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Abstract—In our recent works, we developed a probabilistic
framework for structural analysis in undirected networks. The key
idea of that framework is to sample a network by a symmetric
bivariate distribution and then use that bivariate distribution
to formerly define various notions, including centrality, relative
centrality, community, and modularity. The main objective of
this paper is to extend the probabilistic framework to directed
networks, where the sampling bivariate distributions could be
asymmetric. Our main finding is that we can relax the assumption
from symmetric bivariate distributions to bivariate distributions
that have the same marginal distributions. By using such a
weaker assumption, we show that various notions for structural
analysis in directed networks can also be defined in the same
manner as before. However, since the bivariate distribution could
be asymmetric, the community detection algorithms proposed
in our previous work cannot be directly applied. For this, we
show that one can construct another sampled graph with a
symmetric bivariate distribution so that for any partition of the
network, the modularity index remains the same as that of the
original sampled graph. Based on this, we propose a hierarchical
agglomerative algorithm that returns a partition of communities
when the algorithm converges.
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I. INTRODUCTION

As the advent of on-line social networks, structural analysis
of networks has been a very hot research topic. There are
various notions that are widely used for structural analysis
of networks, including centrality, relative centrality, similarity,
community, modularity, and homophily (see e.g., Chapters
7 and 11 of the book by Newman [1]). In order to make
these notions more mathematically precise, we developed in
[2], [3] a probabilistic framework for structural analysis of
undirected networks. The key idea of the framework is to
“sample” a network to generate a bivariate distribution p(v, w)
that specifies the probability that a pair of two nodes v and w
are selected from a sample. The bivariate distribution p(v, w)
can be viewed as a normalized similarity measure [5] between
the two nodes v and w. A graph GG associated with a bivariate
distribution p(-,-) is then called a sampled graph.

In [2], [3], the bivariate distribution is assumed to be sym-
metric. Under this assumption, the two marginal distributions
of the bivariate distribution, denoted by py (-) and pw (-), are
the same and they represent the probability that a particular
node is selected in the sampled graph. As such, the marginal

distribution py (v) can be used for defining the centrality of a
node v as it represents the probability that node v is selected.
The relative centrality of a set of nodes S; with respect to
another set of nodes S5 is then defined as the conditional
probability that one node of the selected pair of two nodes is
in the set .S; given that the other node is in the set S5. Based on
the probabilistic definitions of centrality and relative centrality
in the framework, the community strength for a set of nodes .S
is defined as the difference between its relative centrality with
respect to itself and its centrality. Moreover, a set of nodes with
a nonnegative community strength is called a community. In
the probabilistic framework, the modularity for a partition of
a sampled graph is defined as the average community strength
of the community. As such, a high modularity for a partition
of a graph implies that there are communities with strong
community strengths. It was further shown in [3] that the
Newman modularity in [6] and the stability in [7], [8] are
special cases of the modularity for certain sampled graphs.

The main objective of this paper is to extend the prob-
abilistic framework in [2], [3] to directed networks, where
the sampling bivariate distributions could be asymmetric.
Our main finding is that we can relax the assumption from
symmetric bivariate distributions to bivariate distributions that
have the same marginal distributions. By using such a weaker
assumption, we show that the notions of centrality, relative
centrality, community and modularity can be defined in the
same manner as before. Moreover, the equivalent characteriza-
tions of a community still hold. Since the bivariate distribution
could be asymmetric, the agglomerative community detection
algorithms in [2], [3] cannot be directly applied. For this, we
show that one can construct another sampled graph with a
symmetric bivariate distribution so that for any partition of
the network, the modularity index remains the same as that
of the original sampled graph. Based on this, we propose a
hierarchical agglomerative algorithm that returns a partition
of communities when the algorithm converges.

In this paper, we also address two methods for sampling
a directed network with a bivariate distribution that has the
same marginal distributions : (i) PageRank and (ii) random
walks with self loops and backward jumps. Experiments show
that sampling by a random walk with self loops and backward
jumps performs better than that by PageRank for community



detection. This might be due to the fact that PageRank adds
weak links in a network and that changes the topology of the
network and thus affects the results of community detection.

