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Abstract—Rain removal from an image/video is a challenging
problem and has been recently investigated extensively. In our
previous work, we have proposed the first single-image-based
rain streak removal framework via properly formulating it as
an image decomposition problem based on morphological
component analysis (MCA) solved by performing dictionary
learning and sparse coding. However, in this previous work, the
dictionary learning process cannot be fully automatic, where the
two dictionaries used for rain removal were selected
heuristically or by human intervention. In this paper, we extend
our previous work to propose an automatic self-learning-based
rain streak removal framework for single image. We propose to
automatically self-learn the two dictionaries used for rain
removal without additional information or any assumption. We
then extend our single-image-based method to video-based rain
removal in a static scene by exploiting the temporal information
of successive frames and reusing the dictionaries learned by the
former frame(s) in a video while maintaining the temporal
consistency of the video. As a result, the rain component can be
successfully removed from the image/video while preserving
most original details. Experimental results demonstrate the
efficacy of the proposed algorithm.

L INTRODUCTION

Different weather conditions such as rain, snow, haze, or
fog will cause complex visual effects of spatial or temporal
domains in images or videos. Such effects may significantly
degrade the performances of outdoor vision systems relying
on image/video feature extraction. Removal of rain streaks has
recently received much attention [1]-[5]. A pioneering work
on detecting and removing rain streaks in a video was
proposed in [1], where the authors developed a correlation
model capturing the dynamics of rain and a physics-based
motion blur model characterizing the photometry of rain. It
was subsequently shown in [2] that some camera parameters,
such as exposure time and depth of field can be selected to
mitigate the effects of rain without altering the appearance of
the scene. Furthermore, a model of the shape and appearance
of a single rain or snow streak in the image space was
developed in [3] to detect rain or snow streaks. Then, the
amount of rain or snow in the video can be reduced.

So far, the research works on rain streak removal found in
the literature have been mainly focused on video-based
approaches that exploit temporal correlation in multiple
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successive frames [1]-[4]. However, when only a single
image is available, a single-image based rain streak removal
approach is required. In our previous work [5], we proposed a
single-image-based rain streak removal framework by
formulating it as an image decomposition problem based on
morphological component analysis (MCA) [6], [7]. However,
in [5], we just followed the concept of the current MCA-based
image decomposition approach [6], [7] to heuristically select
the curvelet/wavelet dictionary for sparsely representing the
non-rain component, while assuming the rain patches can be
available for learning a rain dictionary for sparsely
representing the rain component in a rain image.

In this paper, we extend our work presented in [5] to
propose an automatic self-learning-based rain streak removal
framework for single image. We then extend our single-
image-based method to video-based rain removal in a static
scene by exploiting the temporal information of successive
frames and reusing the dictionaries learned by the former
frame(s) in a video while maintaining the temporal
consistency of the video. The major contribution of this paper
is that the learning of the dictionaries used for removing rain
steaks from an image/video is fully automatic and self-
contained without any prior knowledge, where no extra
training samples are required in the dictionary learning stage.

II. MCA-BASED IMAGE DECOMPOSITION, SPARSE CODING,
AND DICTIONARY LEARNING

A. MCA-based Image Decomposition

Suppose that an image /of N pixels is a superposition of S
layers (called morphological components), denoted by
I = ¥5_, I, where I, denotes the s-th component, such as the
geometric or textural component of I. To decompose the
image I into {I;}5_,, the MCA algorithms [6], [7] iteratively
minimize the following energy function:
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where 6; denotes the sparse coefficients corresponding to I
with respect to dictionary Dy, T is a regularization parameter,
and E; is the energy defined according to the type of D
(global or local dictionary).
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Fig. 1. Rain removal results: (a) the original rain image; (b) the LF part of (a) via the bilateral filter [8]; (c) the HF part of (a); (d) the rain component of (a);
(e) the non-rain component of (a); (f) the rain-removed version of (a) via the proposed single-image-based method; (g) the rain sub-dictionary for (c); and (h)

the non-rain sub-dictionary for (c).

