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Abstract

Terahertz (THz) tomographic imaging has recently attracted signifi-
cant attention thanks to its non-invasive, non-destructive, non-ionizing,
material-classification, and ultra-fast nature for object exploration and
inspection. However, its strong water absorption nature and low noise
tolerance lead to undesired blurs and distortions of reconstructed THz
images. The performances of existing restoration methods are highly
constrained by the diffraction-limited THz signals. To address the
problem, we propose a novel multi-view Subspace-Attention-guided
Restoration Network (SARNet) that fuses multi-view and multi-spectral
features of THz images for effective image restoration and 3D tomo-
graphic reconstruction. To this end, SARNet uses multi-scale branches
to extract intra-view spatio-spectral amplitude and phase features and
fuse them via shared subspace projection and self-attention guidance.
We then perform inter-view fusion to further improve the restoration
of individual views by leveraging the redundancies between neigh-
boring views. Here, we experimentally construct a THz time-domain
spectroscopy (THz-TDS) system covering a broad frequency range
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from 0.1 THz to 4 THz for building up a temporal/spectral/spa-
tial/material THz database of hidden 3D objects. Complementary to
a quantitative evaluation, we demonstrate the effectiveness of our
SARNet model on 3D THz tomographic reconstruction applications.

Keywords: Terahertz Imaging, Image Restoration, Computed Tomography,
Deep Learning, Self-Attention

1 Introduction

Ever since the first camera’s invention, imaging under different bands of elec-
tromagnetic (EM) waves, especially X-ray and visible lights, has revolutionized
our daily lives [1-3]. X-ray imaging plays a crucial role in medical diagnoses,
such as cancer, odontopathy, and COVID-19 symptom [4-6], based on X-ray’s
high penetration depth to great varieties of materials; visible-light imaging has
not only changed the way of recording lives but contributes to the develop-
ment of artificial intelligence (AI) applications, such as surveillance security
and surface defect inspection [7]. However, X-ray and visible-light imaging still
face tough challenges. X-ray imaging is ionizing, which is harmful to biological
objects and thus severely limits its application scope [8]. On the other hand,
although both non-ionizing and non-destructive, visible-light imaging cannot
retrieve interior information of most objects which are opaque in visible light
due to the highly absorptive and intense scattering behaviors between light
and matter in the visible light band. To visualize the 3D information of objects
in a remote but accurate manner, terahertz (THz) imaging has become among
the most promising candidates among all EM wave-based imaging techniques
[9, 10].

Table 1: Comparison of features of existing imaging technologies. The ability
to see through objects opaque in visible light
enables tomography. The X-ray would ionize objects, which means not bio-safe. Some
methods can identify different materials by their spectroscopy, and they require the
penetration of the object. One imaging method is more favorable if it can be placed on the
table (table-top), thereby excluding those methods which require bulky instruments and
placed in a special room such as X-ray and Magnetic Resonance Imaging (MRI).

Method See through Bio-safe Material Table-top
opaque objects Identification system

RGB Camera X v Partially® v
X-ray v X v v
LiDAR X v Partially® v
Ultrasonic v v v v
MRI v v Partially® X
THz Imaging v v v v

@ Material of object surface (Fabric, plastic, wood, paper, leather, metal, and fur) [11]
b Material of object surface (fabric, brick, pine, wood, and maple leaves) [12]
¢ Material with hydrogen atoms (tumor, fat, and water) [13]
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Fig. 1: Flowchart of physics-guided THz computational imaging. The pixel-
wise THz raw signals are measured from the THz imaging system along with
image data. The multi-domain data are then processed and fused by a compu-
tational imaging model to reconstruct the images. The computational imaging
model can be either physics-based or data-driven, with or without the physics
guides derived from the physical properties of THz signals.

Table 1 shows the comparison of different types of high-resolution imag-
ing modalities with a non-contact setting. As camera and Light Detection
and Ranging (LiDAR) are widely launched for 2D /3D image capturing, due
to the intensive scattering and absorption happening nearby object sur-
faces, these two imaging methods cannot visualize 3-D full profiles of most
objects. Research groups have successfully found other electromagnetic spec-
trum regimes to bring information invisible to visible to address this issue.
X-ray imaging is one of the commonly used methods to precisely visualize
the interior of objects [14-18]. Despite its invisible-to-visible capability, high-
energy X-ray photons would cause both destructive and ionizing impacts on
various material types preventing further investigations with other material
characterization modalities. Magnetic resonance imaging (MRI) technology
has proven to be a bio-safe way to visualize soft materials with excellent image
contrast. Still, it is bulky and requires sufficient space for operation, which pre-
vents its practical use in many application scenarios. To be pervasively used
like visible light cameras, the desired tomographic imaging modality must be
operated at a remote distance, non-destructive, bio-safe, compact, and most
importantly, capable of digging out information conventional cameras cannot
achieve.

THz radiation, between microwave and infrared, has often been regarded
as the last frontier of EM wave [19], which provides its unique functionalities
among all EM bands. Along with the rapid development of THz technology,
THz imaging has recently attracted significant attention due to its non-
invasive, non-destructive, non-ionizing, material-classification, and ultra-fast
nature for advanced material exploration and engineering. As THz waves can
partially penetrate through varieties of materials being opaque in visible light,
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they carry hidden material tomographic information along the traveling path,
making this approach a desired way to see through black boxes without dam-
aging the exterior [20-22]. By utilizing light-matter interaction within the THz
band, multifunctional tomographic information from a great variety of mate-
rials can also be retrieved even at a remote distance. In the past decades, THz
time-domain spectroscopy (THz-TDS) has become one of the most represen-
tative THz imaging modalities to achieve non-invasive evaluation because of
its unique capability of extracting geometric and multi-functional information
of objects. Owing to its fruitful information in multi-dimensional domains —
space, time, frequency, and phase, THz-TDS imaging has been already allo-
cated for numerous emerging fields, including drug detection [23], industrial
inspection, cultural heritage inspection [24], and cancer detection [25].

However, the conventional methods (e.g., Time-max [26]) for THz imaging is
to analyze the temporal profiles of THz signals measured by a THz-TDS system
within a limited time window. The reconstructed tomographic image quality is
severely constrained by the diffraction-limited geometry and absorption behav-
ior of objects in the THz spectral regime, leading to undesired blurring and
distortion of reconstructed tomography images. To address this problem, we
utilize useful spectral bands to supplement the conventional method, record-
ing the maximum amplitude of the time-domain THz signal of each pixel for
recovery of the clear 2D images.

Recently, data-driven methods based on deep learning models, which do
not resort to any explicit transform model but are learned from representa-
tive big data, have been revolutionizing the physics-based paradigm in image
restoration. The data-driven methods can be regardless of physical properties
while maintaining the advantages of the physics-based methods and achiev-
ing state-of-the-art performances. We can also cast THz image analysis as
an image-domain learning problem. Nevertheless, a THz image retrieved from
THz raw time-domain signals does not carry enough restoration information,
thereby limiting the efficacy of the data-driven methods. Furthermore, we
found that directly learning from the full spectral information to restore
THz images leads to unsatisfactory performance. The main reason is that
the full spectra of THz signals involve diverse characteristics of materials,
noises, and scattered signals, which causes difficulties in model training. To
address the above issues, as illustrated in Fig. 1, we can leverage additional
pixel-wise spectral information carried in the THz raw signals, such as the
amplitude/phase spectra corresponding to specific physical characteristics of
THz waves passing through materials. Due to a large number of spectral bands
with measured THz image data, it is desirable to sample a subset of the most
physics-prominent spectral bands to reduce the number of training parameters.
Specifically, The THz beam is significantly attenuated at water absorption fre-
quencies. As a result, such physics-guided water-absorption property of THz
beams offers useful clues for inspecting and reconstructing an object from
THz images captured in a see-through setting (e.g., computed tomographic
reconstruction) as will be elaborated in Sec. 5.2.



