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Abstract—Renewable energy resources are environmentally
friendly and have received a lot of attention lately. In this paper,
we consider a stand-alone power system with renewable energy
sources and a perfect battery. We assume that the loads to the
system are deferrable so that they can be scheduled to balance the
power supply and demand. The main objective of a scheduling
policy in such a system is to effectively utilize renewable energy
sources so that the loads can be served as quickly as possible
and the amount of wasted energy can be minimized. For such
a purpose, we consider three classes of scheduling policies: (i)
no lookahead policies, (ii) 1-period lookahead policies, and (iii)
1-period prediction policies. By using a sample path argument,
we prove a comparison theorem between a maximal 1-period
lookahead policy and a maximal no lookahead policy. We
also prove an invariant theorem for the battery capacity of a
maximal 1-period lookahead policy. Our simulation results reveal
two interesting findings: (i) increasing the battery capacity is
very effective in improving the performance of a maximal no
lookahead policy, and (ii) prediction can be very effective in
improving the system performance without needing to increase
battery capacity.

I. INTRODUCTION

Renewable energy resources, such as solar, wind and hy-
dropower, are environmentally friendly, and have received a
lot of attention recently. One key problem of renewable energy
sources is that the amount of energy produced by renewable
sources is not controllable. In particular, for photovoltaic
panels and wind turbines, their energy outputs depend heavily
on weather conditions. When renewable energy sources do
not produce enough energy to meet the demand, an electrical
system has to draw additional energy either from the power
grids or from energy storage devices such as battery banks.
When a system is connected to the power grids, it can simply
pay for the additional energy, and the Demand-Response (DR)
problem [1] in such a setting is commonly formulated as an
optimization problem that minimizes the cost of the system
(see e.g., [2], [3], [4], [5], [6], [7], [8D.

Recently, it was shown in [9] that it is possible to deploy a
large energy storage unit into a grid powered by an arbitrary
number of photovoltaic panels and wind turbines. Such a grid
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can be viewed as a stand-alone system with renewable energy
sources and a large “battery.” To deal with the fluctuation
in both the power supply and demand, Wang et al. [9]
extended and applied the stochastic network calculus (see
e.g., the book [10] and references therein) to analyze such
a system. The stochastic network calculus was also used in
[11] for the DR problem in such a setting. In order to use
the stochastic network calculus, one has to obtain probabilistic
traffic characterizations for the supply by using a service curve
and the demand by using an arrival curve. In all these works,
both the service curve and the arrival curve were found based
on historical data. Furthermore, it is shown in [12] that there
is an equivalent theorem between a distribution network and
a queueing system. Such an equivalent theorem enables us
to apply the traditional teletraffic theory for analyzing power
distribution networks.

Inspired by all these works, we consider in this paper a
stand-alone power system with renewable energy sources and
a perfect battery. We assume that the loads are deferrable
so that we can schedule the loads to balance the power
supply and demand. Such an assumption has been widely
adopted in many previous works (see e.g., [13], [12], [7],
[8]). On the other hand, unlike the stochastic network calculus
approach in [9], [14], [11], we make no assumptions on the
traffic characterizations for the supply and the demand. In
such a stand-alone system, the main objective is to schedule
deferrable loads to efficiently utilize the renewable energy so
that the loads can be served as quickly as possible and the
amount of wasted energy can be minimized. We consider three
policies: (i) no lookahead policies, (ii) 1-period lookahead
policies, and (iii) 1-period prediction policies. No lookahead
policies are the most conservative among these three classes
of policies as they only schedule loads without exceeding
the energy stored in the battery. On the other extreme, 1-
period lookahead policies assume that the energy generated
by renewable sources in the next period is known and thus
they can schedule loads without exceeding the sum of the
energy in the battery and the energy generated in the next



time period. Intuitively, one would expect that the performance
of a 1-period lookahead policy should be better than that of
a no lookahead policy. Such an intuition is formally proved
by using a sample path argument in the paper. However, 1-
period lookahead policies cannot be implemented in practice
as it is impossible to know the amount of energy that will be
generated by renewable sources in the future. As such, the best
one can do is to estimate/predict the amount of energy that will
be generated by renewable sources in the next period and that
leads to the 1-period prediction policies. For the comparison of
these three policies, we consider two key performance metrics:
(1) the loads that remain in the system at any time ¢, and (ii)
the cumulative amount of energy wasted by time ¢ (due to
overflows of battery capacity).

