with the black part of SGIM in Fig. 2); and c)
SeGuE-Net (our model with both SCEM and SGIM).

The visual and numerical comparisons on Outdoor Scenes
dataset are shown in Fig. 8 and Table III. In general, the inpaint-
ing performance increases with the added modules. Specifically,
the multi-scale semantic-guided interleaved framework does
a good job of generating detailed contents, and the semantic
segmentation map helps learn a more accurate layout of a
scene. With SGIM, the spatial adaptive normalization generates
more realistic textures guided by semantic priors. Moreover,
SCEM makes further improvements in completing structures
and textures (see the fourth column in Fig. 8) by coarse-to-fine
optimizing the semantic contents across scales.

Our method modulates the features with semantic prior based
on the segmentation map. To explore the correlations between
the learned spatial normalization parameters with the segmen-
tation map, we visualize them in Fig. 9. Since the parameters
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Fig. 10. Illustration of multi-scale progressive refinement with SeGuE-Net. From left to right of the first 5 columns: the inpainted images (top row) and the
segmentation maps (bottom row) from scale 4 to scale 1 and the final result. The last 3 columns show the the uncertainty maps (top row) and the confidence score
maps (bottom row) of the inpainted region across scales (e.g., Ŝ4−3

Pmax
shows the confidence score increases from scale 4 to scale 3).

exhibit similar behavior at the same scale, we only show one
channel at each scale. As seeing from the heat maps of γ and β
pairs, they are closely related to the segmentation map at each
scale. It can also be observed that those learned parameters
are different in different semantic regions, which can provide
semantic priors to the completed regions.

To further verify the effectiveness of SCEM, we visualize
a corrupted image and its segmentation maps derived from all
decoding scales. As shown in the first five columns of Fig. 10, the
multi-scale progressive-updating mechanism gradually refines
the detailed textures and the segmentation maps at different
scales. The last three columns of the top row show that the
region of the uncertainty mask gradually shrinks as well. Corre-
spondingly, the bottom row shows the increase of the confidence
scores of segmentation maps from left to right (e.g., Ŝ4−3

Pmax

showing the increased confidence score from scale 4 to scale
3). The proportion of the white region, which roughly indicates
uncertainty labels, also decreases significantly from left to right.
The result evidently demonstrates the benefits of SCEM in
boosting the semantic correctness of contextual features.

B. Effectiveness of Uncertainty Estimation

During the progressive refinement of image inpainting and se-
mantic segmentation, the semantic uncertainty estimation mech-
anism of SCEM is based on the assumption that the pixel-wise
confidence scores from the segmentation probability map can
well reflect the correctness of inpainted pixel values. Here we
attempt to justify this assumption. Some examples from both
datasets are shown in Fig. 11. It can be seen that (except for the
confidence scores at the region boundaries):
� The low confidence scores (the white area in row 3) usu-

ally appear in the mask area, indicating that the scores
reasonably well reflects the uncertainty of inpainted image
content;

� the confidence score becomes higher when the scale goes
finer, whereas the area of uncertain pixels reduces, meaning
that our method can progressively refine the context feature
towards correct inpainting.

� the heat maps of updated uncertainty mask features (row
4) show that the mapping features from one channel mask

TABLE IV
QUANTITATIVE PERFORMANCE COMPARISON ON MODEL TRAINED BY

MACHINE-GENERATED SEGMENTATION (MACH-SEGS) AND HUMAN-LABELED

SEMANTICS (LABEL-SEGS) ON OUTDOOR SCENES

can effectively preserve the distinction between the reliable
and uncertain regions. These features function like using
the mask as the extra channel with the corrupted image to
indicate where should be inpainted.

We then verify the effectiveness of pixel-wise confidence
scores by validating the correlation between the confidence
scores of an inpainted image and the L1 loss with respect to
its ground-truth which reflects the fidelity of inpainted pix-
els. We randomly select 9000 images out of all the training
and testing images from the two datasets with center-hole and
irregular-hole settings, and calculate the average L1 loss and
the average confidence score of pixels in missing regions. As
demonstrated in Fig. 12, the proportion of good-fidelity pixels
in each confidence bin generally increases with the segmentation
confidence score, implying the confidence score well serves the
purpose of evaluating the accuracy of inpainted image.