Springer Nature 2021 BTEX template

THz Tomographic Imaging via Physics-Guided Restoration 5

Based on the concept revealed in Fig. 1, we here propose a multi-scale
Subspace-Attention guided Restoration Network (SARNet) that fuses intra-
view complementary spectral features of the THz amplitude and phase to
supplement the Time-max image for restoring clear 2D images. To this end,
SARNet learns common representations in a common latent subspace shared
between the amplitude and phase, and then incorporates a Self-Attention
mechanism to learn the wide-range dependency of the spectral features for
guiding the restoration task. To leverage the inter-view redundancies exist-
ing between neighboring views of an object captured from different angles, on
top of SARNet we also propose a multi-view version image restoration model,
namely SARNetyy, that incorporates inter-view fusion to further boost restora-
tion performance. Finally, from clear 2D views restored from the corrupted
views of an object, we can reconstruct high-quality 3D tomography via inverse
Radon transform. Our main contributions are summarized as follows:

e We are the first research group to merge THz temporal-spatial-spectral
data, data-driven models, and light-matter interaction properties to the best
of our knowledge. The proposed SARNet achieves excellent performance in
extracting and fusing features from the light-matter interaction data in THz
spectral regime, which inherently contains fruitful 3D object information and
its material behaviors. Based on the architecture of the proposed SARNetyy
on intra/inter-view feature fusion, it delivers state-of-the-art performance
on THz image restoration.

e With our newly established THz-TDS tomography dataset — the world’s
first in its kind, we provide comprehensive quantitative/qualitative analyses
among SARNetyy and state-of-the-arts. SARNetyy significantly outperforms
Time-max [26], U-Net [27], and NBNet [28] by 11.41 dB, 2.79 dB, and 2.23
dB, respectively, in average PSNR at reasonable computation and memory
costs.

e This work shows that computer vision techniques can significantly con-
tribute to the THz community and further open up a new interdisciplinary
research field to boost practical applications, e.g., non-invasive evaluation,
gas tomography, industrial inspection, material exploration, and biomedical
imaging.

2 Related Work

2.1 Conventional THz Computational Imaging

In the past decades, many imaging methods have been developed based on the
light-matter interaction in the THz frequency range. Based on THz absorp-
tion imaging modalities, the material refractive index mapping can be profiled
through Fresnel equation [29], extracted by the THz power loss while propagat-
ing through the tested object boundary. With THz spectroscopy imaging, both
material information encoded in the wave propagation equation and object
geometry can be revealed. To be more specific, the depth map of the measured
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object can be reconstructed based on the phase spectrum of the retrieved THz
signals [30]; the attenuated power spectrum information can further recover
the hyperspectral material fingerprint mapping. These characteristics provide
functional 3D imaging capability for object inspection. Additionally, consid-
ering the propagated THz beam behavior of a signal as the model prior
knowledge, such as Rayleigh beam, has proven to largely improve the imag-
ing quality [31]. With the THz time-reversal techniques, the THz amplitude
and/or phase images of a measured object can be estimated by the spatiotem-
poral interaction between the input THz waves and the object. However, the
application scopes of those physics-driven methods are severely limited since
they normally require a sufficient amount of prior knowledge of a measured
object to simplify the guided complex physical models. To break this limita-
tion, data-driven approaches, especially deep neural networks, start to arouse
intensive attention due to their excellent learning capability. A data-driven
model based on physical priors can effectively loosen the requirement of prior
knowledge of materials and perform superior to conventional physics-based
methods. Moreover, data-driven models can learn to adequately fuse the dif-
ferent information of THz signals, such as amplitude/phase spectra and the
time-resolved THz signals, to achieve superior image restoration [32, 33].

2.2 Physics-guided Data-driven THz Imaging

In contrast to those model-based methods, data-driven methods are mainly
based on deep learning models [34, 35], which do not resort to any explicit
transform model but are learned from representative big data. We can cast
THz image analysis as an image-domain learning problem. Deep learning has
revolutionized the aforementioned physics-based paradigm in image restora-
tion, for which the data-driven methods can be regardless of physical properties
while maintaining the advantages of the physics-based methods and achiev-
ing state-of-the-art performances. Nevertheless, a THz image retrieved from
THz raw time-domain signals does not carry enough restoration informa-
tion, thereby limiting the efficacy of the data-driven methods. To address
the issue, as illustrated in Fig. 1, we can leverage additional pixel-wise spec-
tral information carried in the THz raw signals, such as the amplitude/phase
spectra corresponding to specific physical characteristics of THz waves pass-
ing through materials. By contrast, the physics-based methods are difficult to
leverage such pixel-wise amplitude/phase spectral information. To this end, the
data-driven model proposed in [32] incorporates additional information from
amplitude/phase at water absorption frequencies, derived from the physical
properties of THz signals, to complement the insufficient information in time-
domain THz images so as to significantly boost restoration performance. In
addition, if the THz imaging system uses the THz focal beam, the THz beam
diameter along with the wave propagation direction can be varied. Addition-
ally, the THz beam diameter can also be changed in different spectral bands
due to the diffraction limit. Both changed THz beam diameters lead to the non-
identical point spread function (PSF) in each measurement point. To solve this
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problem, the Filter Adaptive Convolutional Layer (FAC) [36] can learn differ-
ent filter kernels corresponding to the PSF for each pixel from spatial-spectral
information and use those kernels to deliver superior imaging performance.

2.3 Deep Learning-based Image Restoration

In recent years, deep learning methods were first popularized in high-level
visual tasks, and then gradually penetrated into many tasks such as image
restoration and segmentation. Convolutional neural networks (CNNs) have
proven to achieve state-of-the-art performances in fundamental image restora-
tion problems [27, 34, 35, 37, 38]. Several network models for image restoration
were proposed, such as U-Net [27], hierarchical residual network [35] and resid-
ual dense network [37]. Notably, DnCNN [34] uses convolutions, BN, and ReLU
to build 17-layer network for image restoration which was not only utilized for
blind image denoising, but was also employed for image super-resolution and
JPEG image deblocking. FFDNet [38] employs noise level maps as inputs and
utilizes a single model to develop variants for solving problems with multiple
noise levels. In [35] a very deep residual encoding-decoding (RED) architecture
was proposed to solve the image restoration problem using skip connections.
[37] proposed a residual dense network (RDN), which maximizes the reusabil-
ity of features by using residual learning and dense connections. NBNet [28]
employs subspace projection to transform learnable feature maps into the pro-
jection basis, and leverages non-local image information to restore local image
details. Similarly, the Time-max image obtained from a THz imaging system
can be cast as an image-domain learning problem which was rarely studied due
to the difficulties in THz image data collection. Research works on image-based
THz imaging include [39-41], and THz tomographic imaging works include
(26, 42].