Our contributions and findings are summarized as follows:
(1) The loads that remain in the system for a maximal 1-period
lookahead policy is always not greater than that for a maximal
no lookahead policy. This can be formally proved by using
a sample path argument. Such a result provides theoretical
justification for our intuition. Moreover, we show by computer
simulations that there is a significant performance gap between
a maximal I-period lookahead policy and a maximal no
lookahead policy. (ii) Increasing the battery capacity has little
effect on the performance of a maximal 1-period lookahead
policy. In fact, we prove by a sample path argument that the
cumulative amount of energy wasted by time ¢ for a maximal
1-period lookahead policy is independent of battery capacity.
Such a result appears to be quite counterintuitive as one would
expect that the performance of the system can be improved
by increasing the battery capacity. (iii) Increasing the battery
capacity is very effective in improving the performance of a
maximal no lookahead policy. By computer simulations, we
show that one can narrow the performance gap between a
maximal 1-period lookahead policy and a maximal no looka-
head policy by increasing the battery capacity of a maximal
no lookahead policy. (iv) Prediction can be very effective
in improving the system performance without needing to
increase battery capacity. By computer simulations, we show
that the performance of a 1-period prediction policy is very
close to that of a maximal 1-period lookahead policy. On the
other hand, for systems with a moderate battery capacity, the
performance gap between a 1-period prediction policy and a
maximal no lookahead policy can be quite large. This suggests
using prediction can greatly improve the system performance.

This paper is organized as follows: In Section II, we
describe the model for a stand-alone power system with
renewable energy sources and a perfect battery. In Section
III, we introduce the three scheduling policies. The analytic
results are shown in Section IV. We then report our simulation
results in Section V. The paper is concluded in Section VI.

II. THE MODEL

In this paper, we consider a stand-alone power system with
renewable energy sources and a perfect battery (see Figure 1).
As in [9], we consider the discrete-time model with time
indexed from ¢ = 0,1,2,.... Let s(¢) be the amount of
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Fig. 1: The model of a stand-alone system with renewable
energy sources and a perfect battery.

energy generated during the t!" time period. Without loss
of generality, we assume that s(t)’s are nonnegative integers.
Also, let d(t) be the amount of energy consumed by the system
during the #*" time period. Assume that the battery is perfect
with the charge efficiency 7. = 1 and the discharge efficiency
74 = 1. Denote by b,y the capacity of the battery and b(t)
the energy level of the battery at the end of the ¢ time period.
Then it was shown in [9] that the energy level of the battery
satisfies the following recursive equation:

b(t) = minfbmax, (b(t — 1) + s(t) —d(t))], (1)

where 27 = max(0, z).

On the other hand, there are loads (jobs) arriving at the
system and it requires a certain amount of energy to complete
a load. When a load is completed, it leaves the system. Let
a(t) be the total amount of loads that arrive during the ¢** time
period. In this paper, we assume that there are no deadlines
for these loads and they can be delayed indefinitely. Denote
by ¢(t) the total amount of energy required by the loads that
remain in the system at the end of the ¢! time period. As
the loads can be delayed indefinitely, we have the following
queueing equation:

q(t) = (gt —1) —d(t))" +a(t). 2)

Here we assume the gated service model and loads that arrive

during the t*" time period are not allowed to be served during

the same time period. The two equations in (1) and (2) are

the governing equations for our model of a stand-alone power

system with renewable energy sources and a perfect battery.
Note that if

S(t) > d(t) + (bmax - b(t - 1))7 (3)

then the battery is full at the end of the tt" time period, i.e.,
b(t) = bmax, and the additional power generated by renewable
energy sources cannot be stored and thus is wasted. Let w(t)
be the amount of wasted energy during the t*" time period.
Then

w(t) = (s(t) = d(t) = (bmax — b(t — 1)) (4)

