VIDEO OBJECT INPAINTING USING MANIFOLD-BASED ACTION PREDICTION
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ABSTRACT

This paper presents a novel scheme for object completion in a
video. The framework includes three steps: posture synthesis,
graphical model construction, and action prediction. In the very
beginning, a posture synthesis method is adopted to enrich the
number of postures. Then, all postures are used to build a graphical
model of object action which can provide possible motion
tendency. We define two constraints to confine the motion
continuity property. With the two constraints, possible candidates
between every two consecutive postures are significantly reduced.
Finally, we apply the Markov Random Field model to perform
global matching. The proposed approach can effectively maintain
the temporal continuity of the reconstructed motion. The advantage
of this action prediction strategy is that it can handle the cases such
as non-periodic motion or complete occlusion.

Index Terms—video inpainting, object completion, action
prediction, synthetic posture, motion animation.

1. INTRODUCTION

Automatic video inpainting is an important research area which
has attracted great attention in recent years due to its powerful
ability to fix/restore damaged videos and the flexibility it offers for
editing home videos. A number of algorithms for automatic video
inpainting have been proposed in the past few years [1-6]. In video
painting, an important problem is to complete a partially or even
totally occluded object in a video. Several schemes have been
proposed to address the object inpainting problem based on
available object templates [3-5] or on recovering the missing
manifold trajectory via nonlinear dimension reduction [6].

As to the category of template-based video inpainting, Cheung
et al. [7] proposed an efficient template-based video inpainting
technique for dealing with videos recorded by a stationary camera.
To inpaint the foreground, they utilize all available object
templates. For each missing object, a fix-sized sliding window that
covers a missing object and its neighboring templates is used to
find the most similar object template. The drawback of this
approach is that if the number of postures in the database is not
sufficient, the inpainting result could be unsatisfactory. Moreover,
the method does not provide a systematic way to identify a good
filling position for an object template. An inappropriately chosen
position may cause visually annoying artifacts. In [4], Jia et al.
proposed a user-assisted video layer segmentation technique that
decomposes a target video into color and illumination videos. A

tensor voting technique is used to maintain consistency in both the
spatio-temporal domain and the illumination domain. The method
reconstructs an occluded object by synthesizing other available
objects, but the synthesized object does not have a real trajectory
and only textures are allowed in the background.

Recently, a manifold learning based approach was proposed by
Ding et al. [6] to perform video inpainting. They made use of
Local Linear Embeddings (LLE) to transform observed data in
frames to the embedded features in low dimension manifold. Then,
the embedded features were reordered to obtain a Hankel matrix
and the embedded features of missing data can be obtained by
minimizing the rank of the Hankel matrix. Finally, the Radial Basis
Function (RBF) is used for inverse mapping. Although the
consecutive poses of an object with regular and cyclic motions can
be well represented by a low-dimensional manifold embedded in a
high-dimensional visual space, poses with non-regular motions
(e.g., transitions in two different types of motions) are usually not
the case. As a result, mapping reconstructing a high-dimensional
video object with irregular or non-cyclic motions from the object’s
low-dimensional manifold approximation usually leads to
annoying artifacts (e.g., ghost images).

As mentioned above, most of the existing object inpainting
algorithms to some extent generate artifacts if an object is
completely occluded or its corresponding motion is not periodic.
To avoid the difficulties, we propose an action prediction method
for object inpainting in this paper. The framework is composed of
three steps: posture synthesis, graphical model construction, and
action prediction. In the very beginning, a posture synthesis
method is adopted to enrich the number of postures. Then, the
generated postures are used to build a graphical model of object
action which can provide possible motion tendency. We define two
constraints to confine the motion continuity property. One is to set
a threshold for providing the maximum search distance if a
trajectory in the constructed graphical model is discontinuous. The
other constraint is to constrain the motion tendency. With the
above two constraints, possible candidates between every two
consecutive postures are significantly reduced. Finally, we apply
the Markov Random Field model to perform global matching. A
potential trajectory that receives the maximum total probability
will be identified as the final result. The proposed action prediction
model can help identify a set of suitable postures from posture
database to restore those damaged/missing postures. The proposed
approach can effectively maintain the temporal continuity of the
reconstructed motion. The advantage of this action prediction
strategy is that it can handle the cases such as non-periodic motion
or complete occlusion. These capabilities are powerful because



conventional model-based action prediction methods [7] need a
training process to achieve the same goal.