II. SAMPLING NETWORKS BY BIVARIATE DISTRIBUTIONS
WITH THE SAME MARGINAL DISTRIBUTIONS

In [3], a probabilistic framework for network analysis
for undirected networks was proposed. The main idea in
that framework is to characterize a network by a sampled
graph. Specifically, suppose a network is modelled by a graph
G(Vy, Ey), where V, denotes the set of vertices (nodes) in the
graph and F, denotes the set of edges (links) in the graph. Let
n = |V,| be the number of vertices in the graph and index the
n vertices from 1,2,...,n. Also, let A = (a;;) be the n x n
adjacency matrix of the graph, i.e.,

0 — 1, if there is an edge from vertex i to vertex j,
771 0, otherwise.

A sampling bivariate distribution p(-, -) for a graph G is the
bivariate distribution that is used for sampling a network by
randomly selecting an ordered pair of two nodes (V, W), i.e.,

PV =v,W =w) =p(v,w). (D

Let py (v) (resp. pw (w)) be the marginal distribution of the
random variable V' (resp. W), i.e.,

pv(v) =P(V =v) = p(v,w), @)
w=1
and
pw(w) =P(W =w) =" p(v,w). 3)
v=1

Definition 1: (Sampled graph) A graph G(V,, E,) that is
sampled by randomly selecting an ordered pair of two nodes
(V, W) according to a specific bivariate distribution p(-,-) in
(1) is called a sampled graph and it is denoted by the two
tuple (G(Vy, Eg),p(-,-)).

For a given graph G(V,, E,), there are many methods to
generate sampled graphs by specifying the needed bivariate
distributions. In [3], the bivariate distributions are all assumed
to be symmetric and that limits its applicability to undirected
networks. One of the main objectives of this paper is to relax
the symmetric assumption for the bivariate distribution so that
the framework can be applied to directed networks. The key
idea of doing this is to assume that the bivariate distribution
has the same marginal distributions, i.e.,

pv (v) = pw(v), for all v. 4
Note that a symmetric bivariate distribution has the same
marginal distributions and thus the assumption in (4) is much
more general.

A. PageRank

One approach for sampling a network with a bivariate
distribution that has the same marginal distributions is to
sample a network by an ergodic Markov chain. From the
Markov chain theory (see e.g., [9]), it is well-known that
an ergodic Markov chain converges to its steady state in the
long run. Hence, the joint distribution of two successive steps
of a stationary and ergodic Markov chain can be used as
the needed bivariate distribution. Specifically, suppose that a
network G(Vy, E,) is sampled by a stationary and ergodic
Markov chain {X (t),t > 0} with the state space {1,2,...,n}
being the n nodes in V;;. Let P = (p;;) be the n x n transition
probability matrix and 7 = (71, 7o, ..., 7, ) be the steady state
probability vector of the stationary and ergodic Markov chain.
Then we can choose the bivariate distribution

P(V=v,W =w) = p(v,w)
=PX({t)=v,X({t+1) =w). 5)
As the Markov chain is stationary, we have
P(X(t) =v) =P(X({+1)=w)=pv(v) =pw(v). (©6)

It is well-known that a random walk on the graph induces
a Markov chain with the state transition probability matrix
%7

Dij = Touts (7
J k;) t
where N
K=" ai, ®)
j=1

is the number of outgoing edges from vertex i. In particular,
if the graph is an undirected graph, i.e., a;; = a;;, then the in-
duced Markov chain is reversible and the steady state probabil-
ity of state i, i.e., m;, is k;/2m, where m = % S Z?=1 aij
is the total number of edges of the undirected graph.

One problem for sampling a directed network by a simple
random walk is that the induced Markov chain may not be
ergodic even when the network itself is weakly connected.
One genuine solution for this is to allow random jumps from
states to states in a random walk. PageRank [10], proposed
by Google, is one such example that has been successfully
used for ranking web pages. The key idea behind PageRank
is to model the behavior of a web surfer by a random walk
(the random surfer model) and then use that to compute the
steady state probability for a web surfer to visit a specific web
page. Specifically, suppose that there are n web pages and
a web surfer uniformly selects a web page with probability
1/n. Once he is on a web page, he continues web surfing
with probability A. This is done by selecting uniformly one
of the hyperlinks in that web page. On the other hand, with
probability 1 — X\ he starts a new web page uniformly among
all the n web pages. The transition probability from state i to
state j for the induced Markov chain is then

1 (0774
Pij = (1 _)\)E +)\koit’

©))



where a;; = 1 1f there is a hyperlink pointing from the i*" web

page to the j*"* web page and k9%t = Y7 =1 Gij is the total
number of hyperlinks on the i*" web page. Let 7; be steady
probability of visiting the i*" web page by the web surfer. It
then follows that

(10)

PageRank then uses 7; as the centrality of the i*" web page and
rank web pages by their centralities. Unlike the random walk
on an undirected graph, the steady state probabilities in (10)
cannot be explicitly solved and it requires a lot of computation
to solve the system of linear equations.