For our analysis, we also need to consider the cumulative
effect of the system. Specifically, we let S(¢) = 23:1 s(7) be
the cumulative amount of energy generated by time ¢, D(t) =
Zi:l d(7) be the cumulative amount of energy consumed by
the system by time ¢, A(t) = Z:Zl a(7) be the cumulative
amount of the energy required by the loads that arrive by

time ¢, and W (t) = S0 _, w(r) be the cumulative amount of



energy wasted by time ¢. From the principle of conservation
of energy, it is clear that

b(t) = b(0) + S(t) — D(t) — W (2). 5)
Similarly, we also have
q(t) = q(0) + A(t) — D(1). (6)
III. SCHEDULING POLICIES

For the model described in the previous section, the (on-
line) load scheduling problem is to select a set of loads to serve
at the beginning of every time period. Once the decision is
made at the beginning of the t*" period, the amount of energy
consumed during the t** period, i.e., d(t), is also determined.
Certainly, for a scheduling policy to be feasible, the amount of
energy consumed during a time period cannot be greater than
the total amount of energy required by the loads that remain
in the system at the beginning of the t*" time period, i.e.,

d(t) <gq(t—1). @)

Such a constraint is called the load feasibility constraint in
this paper.

In this paper, we study a simple version of the scheduling
problem by assuming that all the loads have an identical
profile and they all take one unit of energy/per time period
to complete. The purpose of such an assumption is to avoid
the bin packing problem that might further complicate the load
scheduling problem. Under such an assumption, the quantity
q(t) in (2) is also the number of loads that remain in the
system at the end of the ¢ time period.

In the following subsections, we will introduce three classes
of scheduling policies: (i) no lookahead policies (with the
superscript (0) on the corresponding notations), (ii) 1-period
lookahead policies (with the superscript (1) on the correspond-
ing notations) and (iii) 1-period prediction policies (with the
superscript (p) on the corresponding notations).

A. No lookahead policies

A scheduling policy is called a no lookahead policy if it
selects a set of loads so that the amount of energy consumed
during a time period is not greater than the amount of energy
stored in the battery at the beginning of that time period, i.e.,

dO ) <Ot —1). (8)

Clearly, a no lookahead policy is a very conservative policy
and we have

OO 1)+ s(t) —dO@)T =0t — 1)+ s(t) — d(2).
Let §(t) = min[s(t), bymax). Then, we can rewrite (1) as
follows:
b0 () = min[byax, b (t — 1) + s(t) — dO(t)]
= min[bax, 8O (t — 1) — d© (¢) + min[s(t), bmax]]
= min|byax, b0 (t — 1) 4 5(t) — dO (1)) 9)

This equation shows that if the amount of energy generated
during a time period is larger than the capacity of the battery,

then the additional amount of energy is simply wasted under
a no lookahead policy. In other words, under a no lookahead
policy the system subject to the renewable energy sources
{s(t),t > 1} is equivalent to the system subject to the
renewable energy sources {§(t),t > 1}.

Similarly, we can also use (7) to rewrite (2) as follows:

¢O(t) = ¢Vt = 1) +a(t) - dO ().
From (7) and (8), we know that

dO#) < min[p@(t — 1), ¢t - 1)]

(10)

under a no lookahead policy. Thus, the maximum amount of
energy that can be consumed during the ¢! time period under
a no lookahead policy is

dO(t) = min[p@ (¢t — 1), ¢t — 1)]. (11)

A no lookahead policy is said to be maximal if it satisfies (11).

B. I-period lookahead policies

As shown in the previous section, no lookahead policies
are not efficient as they waste energy if the amount of energy
generated during a time period is larger than the capacity of the
battery. To improve the efficiency of using renewable energy
sources, let us consider an ideal case that assumes s(t) is
known at the beginning of the #* time period for the purpose
of performance comparison. Now we can select more loads to
serve in every time period for this ideal case. Specifically, a
policy is called a 1-period lookahead policy if it satisfies the
following two constraints:

d(l)(t)

< q(l)(t_]-)v
dV(t) <

bW (£ — 1) + s(t).