2. OBJECT INPAINTING USING ACTION
PREDICTION METHOD

A.  Posture synthesis

The problem of insufficient posture number would affect the
visual quality of any video sequence generated by an action
prediction-based approach. To solve the short-of-postures problem,
we use our previous posture synthesis method [5] to enrich the
number of postures. The main concept of a posture creation
process is to combine the constituent parts of different available
postures to enrich the contents of the posture database. Therefore,
the first process is to perform appropriate segmentation on the
postures in the database. To do a better posture segmentation job,
we need to know the amount and speed that each component of a
posture moves. For a component that moves significantly and
faster, we need to take more intermediate postures to interpolate
the gap generated by missing frames. Taking any two postures
from the posture database, we use a bounding rectangle to bound
each posture first. Then, we align these two bounding rectangles
(including orientation and scale) as indicated in the middle part of
Fig. 1. Then, we take the difference between these two postures
and project these differences onto the y-axis as indicated at the
right side of Fig. 1. To detect which parts of a human body move
significantly and speed, one has to calculate the differences
between a posture and all other database postures. These posture
differences are all projected onto the y-axis and the accumulated y-
axis component will be like the distribution shown at the right
hand side of Fig. 2. From the peaks and valleys of the projected
distribution, one can segment properly a posture as indicated by
the posture sequence shown in Fig. 3. From the segmented
components of a posture, new postures can be synthesized by

combining constituent components as shown in Fig. 4.
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Fig. 3. The constituent components of a posture are partitioned
based on local variance extraction.

B. Graphical model construction

After synthetic posture creation, the posture database will have
much more number of postures. These postures can be used to
build the graphical model (as shown in Fig. 5) of an object action.
A graphical model provides a simple representation of an object
action. To obtain the graphical model of an object action, we
project all postures (including synthetic and existing postures) onto
a feature space. Then, we link those postures that appear in
adjacent frames in the constructed feature space. After applying the
above procedure, we can obtain a graphical representation of an
object action. To model the distribution of postures in the feature
space, we need to know the distances between distinct postures.
We use the shape context descriptor [9] to make a detailed
description of a posture. We calculate the value of shape context
along the silhouette of a posture. Later these shape contexts will be
used to compare the degree of similarity between two distinct

postures.
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Fig. 4. A new posture is composed of three components (head,
body, and legs).

Fig.5. The graphical model of an object action in low
dimensional manifold.
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Fig. 6.  Extracting the local context of a posture: (a) the object’s
original posture; (b) the object’s silhouette described by a set of
feature points; and (c) a shape context mask on a feature point.

To calculate the shape context, the silhouette of a posture needs
to be represented as a set of sampled points P={p,p,..p,} (as
indicated in Fig. 6(b)). For each sampled point p,eP , a
corresponding local histogram is computed in a log-polar space (as
indicated in Fig. 6(c)) to represent the local shape context of p;.
The cost of matching two different sampled points which belong to
two different postures can be defined as follows
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where h, (k) and h,, (k) denote the k-th bin of the two sampled
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points p; and g;, respectively. The best match between two different
postures can be accomplished by minimizing the following total
matching cost:
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where 7 is a permutation of 1, 2, ..., n. Due to the constraint of
one-to-one matching, shape matching can be considered as an
assignment problem that can be solved by a bipartite graph
matching method. Therefore, the shape context distance between
two shapes P and Q can be computed as follows

DSC(P!Q)zlzc(pi'qﬂ(i))+izc(pj'qzz(j)) ) @)
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where n and m are the number of sample points on the shape P and
Q, respectively.

Using the shape context descriptor, we can calculate the degree
of similarity between two distinct postures. Based on these
similarity measures between postures, we can cluster the database
postures. We make use of a nonlinear dimension reduction method,
ISOMAP, to perform clustering on postures. In our application,
existing/synthetic postures are regarded as input data points of
ISOMAP and the distances between data points are the same as the
similarity values between postures.

C.  Action prediction

Based on the graphical model of an object action, we can find
suitable postures to replace damaged/missing posture by finding an
approximate path that can link data points x; and x; in the low
dimension manifold. Intuitively, the reconstruction of a motion
path can be accomplished by taking the shortest path between two
nodes. We define two constraints to regulate the manner of the
search process. The first constraint is to limit the search range to
stay within a reasonable neighborhood. For all the data points on a
trajectory, we compute all the distances between any two
consecutive data points. The distance between any two consecutive
data points on a trajectory can be determined by calculating the
shape context difference between the two corresponding posture.
Among the computed distances mentioned above, the maximum
distance will be chosen as the search range for executing the first
constraint. Therefore, the radius which defines the circular search
range can be determined as follows:

r= max e, (4)
Ve on a complete trajectory

where e;; represents the distance between two consecutive points X

and x; on the trajectory of an object action.

The second constraint can be applied to maintain the tendency
of object motion in each local region. It can be realized by
checking the motion trajectory tendency in a graphical model. In a
low dimensional manifold, a motion trajectory does not change
direction significantly in a neighborhood region. Based on this
observation, we define a variance constraint of motion tendency to

limit the variance of motion tendency in each neighborhood region.

Fig. 7 illustrates an example of motion tendency constraint. Fig.
7(a) shows three consecutive data points Xi_,, X1, and x; forming a
motion trajectory. X, is a point which is far away from the above

three points. xi_1, X;, and X, can be connected to form a triangle (Fig.

7(b)).
From the basic knowledge of triangulation, if the data point x
is very far away from both x;; and x;, the distances to these two

points, x;x, and x_,x, , will be close to each other. As we have
mentioned, the motion tendency cannot change abruptly between

two consecutive postures. This constraint can be defined as follows.