The sampled graph (G(Vy, Ey), p(-,-)) by using PageRank
then has the following bivariate distribution

Y

where p,,, is defined in (9) and 7, is the solution of (10).

p('U, w) = TyPow;

B. Random walks with self loops and backward jumps

Another way to look at the Markov chain induced by
PageRank in (9) is that it is in fact a random walk on a different
graph with the adjacency matrix A that is constructed from the
original graph with additional edge weights, i.e.,

A=(1- A)%l +AD7'4, (12)
where 1 is an n X n matrix with all its elements being 1
and D = (d;;) is the diagonal matrix with d;; = k9" for all
1=1,2,...,n

In view of (12), another solution for the ergodic problem is
to consider a random walk on the graph with the adjacency
matrix

A= NI+ MA+ AT, (13)

where T is the n x n identity matrix and A7 is the transpose
matrix of A. The three parameters Ao, A1, Ao are positive and

Ao+ A+ A = 1.

A random walk on the graph with the adjacency matrix A
induces an ergodic Markov chain if the original graph is
weakly connected. Also, with the additional edges from the
identity matrix and the transpose matrix, such a random walk
can be viewed as a random walk on the original graph with
self loops and backward jumps.

III. THE FRAMEWORK FOR DIRECTED NETWORKS
A. Centrality and relative centrality

Centrality [11], [12], [1] is usually used as a measure for
ranking the importance of a set of nodes in a (social) network.
Under the assumption in (4), such a concept can be directly
mapped to the probability that a node is selected as in [3].

Definition 2: (Centrality) For a sampled graph
(G(Vy, Eg),p(-,-)) with the bivariate distribution p(-,-)
that has the same marginal distributions in (4), the centrality

of a set of nodes S, denoted by C(S), is defined as the
probability that a node in S is selected, i.e.,

C(S)=PVeS)=PWebs). (14)

As a generalization of centrality, relative centrality in [3] is
a (probability) measure that measures how important a set of
nodes in a network is with respect to another set of nodes.

Definition 3: (Relative centrality) For a sampled graph
(G(Vy, Eg),p(-,-)) with the bivariate distribution p(-,-) that
has the same marginal distributions in (4), the relative cen-
trality of a set of nodes S; with respect to another set of
nodes So, denoted by C(S1]S2), is defined as the conditional
probability that the randomly selected node W is inside S
given that the random selected node V is inside S5, i.e.,

C(Sl‘SQ) = P(W S Sl|V c SQ) (15)

We note that if we choose Sy = V,, then the relative
centrality of a set of nodes S; with respect to Vj is simply
the centrality of the set of nodes 5.

Example 4: (Relative PageRank) PageRank described in
Section II-A has been commonly used for ranking the im-
portance of nodes in a directed network. Here we can use
Definition 3 to define relative PageRank that can be used for
ranking the relative importance of a set of nodes to another
set of nodes in a directed network. Specifically, let © be
the PageRank for node 7 in (10) and p; ; be the transition
probability from state ¢ to state j for the induced Markov chain
in (9). Then the relative PageRank of a set .S; with respect to
another set S5 is

C(Sl|82) = P(W € Sl‘V € 52)

PW €51,V €8s) _ Yies, 2jes, Tibii
P(VE Sg) EiESZ T

.(16)

Analogous to the relative centrality in [3], there are also sev-
eral properties of relative centrality in Definition 3. However,
the reciprocity property in Proposition 5(iv) is much weaker
than that in [3]. The proof of Proposition 5 is omitted due to
space limitation.

Proposition 5: For a sampled graph (G(Vy, E,),p(-,-)) with
the bivariate distribution p(-,-) that has the same marginal
distributions in (4), the following properties for the relative
centrality defined in Definition 3 hold.

i) 0 < C(S1|52) < 1and 0 < C(S;) < 1. Moreover,
C(V,[S2) = 1 and C(V,) =

(ii) (Additivity) If S; and S5 are two disjoint sets., i.e., S1MS3
is an empty set, then for an arbitrary set Ss,

O(Sl U SQ‘S:}) = 0(51‘53) + C(SQ|S3) a7
In particular, when S3 = {1,2,...,n}, we have
C(Sl @] 52) = C(Sl) + C(Sg) (18)

(iii) (Monotonicity) If S; is a subset of S}, i.e., S; C S}, then
C(51]8:) < C(S1182) and C(8)) < C(S)).