12)
13)

The constraint in (12) is the load feasibility constraint in (7).
The constraint in (13), called the energy feasibility constraint
in this paper, is much more relaxed than that in (8) as we are
now allowed to look ahead one period in time. Clearly, the
maximum amount of energy that can be consumed during the
t*" time period under such a policy is

dV(t) = min[¢M (¢ — 1), 60 (£ — 1) + s(2)]. (14)

A 1-period lookahead policy is said to be maximal if it satisfies
(14).

Analogous to the derivation in the previous section, we have
the following two governing equations for a system under a
1-period lookahead policy:

b (£) = minfbumax, 6 (¢ — 1) + s(t) —dD ()],  (15)

and

¢V (t) = ¢ (t = 1) +a(t) —dD(1). (16)

Intuitively, the performance of a maximal 1-period looka-
head policy should be better than that of a maximal no
lookahead policy. Such an intuition will be formally proved in
Theorem 2.



C. I-period prediction policies

Since the amount of energy generated during a period is in
general not known at the beginning of that period, the best we
can do is to estimate the amount of energy generated during
that period and use that information for load scheduling.
Specifically, let §(¢) be the estimate for the total amount of
energy generated during the #*" time period (the method to
obtain the estimate §(¢) will be described in details in the
simulation section). A policy is called a 1-period prediction
policy if it satisfies the following two constraints:

dP@) < ¢P(E-1),

< (17)
dP () < P (t—1)+5().

(18)

The first constraint is simply the load feasibility constraint.
Since s(t) is not known at the beginning of the ¢ period, we
use its estimate $(¢) instead. This then leads to the constraint
in (18).

There is one potential problem for a 1-period prediction pol-
icy. The estimate could be off and we end up with scheduling
a set of loads that require more energy than the system can
supply. In other words, the energy feasibility constraint could
be violated, i.e.,

d® () > bP)(t — 1) + s(1).

When this happens, we say there is a loss of power supply. In
many manufacturing plants, such as semiconductor plants, all
the loads are lost due to a loss of power supply. To model such
a scenario, we assume that all the loads that are being served
at time ¢ are lost and have to be repeated some time later when
there is a loss of power supply at time ¢. Specifically, we have
d®)(t) = 0 and

aV(B) = ¢Vt~ 1) + alt),

when there is a loss of power supply at time ¢. Clearly, when
there is a loss of power supply at time ¢, the battery is also
empty, i.e.,

19)

b (t) = 0. (20)

In order to keep the Loss of Power Supply Probability (LPSP)
within a reasonable level, we propose using a control param-
eter 0 < o < 1 and scheduling the loads to satisfy

dP(t) = min[¢P (t — 1), 6P (t — 1) + a8(t)]. (1)

Such a policy is called a 1-period prediction policy with
parameter « in this paper.

IV. ANALYTICAL RESULTS

As pointed out in [12], one can immediately observe from
Figure 1 that the model of a stand-alone system with renewable
energy sources and a perfect battery is almost the same as the
model of a leaky bucket in [15] that can be governed by the
Lindley recursive equation [16]. In the following lemma, we
show the Lindley recursive equations for the system under a
maximal no lookahead policy and the system under a maximal
1-period lookahead policy. Such a lemma is an easy extension

of Theorem 2.2.12 in [18] for a leaky bucket with a constant
token generation rate. Its proof is given in Appendix A of the
full report [17] and it is omitted due to space limitation.

Lemma 1: Let y©(t) = ¢ (t) + bpax — b (). For a
maximal no lookahead policy, we have

yOt) = (Ot —1) = 3(6)* +alt).

Let y (t) = ¢ () + byax — b (). For a maximal 1-period
lookahead policy, we have

y V() = (Mt —1) = s(6)" +alt).