The MCA algorithms solve (1) by iteratively performing
for each component I the following two steps: (i) update of
the sparse coefficients: this step performs sparse coding to
solve 6 or {6KIN_, ., where O represents the sparse
coefficients of patch b¥ extracted from I, , to minimize
E¢(I,, 65) while fixing Ig; and (ii) update of the components:
this step updates I, or {b¥}¥_, while fixing 6, or {8X}_,

B. Sparse Coding and Dictionary Learning

Sparse coding [9] is a technique of finding a sparse
representation for a signal with a small number of nonzero or
significant coefficients corresponding to the atoms in a
dictionary. To construct a dictionary Dy for sparsely
representing each patch b¥ extracted from the component I of
the image I, we may use a set of available training exemplars
y*,k =1,2,..,P, to learn a dictionary D, sparsifying y* by
solving the following optimization problem:

P
1
min Y (—||yk — D,0%|2 + Alle"lll). 2)
D 0k 2

k=1

where 6% denotes the sparse coefficients of y* with respect to
Dy and A is a regularization parameter. Equation (2) can be
efficiently solved by performing a dictionary learning
algorithm, such as the online dictionary learning algorithm,
where the sparse coding step is usually achieved via OMP
(orthogonal matching pursuit) [9]. Finally, the image
decomposition is achieved by iteratively performing the MCA
algorithm to solve I (while fixing D) described in Sec. II-A
and the dictionary learning algorithm to learn D¢ (while fixing
I;) until convergence.

III. PROPOSED RAIN STREAK REMOVAL FRAMEWORK

Similar to [5], in our method, an input rain image is first
roughly decomposed into the low-frequency (LF) part and the

high-frequency (HF) part using the bilateral filter [8], where
the most basic information will be retained in the LF part
while the rain streaks and the other edge/texture information
will be included in the HF part of the image as illustrated in
Figs. 1(b) and 1(c). Then, we perform the proposed MCA-
based image decomposition to the HF part that can be further
decomposed into the rain component [see Fig. 1(d)] and the
non-rain component [see Fig. 1(e)]. Different from [5], in the
image decomposition step, a dictionary learned from the
training exemplars extracted from the HF part of the image
itself can be divided into two sub-dictionaries by performing
HOG (histograms of oriented gradients) [10] feature-based
dictionary atom clustering. Then, we perform sparse coding [9]
based on the two sub-dictionaries to achieve MCA-based
image decomposition, where the non-rain component in the
HF part can be obtained, followed by integrating with the LF
part of the image to obtain the rain-removed version of this
image as illustrated in Fig. 1(f). The detailed method shall be
elaborated below.

A. Preprocessing and Problem Formulation

For an input rain image / in the preprocessing step, we
apply a bilateral filter [8] to decompose /into the LF part (/; )
and HF part (Iyp), ie., I = I}z + Iyr. Then, our method
learns a dictionary Dy based on the training exemplar
patches extracted from Iy to further decompose Iy, where
Dyr can be further divided into two sub-dictionaries,
Dyr g and Dyp p (Dyp = [DHF_G|DHF_R]), for representing the
non-rain and rain components of I, respectively. As a result,
we formulate the problem of rain streak removal for image /
as a sparse coding-based image decomposition problem:
— Dyrbfii|[; s.t. |6kl < L. ®3)

min||bie
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Fig. 2. Block diagram of the proposed video-based rain streak removal method.

where bfp represents the A-th patch extracted from Iyz. 05 r
are the sparse coefficients of bf, with respect to Dy, and Z
denotes the sparsity or maximum number of nonzero
coefficients of 6.

B. Dictionary Learning and Partition

In this step, we extract from Iy a set of overlapping
patches as the training exemplars y* for learning dictionary
Dyr by the dictionary learning technique described in Sec. 1I-
B using the online dictionary learning algorithm [9] to obtain
Dyr. We find that the atoms constituting Dy can be roughly
divided into two clusters (sub-dictionaries) for representing
the non-rain and rain components of Iyr, respectively.
Intuitively, the most significant feature for a rain atom can be
extracted via “image gradient.” In this work, we utilize the
HOG descriptor [10] to describe each atom in Dyp. After
extracting the HOG feature for each atom in Dyp, we then
apply the K-means algorithm to classify all of the atoms in
Dyr into two clusters D; and D, based on their HOG feature
descriptors. Then, we calculate the variance of gradient
direction for each atom d;; in cluster D;, as VG;j, i = 1,2.
Then, we calculate the mean of VG;; for each cluster D; as
MVG;. Based on the fact that the edge directions of rain
streaks in an atom are usually consistent, i.e., the variance of
gradient direction for a rain atom should be small, we identify
the cluster with the smaller MVG; as rain sub-dictionary
Dyr g, and the other one as non-rain sub-dictionary Dy ¢, as
depicted in Figs. 1(g) and 1(h).