C. Impact of Annotations: Human-Labeled Annotations
Versus Machine-Generated Segmentation Maps

For a sanity check, we study the impact of imperfect annota-
tions on the inpainting performance of SeGuE-Net by replacing
the human-labeled srmantic annotations for training SeGuE-Net
with the maps generated by state-of-the-art segmentation mod-
els. We utilize the DPN model [50] pre-trained on [17] and the
Deeplab v3+ model [47] as the segmentation tools to gener-
ate semantic annotations for Outdoor Scenes and Cityscapes,
respectively. This experiment aims to test the sensitivity of
our method to the training samples with imperfect semantic
annotations.
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Fig. 11. Correspondence between the confidence score value and the uncertainty of inpainted image content. (a) Outdoor Scenes and (b) Cityscapes. Row 1:
Inpainted image. Row 2: Predicted segmentation map. Row 3: the confidence score map (darker color means higher confidence score, and vice versa). Row 4:
visualization of the encoded uncertainty mask feature in SGIM. Row 5: uncertain pixel map (white pixels indicate uncertain pixels). Since the map at scale 4 is the
same as the input mask, we put the input image for better comparison.

Fig. 12. Correlation between inpainting quality and confidence score.

As shown in Table IV, the performance degradation on
SeGuE-Net due to imperfect semantic annotations is not signif-
icant, meaning that our model can still do a fairly good job even
trained on machine-generated semantic annotations. Fig. 13
shows the visual quality comparisons of the inpainting results
with SeGuE-Net trained on the human-labeled segmentation
maps and on the machine-generated maps. As can be observed,
SeGuE-Net trained on imperfect semantic annotations achieves
comparable inpainting performance with SeGuE-Net trained on
human-labeled semantics. Note that the semantic annotations,
either human-labeled or machine-generated, are only used in
the training stage of our model. While completing an image,

Fig. 13. Impact of training with human-labeled vs. machine-generated seg-
mentation maps on Outdoor Scenes. Row 1: using human-labeled segmentation
maps; Row 2: using segmentation maps generated by DPN model.

SeGuE-Net itself can automatically generate the inpainted im-
age and segmentation map simultaneously, without the need of
semantic annotations.

D. Comparison of Segmentation Accuracy Between
SeGuE-Net and Segmentation-After-Inpainting

The success of semantics-guided inpainting largely relies
on the quality of inferred semantic labels. SeGuE-Net utilizes
multi-scale iterative interleaving of inpainting and semantic seg-
mentation to improve the accuracy of the semantic segmentation
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Fig. 14. Visual comparisons on semantic segmentation between SeGuE-Net
and the segmentation-after-inpainting solutions.

TABLE V
STATISTICAL COMPARISON ON SEMANTIC SEGMENTATION ACCURACY

BETWEEN SEGUE-NET AND THE SEGMENTATION-AFTER-INPAINTING

SOLUTIONS ON OUTDOOR SCENES AND CITYSCAPES

map for a corrupted image. Here we conduct experiments to vali-
date whether the iterative interleaving of inpainting and segmen-
tation outperforms the traditional non-iterative segmentation-
after-inpainting strategy in semantic segmentation accuracy.
We compare the segmentation maps generated by SeGuE-Net
with their counterparts extracted from images completed by a
baseline inpainting method.

Fig. 14 and Table V show that SeGuE-Net evidently beats the
segmentation-after-inpainting method since SeGuE-Net leads
to more accurate semantic assignments and object boundaries,
thanks to its multi-scale alternative-optimization of semantics
and image contents.

E. Effect of Image Resolution

We also evaluate our model for the inpainting of high resolu-
tion (HR) images. The first row of Fig. 15 shows the inpainting
performance on images of the original size in Outdoor Scenes
test set and the second row shows the HR image inpainting of
Cityscapes with 1024 × 512. The result shows the effectiveness
of our model on HR images.

F. Limitations

Fig. 16 shows some typical failure cases of our model. In
general, the most common failure cases are on the non-rigid
bodies, e.g., a person or an animal, where the semantic object
shapes are hard to learn by the model. For example, in the first
row, these models wrongly reconstruct the wall on the lion’s
head, leading to a poor completion. In the second row, one hand
of the second person is missing, but the main part of the body is
completed well by our model.

Fig. 15. Results on high resolution images. The image size from the top to
bottom: 384 × 288, 768 × 512 and 1024 × 512.

Fig. 16. Examples of failure cases from Outdoor Scenes and CityScapes.

VI. CONCLUSION

We proposed a novel semantic segmentation guided scheme
to complete corrupted images of mixed semantic regions. To
address the problem of uncertain semantic segmentation due
to missing regions, we have proposed a multi-scale alternative
optimization mechanism to conduct interplay between semantic
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segmentation and image inpainting. Extensive experimental re-
sults demonstrate that the proposed mechanism can effectively
refines poorly-inferred pixels through segmentation confidence
estimation to generate promising semantic structures and texture
details in a coarse-to-fine manner.
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