A. The main comparison theorem

(22)

(23)

In this section, we show in Theorem 2 that the performance
of a maximal 1-period lookahead policy should be better than
that of a maximal no lookahead policy. Specifically, let us
consider two systems: one is operated under a maximal no
lookahead policy and the other is operated under a maximal
1-period lookahead policy. Suppose these two systems have
the same battery capacity by.x and they are subject to the
same load arrivals {a(t),¢ > 1} and the same renewable
energy sources {s(t),t > 1}. Also, assume that the battery
energy levels are the same at time 0, i.e., b(*)(0) = b(1)(0),
and both systems have the same number of loads at time 0,
ie., ¢©(0) = ¢(M(0). The proof of Theorem 2 is given in
Appendix B of the full report [17] and it is omitted here due
to space limitation.

Theorem 2: For the two systems described above, the total
amount of energy required by the loads that remain in the
system under a maximal no lookahead policy is always not
less than that under a maximal 1-period lookahead policy, i.e.,
O (t) > ¢qM(t) for all t. Moreover, the cumulative amount
of energy consumed by time ¢ in the system under a maximal
no lookahead policy is always not greater than that under a
maximal 1-period lookahead policy, i.e., DO (t) < DW(t)
for all ¢.

B. An invariant theorem of battery capacity

In this section, we show that the total amount of energy
wasted by time ¢, i.e., W(t), is independent of the battery
capacity for a system under a maximal 1-period lookahead
policy. Such a result appears to be new in the literature as the
number of lost tokens is never a concern in a leaky bucket. It
is also quite counterintuitive when it is first observed from
our simulations. But, a careful examination in Theorem 3
further shows that the time that a waste of energy occurs is
also independent of the battery capacity. Such a result then
provides the right insight for W (¢) to be independent of the
battery capacity.

Theorem 3: For a system under a maximal 1-period looka-
head policy, if the battery is fully charged at time 0, i.e.,
b1 (0) = bpax, and the system is started from some fixed
number of loads, i.e., ¢()(0) = gy for some g, then the first
time that a waste of energy occurs is at time

T =inf{t >1:5() > At —1)+ qo}- (24)



Moreover, the total amount of energy wasted by time ¢ is also
independent of the battery capacity by ax-

Proof. Since we assume that the initial energy level of the
battery is full, i.e., b(l)(O) = bmax, We then have from (5) that

S(t) + bmax = DY) + W () + 61 (1), (25)

Also, since the system is started from some fixed number of
loads, i.e., ¢1)(0) = qo, we have from (6) that

A(t) = DD (t) + ¢ () — go. (26)

Suppose that a waste of energy occurs for the first time at
some time 7, i.e., w")(7) > 0 and w (t) = 0 for all t < 7.
We will show that 7 = 7* by first showing 7* < 7 and then
"> T,

Since a waste of energy occurs for the first time at some
time 7, the battery must be full at the end of the 7t time
period, i.e.,

bV (7) = brax. 27)
Also, it follows from (4) and w) (7) > 0 that
$(1) + 0P (7 = 1) > dV (1) + bynax.- (28)

For a maximal l-period lookahead policy, d¥)(r) is either
¢M(r—1) or s(7)+bM (1 —1). In view of (28), it cannot be
the latter as we would have a contradiction 0 > by,,.. Thus,
we know dM) (1) = ¢ (7 —1) when a waste of energy occurs
for the first time at time 7. It then follows from (16) that

¢V () = a(r). (29)
Thus, we have from (26) that
DW(r)=A(r)—a(r)+q =A(r—1)+q.  (30)
From (27), the equation in (25) can be rewritten as
S(r) = DW(r)+WwW(r)
DW(7) +wM(7), 31)

where we use the fact that W) (1) = w1 (7) as 7 is the first
time that a waste of energy occurs. In conjunction with (30),
we have

wM (1) = S(1) — A(T — 1) — qo. (32)

Since wM) (1) > 0, we know from the definition of 7* that
T < T.
On the other hand, note from (26) and the fact ¢(!) (t) > a(t)
that
DW(r*) = A(T") = ¢V () +q
< A(TY) —a(r) + qo
= A" —=1)+qo.
It then follows from (25) and the fact b™)(t) < byax that

WO (%) = S(7%) + bmax — DV (7%) — b1 (7%)
> S(r*) — D(l)(T*)
> S(r7) = A(T" = 1) —q0 > 0,

(33)

(34)

GHI for (b) Daily DC output for

(a) Hourly
2009 in Long Beach, 2009 in Long Beach,
CA. CA.