Transformer [43], a kind of self-attention mechanism for machine learning,
was first proposed to largely boost the research in natural language processing.
Recently, it has gained wide popularity in the computer vision community, such
as image classification [44, 45], object detection [46, 47], segmentation [45],
which learns to focus on essential image regions by exploring the long-range
dependencies among different regions. Transformer has also been introduced
for image restoration [48-50] due to its impressive performance. In [48], a
standard Transformer-based backbone model IPT was proposed to address var-
ious restoration problems, which relies on a large number of parameters (over
115.5M parameters), large-scale training datasets, and multi-task learning for
achieving high restoration performances. Additionally, VSR-Transformer [49]
first utilizes a CNN to extract visual features and then adopts a self-attention
model to fuse features for video super-resolution Although transformer-based
attention mechanisms have proven effective in boosting the performance of
image restoration tasks, the performance gains of transformers come at the
cost, of significantly larger amounts of training data and computation.
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2.4 Tomographic Reconstruction

Computed tomographic (CT) imaging methods started from X-ray imaging,
and many methods of THz imaging are similar to those of X-ray imaging. One
of the first works to treat X-ray CT as an image-domain learning problem was
[51], which adopts CNN to refine tomographic images. In [52], U-Net was used
to refine image restoration with significantly improved performances. [53] fur-
ther projects sinograms measured directly from X-ray into higher-dimensional
space and uses domain transfer to reconstruct images. The aforementioned
works were specially designed for X-ray imaging.

Hyperspectral imaging [54-56] constitutes image modalities other than
THz imaging. Different from THz imaging, Hyperspectral imaging collects
continuous spectral band information of the target sample. Typically, the
frequency bands fall in the visible and infrared spectrum; hence, most hyper-
spectral imaging modalities can only observe the surface characteristics of
targeted objects. Furthermore, although existing deep-based hyperspectral
imaging works can learn spatio-spectral information from a considerable
amount of spectral cube data, they mainly rely on the full spectral information
to restore hyperspectral images. This would usually lead to unsatisfactory per-
formance for THz imaging since the full spectral bands of THz signals involve
diverse characteristics of materials, noises, and scattered signals, which causes
difficulties in model training.

3 Physics-Guided THz Imaging

Based on the dependency between the amplitude of a temporal signal and THz
electric field, in conventional THz imaging, the maximum peak of the signal
(Time-max [26]) is extracted as the feature for a voxel. The reconstructed image
based on Time-max features can deliver a great signal-to-noise ratio and a clear
object contour. However, the conventional THz imaging based on Time-max
features suffers from several drawbacks, such as the undesired contour in the
boundary region, the hollow in the body region, and the blurs in high spatial-
frequency regions. To break this limitation, we utilize the spectral information
of THz temporal signals to supplement the conventional method based on
Time-max features since the voxel of the material behaviors is encoded in both
the phase and amplitude of different frequency components, according to the
Fresnel equation [57].

More specifically, considering an incident THz wave penetrates through
a single-material object with thickness d, the detected THz signal Sq(f) at
frequency f is determined by the material complex refractive index 7, (f) =
no(f) — jko(f) and the thickness d in (1).
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Fig. 2: Raw data of measured THz images. This figure illustrates the time
domain data measured in air and the body and leg of our 3-D printed deer.
The red points illustrate the frequency bands with strong water absorption.
The right figures illustrate the reconstructed image using the max value of the
time domain (upper right), and the reconstructed image using different water
absorption frequencies (lower right).

where Syet(f) and ¢(71,, f) are respectively the THz input signal and the Fres-
nel loss of THz waves (e.g., amplitude attenuation and phase change) due to
the air-object interface at frequency f. Here, the Fresnel loss resulting from
the presence of a single material can be further simplified as a constant. Mean-
while, I,(f) = exp [M] and I,(f) = exp [M} can be acquired in
a data-driven manner using information regarding the object thickness (i.e.,
ground-truth) and the detected THz signal. Specifically, although the com-
plex refractive index is not provided explicitly, the network can still learn to
map noisy input amplitude/phase images to their corresponding ground-truth
images.

To provide a more detailed explanation of THz imaging, Fig. 2 shows the
flowchart of estimating amplitude and phase information of Sy(f) from the
raw data directly measured by the THz-TDS system. This figure illustrates
time-domain THz signals measured in air, the body, and the leg of a 3-D
printed deer, respectively. While the THz beam passes through the object, the
attenuated THz time-domain signal encodes the thickness and material infor-
mation of the THz-illuminated region. By processing the peak amplitudes of
THz signals (i.e., Time-max), the 3-D profile of the printed deer can be further
reconstructed. Although this conventional way is well-fitted for visualizing 3-D
objects, the inherent diffraction behavior and strong water absorption nature
of THz wave induce various kinds of noise sources as well as the loss of material
information, as characterized by parameters such as t(7,, f), Io(f), and I,(f)
in (1). This leads to the undesirable blurring, distorted, speckled phenomenon
of functional THz images. Existing works have tackled this issue to restore
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Fig. 3: Illustration of THz multi-spectral amplitude and phase images mea-
sured from Deer.

clear images via estimating point spread functions [39, 40], image enhance-
ment [41], machine learning [58, 59], and more. Their performance is, however,
still severely constrained by diffraction-limited THz beam. To break the lim-
itations, the motivation of our work is to reconstruct deep-subwavelength
tomographic images by using a deep-learning-based image restoration method
and spatio-spectral information of the hidden objects.

3.1 Water Absorption Profile-guided THz Imaging

As shown in Fig. 2, each 2-D THz image is composed of an array of time-
domain signals, from which the Fourier transform operation can be utilized to
extract voxel-wise multi-spectral features. Due to a large number of spectral
bands with measured THz image data, it is required to sample a small subset of
prominent spectral bands to reduce the training burden. Because the THz wave
is significantly attenuated at water absorption frequencies, selecting THz bands
based on water absorption lines can better delineate an object and characterize
its thickness profile. The spectral information, including both amplitude and
phase at the selected frequencies, is extracted and then employed to restore
clear 2D images. The different features in THz images at THz water-absorption
frequencies (the 12 selected frequencies in this work: 0.380, 0.448, 0.557, 0.621,
0.916, 0.970, 0.988, 1.097, 1.113, 1.163, 1.208, and 1.229 THz) as shown in
Fig. 3. It shows multiple 2D THz images of the same object at the selected
frequencies, showing very different contrasts and spatial resolutions as these
hyperspectral THz image sets have different physical characteristics through
the interaction of THz waves with objects.

The lower-frequency phase images offer relatively accurate depth infor-
mation due to their higher SNR level, whereas the higher-frequency phase
images offer finer contours and edges because of the shrinking diffraction-
limited wavelength sizes (from left to right in Fig. 3). The phase also contains,
however, a great variety of information on light-matter interaction that could
cause learning difficulty for the image restoration task. To address this issue,
we utilize the amplitude spectrum as complementary information. Although
the attenuated amplitude spectrum cannot reflect comparable depth accuracy
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levels as the phase spectrum, the amplitude spectrum still presents supe-
rior SNR and more faithful contours such as the location information of a
measured object. Besides, as the complementary information to phase, the
lower-frequency amplitude offers higher contrast, whereas the higher-frequency
amplitude offers a better object mask.

In summary, the amplitude complements the shortcomings of the phase.
The advantages of fusing the two signals from low-frequency to high-frequency
are as follows: Since the low-frequency THz signal provides precise depth (the
thickness of an object) and fine edge/contour information in the phase and
amplitude, respectively, they together better delineate and restore the object.
In contrast, the high-frequency feature maps of amplitude and phase respec-
tively provide better edges/contours and precise position information, thereby
constituting a better object mask from the complementary features. With
these multi-spectral properties of THz images, we can extract rich information
from a wide spectral range in the frequency domain to simultaneously restore
the 2D THz images without any additional computational cost or equipment,
which is beneficial for the further development of THz imaging.

