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Abstract—Rain removal from an image/video is a challenging 
problem and has been recently investigated extensively. In our 
previous work, we have proposed the first single-image-based 
rain streak removal framework via properly formulating it as 
an image decomposition problem based on morphological 
component analysis (MCA) solved by performing dictionary 
learning and sparse coding. However, in this previous work, the 
dictionary learning process cannot be fully automatic, where the 
two dictionaries used for rain removal were selected 
heuristically or by human intervention. In this paper, we extend 
our previous work to propose an automatic self-learning-based 
rain streak removal framework for single image. We propose to 
automatically self-learn the two dictionaries used for rain 
removal without additional information or any assumption. We 
then extend our single-image-based method to video-based rain 
removal in a static scene by exploiting the temporal information 
of successive frames and reusing the dictionaries learned by the 
former frame(s) in a video while maintaining the temporal 
consistency of the video. As a result, the rain component can be 
successfully removed from the image/video while preserving 
most original details. Experimental results demonstrate the 
efficacy of the proposed algorithm. 

I. INTRODUCTION 
Different weather conditions such as rain, snow, haze, or 

fog will cause complex visual effects of spatial or temporal 
domains in images or videos. Such effects may significantly 
degrade the performances of outdoor vision systems relying 
on image/video feature extraction. Removal of rain streaks has 
recently received much attention [1]−[5]. A pioneering work 
on detecting and removing rain streaks in a video was 
proposed in [1], where the authors developed a correlation 
model capturing the dynamics of rain and a physics-based 
motion blur model characterizing the photometry of rain. It 
was subsequently shown in [2] that some camera parameters, 
such as exposure time and depth of field can be selected to 
mitigate the effects of rain without altering the appearance of 
the scene. Furthermore, a model of the shape and appearance 
of a single rain or snow streak in the image space was 
developed in [3] to detect rain or snow streaks. Then, the 
amount of rain or snow in the video can be reduced. 

So far, the research works on rain streak removal found in 
the literature have been mainly focused on video-based 
approaches that exploit temporal correlation in multiple 

successive frames [1]−[4]. However, when only a single 
image is available, a single-image based rain streak removal 
approach is required. In our previous work [5], we proposed a 
single-image-based rain streak removal framework by 
formulating it as an image decomposition problem based on 
morphological component analysis (MCA) [6], [7]. However, 
in [5], we just followed the concept of the current MCA-based 
image decomposition approach [6], [7] to heuristically select 
the curvelet/wavelet dictionary for sparsely representing the 
non-rain component, while assuming the rain patches can be 
available for learning a rain dictionary for sparsely 
representing the rain component in a rain image. 

In this paper, we extend our work presented in [5] to 
propose an automatic self-learning-based rain streak removal 
framework for single image. We then extend our single-
image-based method to video-based rain removal in a static 
scene by exploiting the temporal information of successive 
frames and reusing the dictionaries learned by the former 
frame(s) in a video while maintaining the temporal 
consistency of the video. The major contribution of this paper 
is that the learning of the dictionaries used for removing rain 
steaks from an image/video is fully automatic and self-
contained without any prior knowledge, where no extra 
training samples are required in the dictionary learning stage. 

II. MCA-BASED IMAGE DECOMPOSITION, SPARSE CODING, 
AND DICTIONARY LEARNING 

A. MCA-based Image Decomposition 
Suppose that an image I of N pixels is a superposition of ܵ 

layers (called morphological components), denoted by ܫ ൌ ∑ ௦ௌ௦ୀଵܫ , where ܫ௦ denotes the s-th component, such as the 
geometric or textural component of  ܫ . To decompose the 
image ܫ into ሼܫ௦ሽ௦ୀଵௌ , the MCA algorithms [6], [7] iteratively 
minimize the following energy function: 