Fig. 2: The solar information for 2009 in Long Beach, CA.

where we use the definition of 7* in the last inequality. This
shows that a waste of energy occurs no later than 7* and thus
T > T.

As 7* is independent of the battery capacity, the first time
that a waste of energy occurs is independent of the battery
capacity. When this happens, the battery is fully charged and
it can be viewed as a renewal point. Thus, the second time
that a waste of energy occurs is also independent of the battery
capacity. From induction, it is easy to see that the total amount
of energy wasted by time ¢ is also independent of the battery
capacity bmax. [ |

V. SIMULATION RESULTS

A. Experimental setup

For our simulations, we need to generate two sequences:
the total amount of energy generated in each time period, i.e.,
{s(t),t > 1}, and the total number of load arrivals in each time
period, i.e., {a(t),t > 1}. In our simulations, each time period
corresponds to a day in a stand-alone photovoltaic system. To
simulate the sequence of the total amount of energy generated
in each day, we first obtain the complete solar information
for year 2009 in Long Beach, California, from the National
Renewable Energy Laboratory (NREL) [19]. We then use that
information as the input of the System Advisor Model (SAM)
[20] to calculate the hourly DC output of arrays of solar cells
for the system. By summing up the hourly DC outputs of
a day, we then obtain the total amount of energy generated
in each day by the renewable energy resources, i.e., solar
cells here. In Figure 2a. we plot the hourly Global Horizontal
Irradiance (GHI) for year 2009 in Long Beach, California. The
GHI is one component of the complete solar information from
NREL. In Figure 2b, we also plot the corresponding daily DC
output. From Figure 2a and Figure 2b, one can see that there is
strong correlation between the GHI and the DC output. Using
this model, we also calculate the average amount of energy
generated per day from year 2006 to year 2008. The average
is roughly 14000 kWh per day.

On the other hand, the total number of load arrivals in
each time period, i.e., {a(t),¢ > 1} is modelled by a Poisson
process. To ensure that the power supply can meet the demand,
we set the Poisson arrival rate A to be 10000 kWh per day.
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Fig. 3: Performance comparison between a no lookahead pol-
icy and a 1-period lookahead policy with by, = 10000k h.

B. Comparison results between a maximal no lookahead pol-
icy and a maximal 1-period lookahead policy

In Theorem 2, we have already shown a qualitative result
for the comparison between a maximal no lookahead policy
and a maximal 1-period lookahead policy. In this section,
we further show by simulations that the gain from using a
maximal 1-period lookahead policy could be very substantial.
In Figure 3, we show the comparison results between a no
lookahead policy and a 1-period lookahead policy for a fixed
battery capacity bpyax = 10000kWh. As clearly shown in
Figure 3(a), the number of loads that remain in the system
under a maximal 1-period lookahead policy is substantially
smaller than that under a maximal no lookahead policy. Also,
as shown in Figure 2b, the daily DC output for year 2009
is a unimodal function that has lower than average daily DC
outputs in the first month and in the last month. As such, the
energy supply is unable to meet the demand for the first month
and the last month. Thus, the queue for the loads that remain in
the system grows during these two months. From Figure 3(a),
one can also see that a maximal 1-period lookahead policy is
more robust to the change to daily DC outputs and its queue
is stable for most of the days in that year.

In Figure 3(b), we show the comparison results for the total
amount of energy wasted by time ¢. Once again, a maximal 1-
period lookahead policy wastes less energy than a maximal no
lookahead policy. Note that for a maximal 1-period lookahead
policy, W (t) grows more slowly in the first month and in the
last month when the power supply cannot meet the demand.
This shows that a maximal 1-period lookahead policy uses the
energy more efficiently during that period of time.