4 Terahertz Tomographic Imaging

4.1 Overview

As different EM bands interact with objects differently, THz waves can par-
tially penetrate through various optically opaque materials and carry hidden
material tomographic information along the traveling path. This unique feature
provides a new approach to visualizing the essence of 3D objects, which other
imaging modalities cannot achieve. Although existing deep neural networks
can learn spatio-spectral information from a considerable amount of spectral
cube data, as mentioned above, directly learning from the full spectral infor-
mation is not appropriate for learning THz image restoration models since the
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full spectral bands of THz signals involve diverse characteristics of materials,
noises, and scattered signal, which causes difficulties in model training.

To address this problem, our work is based on extracting complementary
information from both the amplitude and phase of a THz signal. In addition,
for tomographic reconstruction, we capture multi-view images of an object
with overlapping contents from different view angles. As a result, the redun-
dancies existing between neighboring views offer useful aid in enhancing the
restoration qualities of individual corrupted views. In summary, we devise a
novel multi-view Subspace-Attention-guided Restoration Network (SARNetyy),
as shown in Fig. 4, to capture intra-view complementary spectral characteris-
tics of materials and inter-view redundancies from neighboring views to restore
corrupted 2D THz images effectively. The key idea of SARNetyy is to fuse
spatio-spectral features with different characteristics on a common ground via
deriving a shared latent subspace and discovering the wide-range dependencies
between the amplitude and phase images to guide the feature fusion. To this
end, SARNetyy is a two-stage multi-view version based on single-view SARNet.
In the first single-view stage of SARNetyy, as shown in Fig. 4, all corrupted
views are first restored by SARNet individually. Then, in the second multi-view
stage, we first concatenate and fuse the feature tensors of three restored neigh-
boring views via a feature fusion module, and then feed the fused multi-view
feature into the same SARNet to obtain the final restored view. The design of
SARNetyy is detailed in Sec. 4.2.

4.2 Network Architecture

On top of U-Net [27], the architecture of SARNet is depicted in Fig. 5. Specif-
ically, SARNet is composed of an encoder (spectral-fusion module) with 5
branches of different scales (from the finest to the coarsest) and a decoder
(channel-fusion module) with 5 corresponding scale branches. Each scale
branch of the encoder involves a Subspace-Attention-guided Fusion module
(SAFM), a convolution block (Conv-block), and a down-sampler, except for
the finest-scale branch that does not employ SAFM. To restore a specific view,
the encoder of SARNet takes the feature tensor of this view’s Time-max image
(the first stage) or a fused image of three restored neighboring views centered
at the current view (the second stage) as the input of the finest-scale branch.
To extract and fuse multi-spectral features of both amplitude and phase in
a multi-scale manner, the encoder also receives to its second to fifth scale
branches 24 images of additional predominant spectral frequencies extracted
from the THz signal of the current view, where each branch takes 6 images
of different spectral bands (i.e., 3 amplitude bands and 3 corresponding phase
bands) to extract learnable features from these spectral bands. To reduce the
number of model parameters, these 24 amplitude and phase images (from low
to high frequencies) are downsampled to 4 different spatial scales and fed into
the second to fifth scale branches in a fine-to-coarse manner as illustrated in
Fig. 5. We then fuse the multi-spectral amplitude and phase feature maps
in each scale via the proposed SAFM that learns a common latent subspace
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Fig. 5: (a) Overall network architecture of SARNetyy consisting of five scale-
branches, where the finest-scale scale takes the feature tensor of one view’s
Time-max image (the first stage) or the fused image of three restored views (the
second stage) as input. Additionally, each of the second to fifth takes 6 images
of spectral frequencies (i.e., 3 amplitude bands and 3 phase bands) as inputs.
The three gray blocks show the detailed structures of (b) Spectral Fusion, (c)
Channel Fusion, and (d) Conv-Block. The two black blocks indicate the input
and output in the first and second stages, respectively.

shared between the amplitude and phase features to facilitate associating the
self-attention-guided wide-range amplitude-phase dependencies. Projected into
the shared latent subspace, the spectral features of amplitude and phase com-
ponents, along with the down-sampled features of the upper layer, can then
be properly fused together on common ground in a fine-to-coarse fashion to
derive the final latent code.

The Conv-block(L) contains two stacks of L x L convolution, batch normal-
ization, and ReLU operations. Because the properties of the spectral bands of
amplitude and phase can be significantly different, we partly use L = 1 to learn
the best linear combination of multi-spectral features to avoid noise confusion
and reduce the number of model parameters. The up-sampler and down-
sampler perform 2x and %x scaling, respectively. The skip connections (SC)
directly pass the feature maps of different spatial scales from individual encoder
branches to the Channel Attention Modules (CAMs) of their corresponding
branches of the decoder. The details of SAFM and CAM are elaborated on

later.
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Fig. 6: Block diagram of Subspace-Attention-guided Fusion Module (SAFM).
SAFM first projects the different-band amplitude and phase features into a
common latent subspace and then finds the wide-range dependencies among
the projected features via self-attention guidance. As a result, attention-aware
features are fused on common ground.

In the decoder path, each scale branch for channel fusion involves an
up-sampler, a CAM, and a Conv-block. The Conv-block has the same func-
tional blocks as that in the encoder. Each decoding branch receives a
“shallower-layer” feature map from the corresponding encoding branch via the
skip-connection shortcut and concatenates the feature map with the upsam-
pled version of the decoded “deeper-layer” feature map from its coarser-scale
branch. Besides, the concatenated feature map is then processed by CAM
to capture the cross-channel interaction to complement the local region for
restoration.

Note, a finer-scale branch of SARNet extracts shallower-layer features that
tend to capture low-level features, such as colors and edges. To complement
the Time-max image for restoration, we feed additional amplitude and phase
images of low to high spectral bands into the fine- to coarse-scale branches of
SARNet. Since the spectral bands of THz amplitude and phase offer complemen-
tary information, as mentioned in Sec. 4.1, besides the Time-max image SARNet
also extracts multi-scale features from the amplitude and phase images of 12
selected THz spectral bands, which are then fused by the proposed SAFM.

4.3 Intra-view Feature Fusion of SARNet
4.3.1 Subspace-Attention-guided Fusion Module

How to properly fuse the spectral features of THz amplitude and phase are,
however, not trivial, as their characteristics can be significantly different. To
address the problem, inspired by [28] and [60], we propose SAFM shown in
Fig. 6 to fuse multi-spectral relevant features on common ground.

Let XA, XP ¢ REXWX3 denote the spectral bands of the THz amplitude

and phase, rebpectively The Conv-block fo(-) extracts two intermediate fea-
ture maps fo(X2), fo(XE) € REXWXC1 from X4 and XZ | respectively. As

mn’



Springer Nature 2021 BTEX template

THz Tomographic Imaging via Physics-Guided Restoration 15

a result, we then derive the K shared basis vectors V = [v1,va, ..., V]| from
fo(XA) and fo(XE), where V. € RV*K N = HW denotes the dimension of
each basis vector, and K is the rank of the shared subspace. The basis set of
the shared common subspace is expressed as

V = fr(feXi), fo(X0), (2)
where we first concatenate the two feature maps in the channel dimension and
then feed the concatenated feature into the fusion block fr(-). The structure
of the fusion block is the same as that of the Conv-block with K output chan-
nels as indicated in the red block in Fig. 6. The weights of the fusion block
are learned in the end-to-end training stage. The shared latent subspace learn-
ing mainly serves two purposes: 1) learning common latent representations
between the THz amplitude and phase bands, and 2) learning the subspace
projection matrix to project the amplitude and phase features into the shared
subspace such that they can be analyzed on a common ground. These both help
identify wide-range dependencies of amplitude and phase features for feature
fusion.