For a random starting point X, we select G data points which are
far away from x,.. Among these G data points, if any x G

satisfies d,, /r>15, then it is chosen because it passes the motion

tendency test. Here, r is the maximum distance between adjacent
postures defined in (4) and dy is the distance between x; and x.
With the above criterion, we calculate the distance between x; and
each of the G chosen points. Therefore, we can obtain in total G
distances. These G distances form a histogram to associate with
point x,. For a candidate point x, which is nearby x, we can also
form a similar histogram to associate with it using the same process.
A candidate point X, can maintain the motion tendency only if the
value of each bin in its associated histogram is close to the value of
each bin in the associated histogram of x..

" .-.. L] £
T g
7 "u "."... -2
el e A
(a) (b)

Fig. 7. An example of motion tendency constraint (a) three
consecutive data points X, Xj;, and x; form a motion trajectory,
and x is a point far away from the above three points; (b) data
points X;_3, X;, and x, form a triangle.

The above process is able to keep local motion continuity. For
maintaining global motion continuity of an object action, we
propose a two-way prediction mechanism based on the theory of
Markov random field. We use three time instants t-1, t, and t+1 to
explain how the proposed mechanism operates. The forward
direction operation proceeds as follows. At time t-1, we make
forward prediction on each data point. The motion tendency
constraint and the search range constraint are applied to determine
m probable data points at next time state t. These m selected data
points will be used further to predict the candidate data points at
time t+1. Following the same strategy, we do similar processing in
reverse direction and collect related information from t+1 to t, and
then from t to t-1. With the results collected from the bi-
directional processing, we combine them and form final ranking
for the time t. A probability value associated with each candidate
data point is obtained by the bi-directional voting process.
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Fig.8. The Markov network is used to build the relation
between each local region.

Since the above mentioned motion continuity constraint only
works on local region, we use the Markov Random Field approach
to achieve global motion continuity. To predict an object action,
we make the following Markov assumption: assign one node of a
Markov network to every time state as shown in Fig. 8. A
constructed Markov network can reflect statistical dependencies.
Given a set of data points located at intervening nodes, two nodes
of a Markov network are statistically independent. Since our
Markov network contains no loops, the above defined Markov
assumption results in simple “message-passing” rules for



computing the probability during inference. The data point
estimated at node j is

¢, =arg max p(c;)M/*M/*, )
where ¢; is the candidate point associated with node j, p(c;)
is the self probability of candidate point c;, and ij*l is the

message from node j-1 to node j. ij*l can be calculated as

follows:
M| = nPc?]X W(C;:Ci:Cliz) p(CH)M jj+1'\7| [ (6)
where M/, is the previous message that can be used to

generate MJ* through executing Eg.(7). M[" includes the

probability information of all candidate data points of node k.
The initial M/, is set as a column vector with all 1s. The

j+1

function w(c;,c,,,c;,,) is defined as follows:

j+

1 (6-u)?
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where ¢ is the angle between line c,c;, and ¢ c,,, U and o

are the mean and variance of all angles in a complete trajectory
of an object action

3. EXPERIMENT RESULT

To test the effectiveness of the proposed action prediction
method, we used several test sequences to evaluate the efficacy of
the proposed method. However, we only use one sequence to
demonstrate the power of our approach. The sequence was
captured by a commercial digital camcorder with a frame rate of 30
fps, and a resolution of 352x240 (SIF). In the experiments, we first
removed several consecutive frames to simulate a real-world
situation in which objects in a number of consecutive frames are
damaged due to packet loss during transmission of the video or due
to a damaged hardware component. We applied the proposed
action prediction method to reconstruct object actions. Besides, we
also made a comparison between Xu et al.’s approach [8] and ours.
For test sequence, the proposed method could keep the motion
continuity of a reconstructed action and provided better result than
Xu et al.’s approach. Fig. 9(a) shows some snapshots of the test
sequence #1 and the experiment results of Xu et al.’s approach [8]
and ours are shown in Fig. 9(c) and Fig. 9(d), respectively.
According to the experiment result, it could be observed that the
proposed method can maintain continuity on an action and
provided better result than the result generated by applying Xu et
al.’s approach. Compared with original the video, the
reconstructed object action using our method is close to each other.
Therefore, the proposed action prediction method is suitable for
object inpainting which can better recover an object action and
maintain motion continuity simultaneously.

TTTTYY

(a)

11 1 B

(b)

TTTTTY
TTTTTY

(d)
Fig. 9.  The experiments on test sequence #1; (a) original video
frames; (b) remove several consecutive frames (c) the result of [8];
and (d) the result obtained by applying the proposed method

4. CONCLUSION

In this paper, we proposed a novel framework for object inpainting.
The proposed method consists of three steps: posture synthesis,
graphical model construction, and action prediction. The advantage
of this action prediction strategy is that it can handle the cases such
as non-periodic motion or complete occlusion. Our experimental
results also show that the proposed method can keep the
reconstructed motion look continuous.
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