௦ሽ௦ୀଵௌܫሺሼܧ , ሼߠ௦ሽ௦ୀଵௌ ሻ ൌ  12 ะܫ െ ෍ ௦ௌܫ
௦ୀଵ ะଶ

ଶ ൅ ߬ ෍ ,௦ܫ௦ሺܧ ௦ሻௌߠ
௦ୀଵ ,      ሺ1ሻ 

where ߠ௦  denotes the sparse coefficients corresponding to ܫ௦ 
with respect to dictionary ܦ௦, ߬ is a regularization parameter, 
and ܧ௦  is the energy defined according to the type of ܦ௦ 
(global or local dictionary). 
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      The MCA algorithms solve (1) by iteratively performing 
for each component ܫ௦ the following two steps: (i) update of 
the sparse coefficients: this step performs sparse coding to 
solve ߠ௦  or ሼߠ௦௞ሽ௞ୀଵே , where ߠ௦௞ represents the sparse 
coefficients of patch ܾ௦௞ extracted from ܫ௦ , to minimize ܧ௦ሺܫ௦,  :௦; and (ii) update of the componentsܫ ௦ሻ while fixingߠ
this step updates ܫ௦ or ሼܾ௦௞ሽ௞ୀଵே  while fixing ߠ௦ or ሼߠ௦௞ሽ௞ୀଵே . 

B. Sparse Coding and Dictionary Learning 
Sparse coding [9] is a technique of finding a sparse 

representation for a signal with a small number of nonzero or 
significant coefficients corresponding to the atoms in a 
dictionary. To construct a dictionary ܦ௦ for sparsely 
representing each patch ܾ௦௞ extracted from the component ܫ௦ of 
the image ܫ, we may use a set of available training exemplars  ݕ௞, ݇ ൌ 1,2, … , ܲ, to learn a dictionary ܦ௦  sparsifying ݕ௞  by 
solving the following optimization problem: 

min஽ೞ,ఏೖ  ෍ ൬12 ԡݕ௞ െ ௞ԡଶଶߠ௦ܦ ൅ ௞ԡଵ൰௉ߠԡߣ 
௞ୀଵ ,              ሺ2ሻ 

where ߠ௞ denotes the sparse coefficients of ݕ௞ with respect to ܦ௦  and ߣ  is a regularization parameter. Equation (2) can be 
efficiently solved by performing a dictionary learning 
algorithm, such as the online dictionary learning algorithm, 
where the sparse coding step is usually achieved via OMP 
(orthogonal matching pursuit) [9]. Finally, the image 
decomposition is achieved by iteratively performing the MCA 
algorithm to solve ܫ௦ (while fixing ܦ௦) described in Sec. II-A 
and the dictionary learning algorithm to learn ܦ௦ (while fixing ܫ௦) until convergence. 

III. PROPOSED RAIN STREAK REMOVAL FRAMEWORK 
Similar to [5], in our method, an input rain image is first 

roughly decomposed into the low-frequency (LF) part and the 

high-frequency (HF) part using the bilateral filter [8], where 
the most basic information will be retained in the LF part 
while the rain streaks and the other edge/texture information 
will be included in the HF part of the image as illustrated in 
Figs. 1(b) and 1(c). Then, we perform the proposed MCA-
based image decomposition to the HF part that can be further 
decomposed into the rain component [see Fig. 1(d)] and the 
non-rain component [see Fig. 1(e)]. Different from [5], in the 
image decomposition step, a dictionary learned from the 
training exemplars extracted from the HF part of the image 
itself can be divided into two sub-dictionaries by performing 
HOG (histograms of oriented gradients) [10] feature-based 
dictionary atom clustering. Then, we perform sparse coding [9] 
based on the two sub-dictionaries to achieve MCA-based 
image decomposition, where the non-rain component in the 
HF part can be obtained, followed by integrating with the LF 
part of the image to obtain the rain-removed version of this 
image as illustrated in Fig. 1(f). The detailed method shall be 
elaborated below. 

A. Preprocessing and Problem Formulation 
For an input rain image I, in the preprocessing step, we 

apply a bilateral filter [8] to decompose I into the LF part (ܫ௅ி) 
and HF part ( ுிܫ ), i.e., ܫ ൌ ௅ிܫ ൅ ுிܫ . Then, our method 
learns a dictionary ܦுி  based on the training exemplar 
patches extracted from ܫுி  to further decompose ܫுி , where ܦுி  can be further divided into two sub-dictionaries, ܦுி_ீ and ܦுி_ோ (ܦுி ൌ  ுி_ோ൧), for representing theܦ|ீ_ுிܦൣ
non-rain and rain components of ܫுி, respectively. As a result, 
we formulate the problem of rain streak removal for image I 
as a sparse coding-based image decomposition problem: minఏಹಷೖ ฮܾுி௞ െ ுி௞ߠுிܦ ฮଶଶ ݏ. .ݐ ฮߠுி௞ ฮ଴ ൑  ሺ3ሻ                  ,ܮ