To find wide-range dependencies between the amplitude and phase features
on common ground, we utilize the orthogonal projection matrix V in (2) to
estimate the self-attentions in the shared feature subspace as

exp(si;)
Bji = Ni” y Sij = VZTVj (3)
> im1 €xP(8i5)
where f3;; represents the model attention in the i-th location of the j-th region.
The orthogonal projection matrix P is derived from the subspace basis V

as follows [61]:

P=VVTv)-lvT (4)
where (VI'V)~! is the normalization term to make the basis vectors orthogonal
to each other during the basis generation process.

As a result, the output of the self-attention mechanism becomes

N
0; = (Z 5]-,1-51') , s; = Concate(PX{, PXP) (5)
i=1

where the key of s; € REWX6 i5 obtained by concatenating the two fea-

ture maps PX{?1 and PXfil projected by orthogonal projection matrix P €
RAWXHW = and Xfr‘l and ng are reshaped to HW x 3. Since the operations
are purely linear with some proper reshaping, they are differentiable.
Finally, we further combine cross-scale features of the self-attention output
by adding the down-sampled feature map X from the finer scale as
Yo = fs(0) + Xy (6)

out

where f, is a 1x1 convolution to keep the channel number consistent with Xy.
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Fig. 7: Block diagram of Channel Attention Module (CAM).

4.3.2 Channel Attention Module

To fuse multi-scale features from different spectral bands in the channel dimen-
sion, we incorporate the efficient channel attention mechanism proposed in [62]
in the decoder path of SARNet as shown in Fig. 7. In each decoding branch, the
original U-Net directly concatenates the up-sampled feature from the coarser
scale with the feature from the corresponding encoding branch via the skip-
connection shortcut, and then fuses the intermediate features from different
layers by convolutions. This, however, leads to poor image restoration perfor-
mances in local regions such as incorrect object thickness or details. To address
this problem, we propose a channel attention module (CAM) that adopts full
channel attention in the dimensionality reduction operation by concatenating
two channel attention groups. CAM first performs global average pooling to
extract the global spatial information in each channel:

1 H W

where X;(4,7) denotes the t-th channel of X; at position (i,j) obtained by
concatenating the up-sampled feature map X, of the coarser-scale and the
skip-connection feature map X,. The shape of G is from Cx H xW to C'x1x1.

We directly feed the result through two stacks of 1x 1 convolutions, sigmoid,
and ReLU activation function as:

w = 0 (Convix (6 (Convix1(@)))), (8)

where Convyxi(+) denotes a 1 x 1 convolution, o is the sigmoid function, and
6 is the ReLU function. In order to better restore a local region, we divide the
weights w of different channels into two groups w = [wy, wa| corresponding
to two different sets of input feature maps, respectively. Finally, we element-
wise multiply the input X, and X of the weights w and add these two group
features.

4.4 Inter-view Feature Fusion of SARNetyy

After restoring individual views of an object with SARNet, we then per-
form multi-view feature fusion between neighboring views to further boost
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Fig. 8: Illustration of inter-view redundancies between neighboring views,
where the redundancies existing in the two neighboring views offer useful clues
for restoring the center view.

restoration performance. As shown in Fig. 8, besides intra-view multi-spectral
features, the inter-view redundancies between neighboring views can also pro-
vide informative clues for restoring corrupted views. To leverage the inter-view
information, as shown in Fig. 5, for the t-th corrupted view, we fuse its post-
restoration feature tensor with those of its two closest views (i.e., the (¢t —1)-th
and (¢ + 1)-th views with a sampling step-size of 6°), all restored by the same
SARNet model. To achieve inter-view feature fusion, we first concatenate the
SARNet-restored feature tensors of three neighboring views centered at the ¢-th

view, Xi(ffl), Xi(fl), and Xi(flﬂ), as follows:

X = Concate(X ), X8 o, X, (9)

conc

where Concate(-) denotes the concatenation operation and

X, = SARNet (Conv;»,xg(Xi(ﬁ)),W(X(t))) , (10)

in

where SARNet(-) denotes the restoration model, Convsyx3(-) denotes a 3 x 3
convolution, and W(Xffl)) denoted the set of 24 amplitude and phase spectral

bands of Xi(lt]) selected based on physics guidance.
The concatenated three-view feature tensor is then fused via the feature
fusion block involving a CAM and a Cov-Block as follows:

X{{yr = Convaxs (CAM (X)) - (11)

where XI(\Z)VF denotes the multi-view fused version of the ¢-th view, and CAM(+)
is the channel attention module mentioned above.

Finally, as illustrated in Fig. we feed the fused three-view feature tensor
X! v into the finest-scale branch of SARNet along with the 24 amplitude and
phase bands (i.e., the water absorption profile) associated with X! to obtain
the final restoration result Xt . as
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rec

X (") = SARNet (Xﬁ)\,pW(Xfrﬁ))) . (12)

4.5 Loss Function for THz Image Restoration

To effectively train SARNet, we employ the following mean squared error (MSE)
loss function to measure the dissimilarity between the restored image X,o. and
its ground-truth Xgr:

H W
Luse(Xar, Xree) = 77757 ZZ Xar(isj) = Xree(d,4))% (13)

where H and W are the height and width of the image.

4.6 3D Tomographic Reconstruction

The 3D tomography of an object is reconstructed from the 60 2-D restored
views of the object scanned from different angles. To reconstruct a 3-D tomog-
raphy from the 60 2-D views, we directly utilize the inverse Radon transform to
obtain the 3-D tomography, using methods like filtered back-projection (FPB)
[63] or the simultaneous algebraic reconstruction technique (SART) [64].

5 Experimental Results

We conduct experiments to evaluate the effectiveness of SARNet against exist-
ing state-of-the-art restoration methods. We first present our THz-TDS system
and measurement. Then, the details of the THz dataset and experiment set-
tings. Finally, we evaluate the performances of SARNet and the competing
methods on THz image restoration and tomographic reconstruction.

5.1 Proposed ASOPS THz-TDS System

Our in-house THz measurement system is an asynchronous optical sampling
THz time-domain spectroscopy system (ASOPS THz-TDS), which is com-
posed of two asynchronous femtosecond lasers whose central wavelength are
located at 1550 nm with tens of mW level, a pair of THz photoconductive
antenna (THz PCA) source and detector, a linear and rotation motorized
stage, four plane-convex THz lens with 50 mm focal length, a transimpedance
amplifier (TTA), and a unit of data acquisition (DAQ) and processing [65].
The repetition rates of the two asynchronous femtosecond lasers are 100 MHz
and 100 MHz 4 200 Hz, respectively. The sampling rate of DAQ is 20 MHz.
With the configuration above, our ASOPS THz-TDS system delivers 0.1 ps
temporal resolution and a THz frequency bandwidth of 5 THz. Addition-
ally, our ASOPS THz-TDS system provides THz pulse signals with 41.7 dB
dynamic range from 0.3 THz to 3 THz and 516 femtoseconds at full width at
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Fig. 9: llustration of THz data collection with our in-house THz-TDS tomo-
graphic imaging system.

half maximum (FWHM). However, under the configuration above, the number
of sampling points for a trace is approximately 100 K, consuming an extremely
large transmission bandwidth. To address this limitation, only the 100-ps
segment of the THz pulse signal is extracted. With the extracted segment of
100 ps, the frequency resolution is 10 GHz. Additionally, considering the min-
imum THz beam diameter of about 1.25 mm and the diffraction limitation,
our THz system can provide spatial resolution in the scale of sub-millimeters.