C. The impact of battery capacity

In this section, we study the effect of battery capacity on
the performance of the system under a maximal no lookahead
policy and a maximal 1-period lookahead policy, respectively.
In Figure 4(a), we show the average number of loads that
remain in the system per day under both policies. The results
are obtained by averaging over 365 days for 1000 simulations
of load arrivals. Clearly, the performance of a maximal 1-
period lookahead policy is substantially better than that of
a maximal no lookahead policy. However, as the battery
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Fig. 4: The effect of battery capacity.

capacity increases, the gap becomes smaller. This shows that
it is possible to improve the performance of a maximal
no lookahead policy by increasing the battery capacity. But
increasing the battery capacity seems to have minimal effect
on the performance of a maximal 1-period lookahead policy.
Similar results are found for the average amount of wasted
energy per day in Figure 4(b).

To summarize, there is a significant performance gap be-
tween a maximal no lookahead policy and a maximal 1-period
lookahead policy. It is possible to narrow the gap by increasing
the battery capacity as the performance of a maximal no
lookahead policy can be greatly improved by increasing the
battery capacity. On the other hand, increasing the battery
capacity seems to have little effect on the performance of
a maximal 1-period lookahead policy. In fact, as shown in
Theorem 3, the amount of wasted energy is invariant to
the battery capacity under a maximal 1-period lookahead
policy. In practice, the battery capacity cannot be increased
without a limit as there are budget constraints. Thus, it is
of importance to look for good scheduling policies that can
further improve the performance without needing to increase
the battery capacity. In the next section, we will propose a
prediction method that can be used for a 1-period prediction
policy that yields comparable performance to a maximal 1-
period lookahead policy.

D. The prediction method

As prediction has to be made at the beginning of each
working day, we select the hourly GHI’s only from 7 am to 9
am on that day as input features and the corresponding daily
DC output power of that day as the output of the prediction
model. Specifically, we formulate the prediction model with
the following prediction function

§(t) = f(t,GHI;(t), GHIs(t), GHIo(t)),  (35)

where ¢ is the index of the day in a year and GHI,(t),
i = 7,8 and 9, is the GHI at i am. on the t** day. To
estimate the prediction function in (35), we use the GHI’s and
the corresponding DC output from year 2006 to year 2008 as
our training data. Once we obtain the prediction function, it
will be used for testing the amount of daily energy generated
in year 20009.
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Fig. 5: Simulation results for the number of loads that remain
in the system under various scheduling policies.

In this paper, our prediction method is to use the support
vector regression (SVR) to obtain the estimate §(¢). For our
experiments, we use libSVM [21], a library for Support Vector
Machines, to run nu-SVR for the estimate of the output.

E. Comparison results for 1-period prediction policies

In this section, we study the effect of « for a system under
a 1-period prediction policy with parameter o. In Figure 5,
we show the number of loads that remain in the system at
the end of the #*" time period, i.e., ¢(t), under a maximal no
lookahead policy, a maximal 1-period lookahead policy and
two 1-period prediction policies with @ = 0.8 and o = 0.5,
respectively. Each circle in the curves for the two 1-period
prediction policies in Figure 5 indicates the time when a loss
of power supply occurs. We can see that sometimes a 1-period
prediction policy with o = 0.8 is better than that with o = 0.5
and sometimes it is the other way around. That is because a
larger o allows the system to serve more loads when there
is no loss of power supply. However, when there is a loss
of power supply, all the loads are lost and they have to be
repeated later. Clearly, a larger o implies a higher LPSP and
we face a tradeoff between serving more loads and reducing
the LPSP. Even with such a tradeoff for choosing «, we can see
from Figure 5 that the performance of both 1-period prediction
policies are very close to that of a maximal 1-period lookahead
policy and there is a substantial gain over a maximal no
lookahead policy. This result shows it is possible to improve
the system performance by using prediction methods and it
can be done without needing to increase battery capacity.