(iv) (Reciprocity) Let S¢ =
not in S.

V4\S be the set of nodes that are

C(8)C(S¢]8) = C(S°)C(S|S°).

B. Community strength and communities

The notions of community strength and modularity in [3]
generalizes the original Newman’s definition [13] and unifies
various other generalizations, including the stability in [7], [8].
In this section, we further extend these notions to directed
networks.

Definition 6: (Community strength and communities) For
a sample graph (G(Vy, Ey), p(-, -)) with a bivariate distribution
p(-,-) that has the same marginal distributions in (4), the
community strength of a subset set of nodes S C V,, denoted
by Str(S), is defined as the difference of the relative centrality
of S with respect to itself and its centrality, i.e.,

Str(S) = C(S]S) — C(S).

In particular, if a subset of nodes S C V; has a nonnegative
community strength, i.e., Str(S) > 0, then it is called a
community.

In the following theorem, we show various equivalent
statements for a set of nodes to be a community. The proof
of Theorem 7 is omitted due to space limitation.

Theorem 7: Consider a sample graph (G(Vy, Ey),p(-,"))
with a bivariate distribution p(-,-) that has the same marginal
distributions in (4), and a set S with 0 < C(S) < 1. Let
S¢ = V,\S be the set of nodes that are not in S. The following
statements are equivalent.

19)

(i)  The set S is a community, i.e., Str(S) = C(S|S) —
c(S)>o.

(i)  The relative centrality of .S with respect to S is not
less than the relative centrality of S with respect to

S¢, ie., C(S|S) > C(S|S°).

(iii)  The relative centrality of S° with respect to S is not
greater than the centrality of S¢, ie., C'(S¢S) <
C(S°).

(iv)  The relative centrality of S with respect to S¢ is
not greater than the centrality of S, i.e., C(S|5¢) <
c(S).

(v)  The set S° is a community, ie., Str(S°) =
c(8¢|s¢) —C(S°) >0

(vi)  The relative centrality of S¢ with respect to S¢ is not

less than the relative centrality of S¢ with respect to
S, ie., C(S5¢|S¢) > C(5¢S).

C. Modularity and community detection

As in [3], we define the modularity index for a partition of
a network as the average community strength of a randomly
selected node in Definition 8.

Definition 8: (Modularity) Consider a sampled graph
(G(Vy, Ey),p(-,-)) with a bivariate distribution p(-, -) that has
the same marginal distributions in (4). Let P = {S.,c =
1,2,...,C}, be a partition of {1,2,...,n}, ie., Sc N Se
is an empty set for ¢ # ¢ and UL ,S. = {1,2,...,n}.
The modularity index Q(P) with respect to the partition S,

c =1,2,...,C, is defined as the weighted average of the
community strength of each subset with the weight being the
centrality of each subset, i.e.,

Zo

We note the modularity index in (20) can also be written
as follows:

- Str(S,). (20)

C
QP)=> P(VeS.,WeS,)—PV eS)PW € S.)
c=1

—pv(v)pw (w)). 2D

c
= Z (v, w)
c=1veS, wESC

As the modularity index for a partition of a network is the
average community strength of a randomly selected node, a
good partition of a network should have a large modularity
index. In view of this, one can then tackle the community
detection problem by looking for algorithms that yield large
values of the modularity index. For sampled graphs with
symmetric bivariate distributions, there are already various
community detection algorithms in [2], [3] that find local
maxima of the modularity index. However, they cannot be
directly applied as the bivariate distributions for sampling
directed networks could be asymmetric. For this, we show in
the following lemma that one can construct another sampled
graph with a symmetric bivariate distribution so that for any
partition of the network, the modularity index remains the
same as that of the original sampled graph. The proof of
Lemma 9 is is omitted due to space limitation.