5.2 Properties of THz Measurements

To retrieve the temporal-spatial-spectral information of each object voxel, our
THz imaging experiment setup is based on a THz-TDS system as shown in
Fig. 9. To demonstrate the THz penetrating capability, the measured object
is first covered by a paper shield, which is highly transparent to THz but
opaque in visible light. The covered object (e.g., a 3D printed deer covered by
a paper shield) is placed on the rotation stage in the THz path between the
THz source and detector of the THz-TDS system and is scanned by a raster
scanning approach in 60 projection angles, as shown in Fig. 10.

During measuring, the THz-TDS system profiles each voxel’s THz tempo-
ral signal with 0.1 ps temporal resolution, whose amplitude corresponds to the
strength of the THz electric field. With this scanning approach, a cube object
of size 2 cm X 2 cm X 2 c¢m consumes about 1 min for scanning a projected
2D image; thus, the cube will take about an hour for the 60 projection angles.
Additionally, due to the limitation of the linear motorized stage, our measur-
ing system can support an object size of about 6 cm at maximum. With our
THz imaging experiment setup, the THz beam diameter varies with the THz
propagation direction. As a consequence, the point-spread function of our sys-
tem will vary with the geometry and location of the object. Therefore, the
2D projected images of the thickness-varying object could suffer from different
levels of blurring effects in different pixels.
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Fig. 10: The THz image formation system based on the raster scanning
approach.

Polar Bear

Fig. 11: Illustration of the ground-truths and photos of the seven 3D-printed
HIPS objects used in our experiments. The left image of each object illustrates
the ground-truth of one projection view and the right shows the photo of the
HIPS object.

5.3 THz-TDS Image Dataset

As shown in Fig. 9, we prepare the sample objects by a Printech 3D printer,
and use the material of high impact polystyrene (HIPS) for 3D-printing the
objects.

The HIPS material is chosen since it can be used to quickly fabricate target
objects by cost-efficient 3D printers, which can help evaluate a wide range
of object geometries. Additionally, the low absorption nature of HIPS in the
THz range can prevent severe SNR. degradation of detected THz signals while
scanning objects. We then use our in-house ASOPS THz-TDS system [65]
presented in Sec. 5.1 to measure the sample objects. Each sample object is
placed on a motorized stage between the source and the receiver. With the help
of the motorized stage, raster scans are performed on each object in multiple
view angles. In the scanning phase, we scan the objects covering a rotational
range of 180 degrees (step-size: 6 degrees between two neighboring views), a
horizontal range of 72mm (step-size: 0.25mm), and a variable vertical range
corresponding to the object height (step-size: 0.25mm). In this way, we obtain
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30 projections of each object, which are then augmented to 60 projections by
horizontal flipping. The ground-truths of individual projections are obtained
by taking the Radon transform of the 3D digital models defining the 3D object
profiles for 3D printing in every view-angle. In addition to generating from
digital models, the ground-truths can also be generated through precise 3D
scanners.

We use markers to indicate the center of rotation so that we can align
the ground-truths with the measured THz data. In this paper, totally seven
sample objects are printed, measured, and aligned for evaluation.

5.4 Data Processing and Augmentation

In our experiments, we train the proposed multi-view SARNetyy model using the
2D THz images collected from our THz imaging system shown in Fig. 3. Fig. 11
illustrates the photos of seven example objects along with their 2D ground-
truths at certain projection angles. Each object consists of 60 projections and
there are 420 2D THz images in total. In order to thoroughly evaluate the
capacity of SARNetyy, we adopt the leave-one-out strategy: using the data of 6
objects (i.e., 360 training images) as the training set, and that of the remaining
object as the testing set. Due to the limited space, we only present part of the
results in this section, and the complete results in the supplementary material
and our project site!. The THz-TDS image dataset can be found in the dataset
site?. We will release our source code after the paper is accepted.

We also perform typical data augmentations to enrich the training set,
including random rotating and flipping. Finally, the images are randomly
cropped to 128 x 128 patches.

5.5 Experiment Settings

We initialize SARNetyy following the initialization method in [66], and train
it using the Adam optimizer with §; = 0.9 and B3 = 0.999. We set the ini-
tial learning rate to 104 and then decay the learning rate by 0.1 every 300
epochs. SARNet converges after 1,000 epochs. For a fair comparison with the
competing methods, we adopt their publicly released codes. All experiments
were performed in a Python environment and Pytorch package running on a
PC with Intel Core i7-10700 CPU 2.9 GHz and an Nvidia Titan 2080 Ti GPU.

5.6 Quantitative and Qualitative Evaluations

To the best of our knowledge, there is no method specially designed for restor-
ing THz images besides Time-max [26]. Thus, we compare our SARNet and
SARNetyy models against several representative CNN-based image restoration
models, including DnCNN [34], RED [35], NBNet [28], and U-Net [27]. We use the
time-max images as the inputs and their corresponding round-truths as the
target outputs to train these CNN-based image restoration models. Note that,

LProject site: https://github.com/wtnthu/THz_Tomography
2Dataset site: https://github.com/wtnthu/THz_Data
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Table 2: Quantitative comparison of PSNR between restored 2D views and
their ground-truth with different methods on Deer, DNA, Box, Eevee,
Polarbear, Robot, and Skull. (1: higher is better)

PSNR (dB) 1
Method Deer DNA Box Eevee Polarbear Robot Skull
Time-max 12.42 12.07 11.97 11.20 11.21 11.37 10.69
DnCNN-S [34] 19.94 23.95 19.13 19.69 19.44 19.72 17.33
RED [35] 19.30 24.17 20.18 19.97 19.17 19.76 16.28
NBNet [28 20.24 25.10 20.21 19.84 20.12 20.01 19.69
U-Net |27 19.84 24.15 19.77 19.95 19.09 18.80 17.49
SARNet (Ours) 22.98 26.05 22.67 20.87 21.42 22.66 22.48
SARNetyy (Ours) 23.17 26.19 23.23 20.97 21.55 22.68 23.05

these CNN-based restoration models do not utilize the prominent spectral
information based on water absorption lines for restoring the THz time-max
images. For quantitative quality assessment, we adopt two quality metrics for
assessing the visual qualities of 2D view restoration and 3D tomographic recon-
struction, respectively. and the reconstruction quality. The first metric is the
Peak Signal-to-Noise Ratio (PSNR) for measuring the discrepancy between
restored 2D views and their ground-truth as shown in Table 2. The second is
the Mean-Square Error (MSE) between the cross-sections of a reconstructed
3D tomography and the corresponding ground-truths for assessing the 3D
reconstruction accuracy as compared in Table3. To further evaluate the 3D
reconstruction accuracy of various models, as shown in Table4, we also com-
pare the average Intersection over Union (IoU), F-Score, and Chamfer distance
performances by converting reconstructed 3D volumes into point-clouds [67].