VI. CONCLUSIONS

In this paper, we considered a stand-alone power system
with renewable energy sources and a perfect battery. We
compared three classes of scheduling policies: (i) no lookahead
policies, (ii) l-period lookahead policies and (iii) 1-period
prediction policies. We proved a comparison theorem between
a maximal 1-period lookahead policy and a maximal no
lookahead policy. We also proved an invariant theorem for
the battery capacity of a maximal 1-period lookahead policy.
In addition to these theoretical results, our simulation results
revealed two interesting findings: (i) increasing the battery
capacity is very effective in improving the performance of
a maximal no lookahead policy, and (ii) prediction can be

very effective in improving the system performance without
needing to increase battery capacity.
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APPENDIX A

In this section, we prove Lemma 1
We first prove (22) for a maximal no lookahead policy.
Using (9) and (10) yields
y O () = max[g@ (), 4V (t = 1) + a(t) — 3(1)]
= a(t) + max[¢ @ (t — 1) —dO @),y Ot — 1) — 5(¢)].
(36)
Consider the following two cases: (i) b (t—1) > ¢(® (t—1)
and (ii) bV (t — 1) < ¢! (¢ — 1). For the first case, we have
from (11) that d(®)(t) = ¢(©) (¢ — 1). It then follows from (36)
that 4 (t) = (g (¢t — 1) — 5(t))* + a(t).
For the second case, we have from (11) that d(®)(t) =
b0 (¢t —1). Since 5(t) < bmax.
y Ot —1) - 3(1)
= ¢t — 1) + bpax — 0O (¢ —1) —
>0t —1) =@ —1) > 0.

5(t)

It then follows from (36) that

yO ) = a(t)+y(t-1) - 5)
(vt =1) = 3(t) " +a(t).
Now we prove (23) for a maximal I-period lookahead
policy. Using (15) and (16) yields
y V()
= max[qgM @), y P (t — 1) + a(t) — sV (1)] 37)
= a(t) + max[¢V(t — 1) —dW (), y M (t — 1) — s(t)].
(38)
Consider the following two cases: (i) b (t — 1) + s(t) >
¢ (t — 1) and (i) bW (t — 1) + s(t) < ¢V (¢t — 1). For the
first case, we have from (14) that dV)(t) = ¢V (t —1). It then
follows from (38) that yM () = (yM(t — 1) — s(t)) " + a(t).
For the second case, we have from (14) that dV)(t) =
b (t — 1) + s(t). Thus,
yM(t—1) = s(t)
= ¢Vt = 1) + bax — bV (£ — 1) — s(t)
>qW(t—1) = bWt —1) - s(t) > 0.
Thus,
max[q') (t=1)=d (), y M (t-1) = s(t)] =y (1) = s(D),
and
(' (t=1) = s()" =yt - 1) = ().
It then follows from (37) that

y V() = alt) +y V(- 1) - s(t)
(y M (¢ —1) = s(t) T +ald).

APPENDIX B

In this section, we prove Theorem 2.

Since 5@ (0) = b1 (0) and ¢@(0) = ¢™M(0), we have
y©(0) = y((0). Note that 5(t) = min[s(t), bumax] < s(t)
for all ¢. It then follows from the two Lindley equations in
(22) and (23) that for all £t > 0

y(O) (t) > y(l)(t).

To show ¢ (t) > ¢(!)(t), we consider the following two
cases:
Case 1. b (t — 1) + s(t) > ¢V (t — 1):

For this case, we have from (14) that d(")(t) = ¢V (¢t — 1).
It then follows from (16) that ¢‘)(t) = a(t). Also, from (7)
and (10), we know that ¢(°)(t) > a(t). Thus, ¢(©(t) > ¢V (¢).

Case 2. b (t — 1) + s(t) < ¢V (t — 1):
For this case, we have from (14) that

dD () =M (¢ — 1) + s(t).
It then follows from (16) that
qV#)=qV(t—1)+alt) —bP(t—1)—s(t). (40)

From (39) and ¥ (¢) = ¢V (¢) + byax — b (¢), i = 0 and 1,
we know that

¢Vt=1) =Vt —-1)<¢Ot—1)—bO @ —1).
Using this in (40) yields
¢ty < ¢OU-1)+a(t)-bO@r—-1) -
< ¢ —=1)+a(t) -0 —1).

(39)

s(t)
(41)
From (11), we know for a no lookahead policy that
dOw) < O —-1).
In conjunction with (41), we have
¢ MV(t) < gV -1) +a(t) —dO (1) =¢Vt), @)

where we use (10) in the last equality.
That DO (t) < DM (t) follows directly from (6) and
dOt) > ¢M(1).