Lemma 9: Consider a sampled graph (G(Vy, Eg),p(:, "))
with a bivariate distribution p(-,-) that has the same
marginal distributions in (4). Construct the sampled graph
(G(Vy, Ey),p(+,-)) with the symmetric bivariate distribution

p(v, w) + p(w, v)
5 .

p(v,w) = (22)

Let Q(P) (resp. Q(P)) be the modularity index for

the partiion P = {S.,¢c = 1,2,...,C} of the sam-
pled graph (G(Vy, Ey),p(-,-)) (resp. the sampled graph
(G(Vy, Ey),(-,-))). Then

Q(P)=Q(P) (23)

As Q(P) = Q(P), one can then use the community
detection algorithms for the sampled graph (G(V, Ey), (-, -))
with the symmetric bivariate distribution to solve the com-
munity detection problem for the original sampled graph
(G(Vy, Ey),p(-,-)). Analogous to the hierarchical agglomer-
ative algorithms in [13], [14], in the following we propose
a hierarchical agglomerative algorithm for community detec-
tion in directed networks. The idea behind this algorithm is



modularity maximization. For this, we define the correlation
measure between two nodes v and w as follows:

q(v, w) = p(v,w) = pv (v)pw (w)

_ p(v,w) —py (V)pw (w) + p(w, v) = pv (W)pw (v)
5 .

(24)

For any two sets S; and S5, define the correlation measure
between these two sets as

q(S1,8) = Y Y alv,w).

veST wES?

(25)

Also, define the average correlation measure between two sets
S1 and S; as
1

G(S1,52) = —————q(51, 52).

(51, 52) AR |52|CI( 1,52)
With this correlation measure, we have from Lemma 9, (21)
and (25) that the modularity index for the partition P =
{S.,¢c=1,2,...,C} is

(26)

Q(P) = Q(P) = ZQ(Sm Se),

c=1

27)

Moreover, a set S’ is a community if and only if ¢(S,.S) > 0.
Algorithm 1: a hierarchical agglomerative algorithm for
community detection in a directed network

(P0) Input a sampled graph (G(V,, Ey),p(-,-)) with a bivari-
ate distribution p(+,-) that has the same marginal distributions
in (4).

(P1) Initially, there are n sets, indexed from 1 to n, with each
set containing exactly one node. Specifically, let .S; be the set
of nodes in set ¢. Then S; = {i}, i =1,2,...,n.

(P2) For all 7,57 = 1,2,...,n, compute the correlation mea-
sures ¢(S;,S;) = q({i},{j}) from (24).

(P3) If there is only one set left or there do not exist
nonnegative correlation measures between two distinct sets,
ie., ¢(S;,S;) < 0forall ¢ # j, then the algorithm outputs the
current sets.

(P4) Find two sets that have a nonnegative correlation mea-
sure. Merge these two sets into a new set. Suppose that set ¢
and set j are grouped into a new set k. Then Sj, = S; U S;
and update

Moreover, for all £ # k, update
a(Sk, Se) = a(Se, Sk) = (S, Se) + q(S;,5e). (29)

(P5S) Repeat from (P3).

The hierarchical agglomerative algorithm in Algorithm 1
has the following properties.

Theorem 10:

(1) For the hierarchical agglomerative algorithm in Al-
gorithm 1, the modularity index is non-decreasing
in every iteration and thus converges to a local
optimum.

(i)  When the algorithm converges, every set returned by
the hierarchical agglomerative algorithm is indeed a
community.

If, furthermore, we use the greedy selection that se-
lects the two sets with the largest average correlation
measure to merge in (P4) of Algorithm 1, then the
average correlation measure of the two selected sets
in each merge operation is non-increasing.

(iii)

The proof of Theorem 10 is given in Appendix A. For (i)
and (ii) of Theorem 10, it is not necessary to specify how we
select a pair of two sets with a nonnegative correlation. One
advantage of using the greedy selection in (iii) of Theorem
10 is the monotonicity property for the dendrogram produced
by a greedy hierarchical agglomerative algorithm (see [15],
Chapter 13.2.3). With such a monotonicity property, there is
no crossover in the produced dendrogram.