Table 2 shows that our SARNet and SARNetyy both significantly outperform
the competing methods on all the seven sample objects in PSNR. Specifi-
cally, SARNetyy outperforms Time-max [26], U-Net [27], and NBNet [28] by 11.41
dB, 2.79 dB, and 2.23 dB, respectively, in average PSNR. In particular, even
based on a simpler backbone U-Net, thanks to the good exploration of physics
guidance, our proposed models significantly outperform the state-of-the-art
restoration model NBNet especially on challenging objects like Box and Skull.
With the aid of inter-view redundancies, multi-view SARNetyy stably outper-
forms single-view SARNet and achieves notable 0.56 dB and 0.57 dB PSNR
gains on Box and Skull. Similarly, in terms of 3D reconstruction accuracy,
Table 3 demonstrates that our models both stably achieve significantly lower
average MSE of tomographic reconstruction than the competing methods on all
seven objects. As for 3D shape reconstruction accuracy, Table 4 demonstrates
that our models stably achieve significantly higher performances, in terms of
average loU, F-Score, and Chamfer distance of tomographic reconstruction,
than the competing methods for all the seven objects.

For qualitative evaluation, Fig. 12 illustrates a few restored views for the
seven sample objects, demonstrating that SARNetyy can restore objects with
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Table 3: Quantitative comparison of MSE between the cross-sections of a
reconstructed 3D tomography and the corresponding ground-truths with dif-
ferent methods on Deer, DN A, Box, Eevee, Polarbear, Robot, and Skull.
(4: lower is better)

MSE |
Method Deer DNA Box Eevee Polarbear Robot Skull
Time-max 0.301 0.026 0.178 0.169 0.084 0.203 0.225
DnCNN-S [34] 0.153 0.162 0.309 0.149 0.056 0.223 0.293
RED [35] 0.139 0.238 0.300 0.179 0.070 0.215 0.324
NBNet [28 0.240 0.184 0.305 0.134 0.088 0.128 0.138
U-Net [27 0.227 0.166 0.266 0.157 0.077 0.093 0.319
SARNet (Ours) 0.107 0.015 0.041 0.122 0.050 0.065 0.052
SARNetyy (Ours) 0.091 0.013 0.030 0.105 0.038 0.059 0.049

much finer and smoother details (e.g., the antler and legs of Deer, the base
pairs and shapes of DNA double-helix, the depth and shape of Box, the body
and gun of Robot, and the correct depth and of Skull), the faithful thickness
of material (e.g., the body and legs of Deer, and the correct edge thickness of
Box), and fewer artifacts (e.g., holes and broken parts).

Our THz tomographic imaging system aims to reconstruct clear and
faithful 3D object shapes. In our system, the tomography of an object is recon-
structed from 60 views of 2D THz images of the object, each being restored
by various image restoration models, via the inverse Radon transform. The
paper shield region is cropped out to mitigate the evaluation bias caused by the
simple geometry of the covered paper shield. Fig. 13 illustrates the 3D recon-
structions of the seven sample objects, showing that Time-max, U-Net tend to
lose important object details such as holes in the deer’s body with Time-max
and the severely distorted antlers and legs with the three methods. In contrast,
our method reconstructs much clearer and more faithful 3D images with finer
details, achieving by far the best 3D THz tomography reconstruction qual-
ity in the literature. Complete 3D reconstruction results are provided in the
supplementary material.

Both the above quantitative and qualitative evaluations confirm a signif-
icant performance leap with SARNetyy over the competing methods. Com-
pared with our single-view restoration model (SARNet), the multi-view model
SARNetyy can restore finer local details such as the thickness of clear antlers,
thinner edge of the box, and the gun in robot’s hand. This also means that
the inter-view redundancies between neighboring views are helpful in restor-
ing local details, especially since our main task is to do 3D tomography. The
correct thickness of the 2D image will directly affect the 3D tomography.
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Table 4: Quantitative comparison of average loU, F-Score, and Chamfer dis-
tance between the 3D volume of a reconstructed 3D tomography and the
corresponding ground-truths with different methods on Deer, DNA, Box,
Eevee, Polarbear, Robot, and Skull. (1: higher is better and |: lower is
better)

IoU 1
Method Deer DNA Box Eevee Polarbear Robot Skull
Time-max 0.247 0.427 0.106 0.323 0.482 0.041 0.385
DnCNN-S [34] 0.179 0.136 0.096 0.509 0.353 0.260 0.158
RED [35] 0.386 0.323 0.257 0.359 0.433 0.142 0.175
NBNet [28 0.255 0.163 0.414 0.633 0.526 0.170 0.419
U-Net [27 0.400 0.427 0.117 0.423 0.539 0.290 0.286
SARNet (Ours) 0.502 0.515 0.418 0.702 0.550 0.434 0.407
SARNetwy (Ours) 0.538 0.567 0.424 0.719 0.662 0.500 0.526
F-Score 1
Method Deer DNA Box Eevee Polarbear Robot Skull
Time-max 0.366 0.424 0.364 0.300 0.208 0.298 0.303
DnCNN-S [34] 0.379 0.367 0.353 0.409 0.321 0.381 0.336
RED [35] 0.368 0.606 0.541 0.338 0.343 0.357 0.347
NBNet [28 0.476 0.278 0.506 0.346 0.268 0.314 0.381
U-Net [27 0.403 0.471 0.243 0.378 0.282 0.292 0.306
SARNet (Ours) 0.593 0.704 0.502 0.330 0.370 0.363 0.506
SARNetyy (Ours) 0.605 0.715 0.574 0.410 0.391 0.400 0.613

Chamfer distance |

Method Deer DNA Box Eevee Polarbear Robot Skull
Time-max 0.016 0.012 0.019 0.022 0.091 0.023 0.022
DnCNN-S [34] 0.020 0.014 0.027 0.018 0.022 0.018 0.022
RED [35] 0.018 0.009 0.013 0.018 0.021 0.018 0.021
NBNet [28 0.016 0.020 0.013 0.020 0.025 0.021 0.021
U-Net [27 0.018 0.012 0.031 0.018 0.022 0.024 0.020
SARNet (Ours) 0.011 0.008 0.021 0.024 0.018 0.018 0.012
SARNetwy (Ours) 0.011 0.008 0.011 0.016 0.016 0.018 0.010

5.7 Ablation Studies

To verify the effectiveness of multi-spectral feature fusion, we evaluate the
restoration performances with our SARNetyy under different settings in Table 5.
The compared methods include (1) U-Net using a single channel of data
(Time-max) without using features of multi-spectral bands; (2) U-Net+Amp
w/o SAFM employing multi-band amplitude feature (without the SAFM mech-
anism) in each of the four spatial-scale branches, except for the finest scale
(that accepts the Time-max image as the input), where 12 spectral bands of
amplitude (3 bands/scale) are fed into the four spatial-scale branches with the
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Fig. 12: Qualitative comparison of THz image restoration results for Deer,
DNA, Box, Eevee, Polarbear, Robot, and Skull from left to right: (a)
Time-max, (b) DnCNN-S [34], (c) RED [35], (d) NBNet [28], (e) U-Netpase [27], ()
SARNet, (g) SARNetyy, and (h) the ground-truth.

assignment of the highest-frequency band to the coarsest scale, and vice versa;
(3) U-Net+Phase w/o SAFM employing multi-spectral phase features with the
same spectral arrangements as (2), and without the SAFM mechanism;
(4) U-Net+Amp with SAFM utilizing subspace-attention-guided multi-spectral
amplitude features with the same spectral arrangements as specified in (2); (5)
U-Net+Phase with SAFM utilizing subspace-attention-guided multi-spectral
phase features with the same spectral arrangements as in (2); (6) SARNet
w/o SAFM concatenating multi-spectral amplitude and phase features (with-
out SAFM) in each of the four spatial-scale branches, except for the finest
scale (that accepts the Time-max image as the input), where totally 24 addi-
tional spectral bands of amplitude and phase (3 amplitude plus 3 phase bands
for each scale) are fed into the four branches;(7) SARNet w/o Proj using
SAFM to fuse intra-view multi-spectral amplitude and phase features without
the aid of subspace projection; (8) SARNetyy w/o SAFM employing multi-view
fusion and multi-spectral amplitude and phase features with the same spec-
tral arrangements as (6) but without subspace-attention guidance; (9) SARNet
utilizing intra-view multi-spectral amplitude and phase features with subspace-
attention guidance, but without utilizing the inter-view redundancies; (10)
SARNetyy utilizing full set of intra-view and inter-view features.