 
(a)                                                     (b)                                                   (c)                                                      (d) 

 
(e)                                                         (f)                                                      (g)                                                     (h) 

Fig. 1. Rain removal results: (a) the original rain image; (b) the LF part of (a) via the bilateral filter [8]; (c) the HF part of (a); (d) the rain component of (a); 
(e) the non-rain component of (a); (f) the rain-removed version of (a) via the proposed single-image-based method; (g) the rain sub-dictionary for (c); and (h) 
the non-rain sub-dictionary for (c). 



where ܾுி௞  represents the k-th patch extracted from ܫுி ுி௞ߠ .  
are the sparse coefficients of ܾுி௞  with respect to ܦுி , and L 
denotes the sparsity or maximum number of nonzero 
coefficients of ߠுி௞ . 

B. Dictionary Learning and Partition 
In this step, we extract from ܫுி  a set of overlapping 

patches as the training exemplars ݕ௞  for learning dictionary  ܦுி  by the dictionary learning technique described in Sec. II-
B using the online dictionary learning algorithm [9] to obtain ܦுி . We find that the atoms constituting ܦுி  can be roughly 
divided into two clusters (sub-dictionaries) for representing 
the non-rain and rain components of ܫுி , respectively. 
Intuitively, the most significant feature for a rain atom can be 
extracted via “image gradient.” In this work, we utilize the 
HOG descriptor [10] to describe each atom in ܦுி . After 
extracting the HOG feature for each atom in ܦுி , we then 
apply the K-means algorithm to classify all of the atoms in  ܦுி  into two clusters ܦଵ and ܦଶ based on their HOG feature 
descriptors. Then, we calculate the variance of gradient 
direction for each atom ݀௜௝  in cluster ܦ௜ , as ܸܩ௜௝ ,  ݅ ൌ 1, 2. 
Then, we calculate the mean of ܸܩ௜௝  for each cluster ܦ௜  as ܩܸܯ௜ . Based on the fact that the edge directions of rain 
streaks in an atom are usually consistent, i.e., the variance of 
gradient direction for a rain atom should be small, we identify 
the cluster with the smaller ܩܸܯ௜  as rain sub-dictionary ܦுி_ோ, and the other one as non-rain sub-dictionary ܦுி_ீ, as 
depicted in Figs. 1(g) and 1(h). 

C. Removal of Rain Streaks 
Based on the two dictionaries ܦுி_ோ  and ܦுி_ீ , we 

perform sparse coding by applying the OMP algorithm for 
each patch ܾுி௞  extracted from ܫுி  via minimization of (3), 
where ܦுி ൌ ,ுி_ோ൧ܦ|ீ_ுிܦൣ  to find its sparse coefficients ߠ෨ுி௞ . Then, each reconstructed patch ܾுி௞  can be used to 
recover either non-rain component ܫுிீ  or rain component  ܫுிோ  
of  ܫுி based on the sparse coefficients ߠ෨ுி௞  as follows. We set 
the coefficients corresponding to ܦுி_ீ  in ߠ෨ுி௞  to zeros to 
obtain ߠ෨ுி_ோ௞ , while the coefficients corresponding to ܦுி_ோ  in 

෨ுி௞ߠ  to zeros to obtain ߠ෨ுி_ீ௞ . Therefore, each patch ܾுி௞  can be 
re-expressed as either ෨ܾுி_ீ௞ ൌ ீ_ுிܦ ൈ ෨ுி_ீ௞ߠ  or ෨ܾுி_ோ௞ ൌܦுி_ோ ൈ ෨ுி_ோ௞ߠ , which can be used to recover ܫுிீ  or ܫுிோ , 
respectively. Finally, the rain-removed version of the image ܫ 
can be obtained via ܫே௢௡_ோ௔௜௡ ൌ ௅ிܫ ൅ ுிீܫ . More details of the 
proposed method for single image can be found in [11]. 