IV. EXPERIMENTAL RESULTS

In this section, we compare the sampling methods by
PageRank in Section II-A and random walks with self loops
and backward jumps in Section II-B for community detection.
We conduct various experiments based on the stochastic block
model with two blocks. The stochastic block model, as a gen-
eralization of the Erdos-Renyi random graph, is a commonly
used method for generating random graphs that can be used for
benchmarking community detection algorithms. In a stochastic
block model with two blocks (communities), the total number
of nodes in the random graph are evenly distributed to these
two blocks. The probability that there is an edge between two
nodes within the same block is p;, and the probability that
there is an edge between two nodes in two different blocks is
Dout- These edges are generated independently. Let ¢;,, = np;n
and ¢yt = NPout-

In our experiments, the number of nodes n in the stochastic
block model is 200 with 100 nodes in each of these two blocks.
The average degree of a node is set to be 3. The values
of ¢;, — cour Of these graphs are in the range from 2.5 to
5.9 with a common step of 0.1. We generate 100 graphs for
each c;,, — coy:. Isolated vertices are removed. Thus, the exact
numbers of vertices used in this experiment might be slightly
less than 200. For PageRank, the parameter )\ is chosen to be
0.9. For the random walk with self loops and backward jumps,
the three parameters are Ay = 0.05, Ay = 0.85 and A, = 0.1.
We run the greedy hierarchical agglomerative algorithm in
Algorithm 1 until there are only two sets (even when there
do not exist nonnegative correlation measures between two
distinct sets). We then evaluate the overlap with the true
labeling. In Figure 1, we show the experimental results, where
each point is averaged over 100 random graphs from the
stochastic block model. The error bars are the 95% confidence
intervals. From Figure 1, one can see that the performance of
random walks with self loops and backward jumps is better
than that of PageRank. One reason for this is that PageRank
uniformly adds an edge (with a small weight) between any two
nodes and these added edges change the network topology.
On the other hand, mapping by a random walk with backward



jumps in (13) does not change the network topology when it
is viewed as an undirected network.

PageRank
backward jumps
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Fig. 1. Community detection of the stochastic block model by using PageRank
in (12) and a random walk with self loops and backward jumps in (13).

V. CONCLUSION

In this paper we extended our previous work in [2], [3]
to directed networks. Our approach is to introduce bivariate
distributions that have the same marginal distributions. By
doing so, we were able to extend the notions of centrality,
relative centrality, community strength, community and mod-
ularity to directed networks. For community detection, we
propose a hierarchical agglomerative algorithm that guarantees
every set returned from the algorithm is a community. We also
tested the algorithm by using PageRank and random walks
with self loops and backward jumps. The experimental results
show that sampling by random walks with self loops and
backward jumps perform better than sampling by PageRank
for community detection. Further extensions and comparisons
with existing clustering (community detection) algorithms in
the literature are addressed in [4].
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APPENDIX A

In this section, we prove Theorem 10.

(i) Since we choose two sets that have a nonnegative
correlation measure, i.e., q(Si,Sj) > 0, to merge, it is easy
to see from (28) and (27) that the modularity index is non-
decreasing in every iteration.

(ii) Suppose that there is only one set left. Then this set is V/,
and it is the trivial community. On the other hand, suppose that
there are C' > 2 sets {S1, So, . . ., Sc} left when the algorithm
converges. Then we know that ¢(S;, S;) < 0 for ¢ # j.

Note from (24) and (25) that for any node v,

q({v},Ve) = D q(v,w) =0. (30)
weVy
Thus,
q9(Si,Vy) = > a({v}, V) = 0. 31

vES;

Since {S1, S, ..
that

.,Sc} is a partition of V, it then follows

0=q(Si,Vy) = q(Si, Si) + Y _a(Si,8;).  (32)
J#i
Since ¢(S;,.5;) < 0 for i # j, we conclude that ¢(S;, S;) > 0
and thus S; is a community.
(iii) Suppose that S; and S; are merged into the new set
Sk. According to the update rules in the algorithm and the
symmetric property of ¢(-,-), we know that

q(Sk, Se) = q(Se, Sk) = q(Si, Se) + q(S;, Se)
= q(S4, Se) +q(Se, Sy),
for all ¢ # k. Thus,

B |Si 551
Sy ) = 21 B -
15k 50) = 15155, S+ 151

Since we select the two sets with the largest average corre-
lation measure in each merge operation, we have g(.S;, S¢) <
q(Si,S;) and q(S¢, S;) < G(S;, S;). These then lead to

q(Sk, Se) < 4(Si, ;).

q(Si,S¢) + q(Se, 55)-

Thus, §(.S;, S;) is not less than the average correlation measure
between any two sets after the merge operation. As such, the
average correlation measure at each merge is non-increasing.