The results clearly demonstrate that the proposed SAFM can well fuse the
spectral features of both amplitude and phase with different characteristics for
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A
:

Fig. 13: lustration of 3D tomographic reconstruction results on Box, Deer,
Dna, Eevee, Polarbear, Robot, and Skull from left to right: (a) Time-max,
(b) DnCNN-S [34], (c) RED [35], (d) NBNet [28], (¢) U-Netpase [27], (f) SARNetyy,
and (g) the ground-truth.

(g)

THz image restoration. Specifically, employing additional multi-spectral fea-
tures of either amplitude or phase as the input of the multi-scale branches
in the network (i.e., U-Net+Amp w/o SAFM or U-Net+Phase w/o SAFM) can
achieve performance improvement over U-Net. Combining both the amplitude
and phase features without the proposed subspace-attention-guided fusion
(i.e., SARNet w/o SAFM) does not outperform U-Net+Amp w/o SAFM and usu-
ally leads to worse performances. The main reason is that the characteristics of
the amplitude and phase features are too different to be fused to extract useful
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Table 5: Ablation study in terms of PSNR of THz image restoration perfor-
mances on Deer, DNA, Box, Eevee, Polarbear, Robot, and Skull with
the different variants based on different settings. (1: higher is better)

PSNR 1
Method Deer DNA Box Eevee Polarbear Robot Skull
U-Net [27] 19.84 24.15 19.77 19.95 19.09 18.80 17.49
U-Net+Amp w/0 SAFM 22.05 25.84 20.32 20.21 20.48 20.63 20.70
U-Net+Phase w/o SAFM  21.14 24.98 20.42 20.26 20.15 20.58 21.36
U-Net+Amp w/ SAFM 20.97 26.00 21.83 20.22 20.30 21.11 20.18
U-Net+Phase w/ SAFM 22.66 25.52 21.65 20.63 20.18 21.50 21.42
SARNet W/o SAFM 21.44 25.78 20.00 20.32 20.44 21.12 21.18
SARNet w/o Proj 22.40 25.86 21.43 20.46 20.88 22.34 21.87
SARNetwy w/0 SAFM 22.49 25.78 22.10 19.91 20.96 21.75 22.47
SARNet (Ours) 22.98 26.05 22.67 20.87 21.42 22.66 22.48
SARNetyy (Ours) 23.17 26.19 23.23 20.97 21.55 22.68 23.05

Table 6: Comparison of the model complexity (the numbers of Parameters,
GFLOPs, and run-time) with different methods. Run-time are measured with
the Nvidia Titan 2080 Ti.

[ Method [ Params (M) [ GFLOPs [ Run-time (ms) |
DnCNN-S [34] 0.55 155 6
RED [39)] 0.66 1.36 1
NBNet |28 13.31 22.20 25
U-Net |27 9.5 3.88 11
SARNet (Ours) 3.0 1.91 19
SARNetyy (Ours) 3.6 4.47 53

features with direct fusion methods. This motivates our subspace-attention-
guided fusion scheme, which learns to effectively identify and fuse important
and complementary features on common ground. The individual impacts of
the subspace projection-guided fusion and the attention-guided fusion can be
assessed by checking the performance differences among SARNet, SARNet w/o
Proj, and SARNet w/o SAFM. Furthermore, the multi-view based SARNetyy can
further improve performance by utilizing additional inter-view redundancies,
especially on objects with more details such as Deer, Box, and Skull. These
results show that the proposed modules all stably achieve performance gains
individually and collectively.

5.8 Model Complexity

Table 6 compares the model complexities of the six methods. When compared
to the state-of-the-art method NBNet [28], and U-Net, our SARNet requires a
much fewer number of parameters and GFLOPs. The run-time with SARNet
is also less than NBNet, but more than U-Net though. In contrast to SARNet,
SARNetyy achieves the best visual performance while introducing additional
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computation and storage costs since it involves an additional stage of SARNet
restoration, thereby doubling the computation. All the above comparisons
demonstrate that both SARNet and SARNetyy are promising solutions, consid-
ering their much better THz image restoration performances and reasonable
computation and memory costs.

5.9 Limitations

SARNET uses multi-spectral amplitude/phase data to retrieve geometric infor-
mation. Depending on the selected THz frequency bands and their SNR, the
diffraction-limited system resolution can theoretically push down to 0.1mm.
As water/metal are highly absorptive/reflective materials to the THz wave,
our system is not applicable to the aqueous objects or objects hidden inside
metallic packages.

Besides, limited by using a single THz source-detector pair, our THz-TDS
system operates by a raster scanning approach. Although such a scanning
approach makes it still far from real-time applications and is limited to static
scenes, there are variants of THz-TDS systems that feature much shorter imag-
ing time. For example, in [68], an N-pixel (N = 63) THz detector array is
developed to offer N times faster image acquisition speed by spreading the
THZ light to the detector array.

6 Conclusions and Future Work

Aiming at making the invisible visible, we proposed a 3-D THz tomographic
imaging system based on multi-view multi-scale spatio-spectral feature fusion.
Considering the physical characteristics of THz waves passing through differ-
ent materials, our THz imaging methods learn to extracting most predominant
spectral features in different spatial scales for restoring corrupted THz images.
The extracted multi-spectral features are then fused on a common ground by
the proposed subspace-attention guided fusion and then used to restore THz
images in a fine-to-coarse manner. As a result, the 3D tomography of an object
can be reconstructed from the restored 2D THz images by inverse Radon trans-
form for object inspection and exploration. Besides intra-view fusion, we have
also proposed an inter-view fusion approach to further improve the restora-
tion/reconstruction performance. Our experimental results have confirmed a
performance leap from the relevant state-of-the-art techniques in the area. We
believe our findings in this work will shed on light on physics-guided THz
computational imaging with advanced computer vision techniques.

As the THz computational imaging research in the computer vision com-
munity is still in its early stage, there are several possible directions worth
further exploration. From the THz imaging quality point of view, an end-to-
end learning framework for direct reconstruction of 3D geometry can avoid
the artifacts caused by the typical tomographic reconstruction by the filtered
backprojection of 2D projection views, thereby enhancing 3D reconstruction
quality further. To this end, it would require to explore a newly designed
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learning framework involving network models, loss functions, and datasets.
Moreover, incorporating the THz beam propagation 3D profile with the decon-
volution techniques can further improve THz imaging quality. To extend the
applications of THz imaging, by leveraging the prior knowledge of light-matter
interaction in the THz range, the extension of THz computational imaging to
functional imaging of multi-material objects can also be explored. Last but
not least, integrating a massive THz detector array with the THz-TDS system
would pave the way to achieve real-time THz tomographic imaging.
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