C. Removal of Rain Streaks

Based on the two dictionaries Dyp g and Dyp o, we
perform sparse coding by applying the OMP algorithm for
each patch bk extracted from Iy via minimization of (3),
where Dy = [DHF76|DHF7R], to find its sparse coefficients
0f. Then, each reconstructed patch bfr can be used to
recover either non-rain component I or rain component I
of Iy based on the sparse coefficients 8% as follows. We set
the coefficients corresponding to Dyr ¢ in Ok to zeros to
obtain @ ¢ r» While the coefficients corresponding to Dyf  in

0Fr to zeros to obtain O ;. Therefore, each patch by can be
re-expressed as either bfp ¢ = Dyp g X OFp ¢ or bfp p =
Dyr g X Ofp g, which can be used to recover g or Ifs,
respectively. Finally, the rain-removed version of the image /
can be obtained via [NO™-Raim = [, . 4+ [&. More details of the
proposed method for single image can be found in [11].

D. Extension to Video-based Rain Streak Removal

The most straightforward way to extend our single-image-
based method to video-based rain removal is to individually
apply the single-image-based method to each frame in a video.
Without exploiting the temporal information in a video, there
are major two drawbacks of this strategy: (i) the temporal
consistency of the video cannot be maintained; and (ii) the
overall computational complexity is expensive. In this work,
we consider a rain video of static scene without significant
moving objects. Fig. 2 shows the proposed video-based rain
streak removal framework, where we find that by averaging a
number of successive frames in a static scene, the rain streaks
can be eliminated in this “average frame,” which can be used
to replace the bilateral-filtered image (LF part) in our single-
image-based method.

For an input rain video of V frames I;,i = 1,2, ...,V, we
average the first Z successive frames [;,i=1,2,...,Z, to
generate the common LF part I, for all of the remaining
frames [;,i = Z + 1,Z + 2,...,V, in the video. We then apply
our single-image-based method to I, , with LF part being set
to I,yp to obtain the rain and non-rain dictionaries,
Dz+1) nrr a0d D(z41) yr g, to decompose the HF part
Iiz+1).nr (Flz41 — layg) of Iz4q into the rain and non-rain

components, Ié +1).nr and I(GZ +1).ur > respectively. Then, the
rain-removed version of I;,; can be obtained via I(I\;inf)Ram =
Lyyg + I(GZ+1)_HF' For removing rain streaks from [;,i = Z +

2,Z +3,...,V, in the video, we use the same LF part Iy to
obtain the HF part [; yr (=1; — Iyyp ). We then directly
perform MCA decomposition to I[; yp, i =Z + 2,Z + 3,..,V,
using the same two dictionaries, D(z41) yr g and D741y nr 6>
learned from I(;,1) yr to obtain the rain and non-rain
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components, Ii’fHF and Ii‘i ur» respectively. Finally, the rain-
removed version of I;,i = Z + 2,Z + 3, ..., V, can be obtained
via I/"F™ = [, p + Ifyr . The main advantage of the
proposed video-based method is two-fold: (i) for all of the
frames in a video, using the same LF part and the same two
dictionaries for rain removal can maintain the temporal
consistency of the video; and (ii) the dictionary learning
process, which induces the major computational burden, is
only performed once, which can significantly save the overall
computational complexity.

IV. EXPERIMENTS AND DISCUSSION

To evaluate the performance of the proposed single-image-
based method, we compare the proposed method with the
bilateral filter [8] and our previous semi-automatic method [5].
Moreover, to evaluate the performance of the proposed video-
based method, we compare the proposed method with the
video-based rain removal method proposed in [1] and our
single-image-based method. The parameter settings of the
proposed methods are described as follows. For each test gray-
scale image of size 256x256, the patch size, dictionary size,
and the number of training iterations are set to 16x16, 1024,
and 100, respectively. The number of frames used to generate
the LF part for a static video is set to Z = 50. The rain removal
results obtained from our previous method [5], the method
proposed in [1], our single-image-based method, and our
video-based method are shown in Figs. 1, 3—4. It can be
observed that our methods can remove most rain streaks while
preserving most non-rain image/video details, thereby
improving the subjective visual quality significantly. More
experimental results and tested videos are available in [12].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an automatic self-
learning-based rain streak removal framework for single
image by formulating it as an MCA-based image
decomposition problem solved by performing sparse coding
and dictionary learning algorithms. We have also extended it
to video-based rain removal in a static scene. Our
experimental results show that the proposed methods achieve
comparable/better performance with/than our previous work
in [5] and the video-based rain removal method proposed in
[1]. For future work, the proposed methods may be extended
to rain removal for video of dynamic scenes.
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