D. Extension to Video-based Rain Streak Removal 
The most straightforward way to extend our single-image-

based method to video-based rain removal is to individually 
apply the single-image-based method to each frame in a video. 
Without exploiting the temporal information in a video, there 
are major two drawbacks of this strategy: (i) the temporal 
consistency of the video cannot be maintained; and (ii) the 
overall computational complexity is expensive. In this work, 
we consider a rain video of static scene without significant 
moving objects. Fig. 2 shows the proposed video-based rain 
streak removal framework, where we find that by averaging a 
number of successive frames in a static scene, the rain streaks 
can be eliminated in this “average frame,” which can be used 
to replace the bilateral-filtered image (LF part) in our single-
image-based method. 

For an input rain video of V frames ܫ௜, ݅ ൌ 1, 2, … , ܸ, we 
average the first Z successive frames ܫ௜ , ݅ ൌ 1, 2, … , ܼ , to 
generate the common LF part ܫ஺௏ா  for all of the remaining 
frames ܫ௜, ݅ ൌ ܼ ൅ 1, ܼ ൅ 2, … , ܸ, in the video. We then apply 
our single-image-based method to ܫ௓ାଵ with LF part being set 
to ܫ஺௏ா  to obtain the rain and non-rain dictionaries, ܦሺ௓ାଵሻ_ுி_ோ  and ܦሺ௓ାଵሻ_ுி_ீ , to decompose the HF part ܫሺ௓ାଵሻ_ுி  (= ௓ାଵܫ െ ஺௏ாሻܫ of ܫ௓ାଵ  into the rain and non-rain 
components, ܫሺ௓ାଵሻ_ுிோ  and ܫሺ௓ାଵሻ_ுிீ , respectively. Then, the 
rain-removed version of ܫ௓ାଵ can be obtained via ܫሺ௓ାଵሻே௢௡_ோ௔௜௡ ൌܫ஺௏ா ൅ ሺ௓ାଵሻ_ுிீܫ . For removing rain streaks from ܫ௜ , ݅ ൌ ܼ ൅2, ܼ ൅ 3, … , ܸ, in the video, we use the same LF part ܫ஺௏ா to 
obtain the HF part ܫ௜_ுி  ( ൌ ௜ܫ െ ஺௏ாܫ ). We then directly 
perform MCA decomposition to ܫ௜_ுி, ݅ ൌ ܼ ൅ 2, ܼ ൅  3, … , ܸ, 
using the same two dictionaries, ܦሺ௓ାଵሻ_ுி_ோ and ܦሺ௓ାଵሻ_ுி_ீ, 
learned from ܫሺ௓ାଵሻ_ுி to obtain the rain and non-rain 

 
 

Fig. 2. Block diagram of the proposed video-based rain streak removal method. 
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components, ܫ௜_ுிோ  and ܫ௜_ுிீ , respectively. F
removed version of ܫ௜, ݅ ൌ ܼ ൅ 2, ܼ ൅ 3, … , ܸ
via ܫ௜ே௢௡_ோ௔௜௡ ൌ ஺௏ாܫ ൅ ௜_ுிீܫ . The main a
proposed video-based method is two-fold: 
frames in a video, using the same LF part a
dictionaries for rain removal can mainta
consistency of the video; and (ii) the di
process, which induces the major computa
only performed once, which can significantly
computational complexity. 

IV. EXPERIMENTS AND DISCU

To evaluate the performance of the propo
based method, we compare the proposed 
bilateral filter [8] and our previous semi-auto
Moreover, to evaluate the performance of the
based method, we compare the proposed 
video-based rain removal method proposed
single-image-based method. The paramete
proposed methods are described as follows. F
scale image of size 256×256, the patch size
and the number of training iterations are set
and 100, respectively. The number of frames
the LF part for a static video is set to Z = 50.
results obtained from our previous method
proposed in [1], our single-image-based m
video-based method are shown in Figs. 1
observed that our methods can remove most 
preserving most non-rain image/video 
improving the subjective visual quality sig
experimental results and tested videos are ava

V. CONCLUSIONS AND FUTURE

In this paper, we have proposed an
learning-based rain streak removal frame
image by formulating it as an MC
decomposition problem solved by performi
and dictionary learning algorithms. We have
to video-based rain removal in a sta
experimental results show that the proposed
comparable/better performance with/than ou
in [5] and the video-based rain removal me
[1]. For future work, the proposed methods 
to rain removal for video of dynamic scenes.
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