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Unit Seven —
Quantum Error-Correcting Codes




‘A Three-Qubit Code over Bit Filp Channel.
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\ recovery impossible /

Obstacles ' \

e No cloning : states cannot be cloned like in classical repetition
codes

e Error is continuous : the ”amount” of error a state (which is
continuous in the state space of a quantum system) will face
with is dependent on the state itself

— The bit flip channel will not affect the state (]0) + [1))/v/2
of a qubit at all

— The bit flip channel will change the state |0) of a qubit to
the state |1) ( and vice versa) totally

e Measurement may destroy quantum information : decoding
procedure needs observation of the channel output, which may
destroy the quantum state under observation and make




‘ Encoding Algorithm I

) — @ @
0) NP,
0) D
e |0) — |000)
° |1> — |111>

e a|0) + b[1) — a|000) + b|111)

\_




/ ‘Output of the Bit Flip Channel' \

e Assumption : each of the three encoded qubits is affected by a
bit flip channel independently

o F,it =E, 9 E; ® £, with 4,5,k € {0,1} : a list of linear
operators on the three-qubit system

— FEo=+/1 —pl and Ey = \/po, :
EjEy=(1—-p)I, E|E =pl
— Completeness identity :

Y El, Eyx=) ElE;®ElE; & E]E,

17k 17k
= > (1=-p) ' -p) YA -p pIeIo]
ijk

\ = (A—-p)+p)°’I=1I /




/ e £ : quantum operation which describes the three-qubit bit ﬂip\

channel
ZEijlO @]k
17k

e Input state of the channel : [¢)) = a|000) + b|111)

e Output state of the channel : a mixed state

W W ZE’Uklw z]k

17k
with ensemble {)\’ijka Ewk|¢>/)\wk} where

Eijk|t)) = aE4]0) E;]0) Ex[0) + bE; 1) E;|1) Eg[1)
and
Nije = (Y| EL, Biely) = (1 — p) ~p* (1 — p) 7p? (1 — p)' ~Fp*

— When a = b, Ezgk(|¢>) = El—i,l—j,l—k(‘w» and the
k ensemble of the mixed state £(|¢)(y|) can be simplified /




‘Syndrome Measurement and Syndrome'

e A thinking : each intact or corrupted state in the ensemble
{Nijk, Bijk|)/Aiji} of the channel output state £(|¢)(¢]) is in
one of the following orthogonal subspaces of the state space of

the three-qubit system

Go = Span{|000),|111)}, Gy = Span{|100), |011)},
Gy = Span{|010),|101)}, G35 = Span{|001),|110)}

e Syndrome measurement : a measurement which is able to tells
us what error, if any, occurred on the quantum state without

destroying the quantum state

\_ /
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— { Py, P, P>, P3} : alegitimate projective measurement,

where P; is the projector of the subspace G,

Py = [000Y(000| + [111)(111|, P, = |100)(100| + [011)(011],
P> = |010Y(010] + [101)(101|, P5 = [001)(001| + [110)(110|

e Syndrome : the result of the syndrome measurement

— Syndrome 0 : with probability

tr(Pol([W) (W) Po) = tr(Eoool¥) (Y| Ego + Er1|) (W] Elpy)
= (1-p7°+p’

and the state after the syndrome measurement is

Eooo|v) (| Edgg + Br11|) (Y] By
(1 —=p)3 +p?




/ — Syndrome 1 : with probability \

tr(PLE(WY (W) P1) = tr(Erool) (W] Eloe + Eort[¥) (W] Ely )
= (1-p’p+Q—pp°=010-pp

and the state after the syndrome measurement is

E100|4) (V| Eloo + Eo11|¥) (W] Edy;

(1 —=p)p
— Syndrome 2 : with probability
tr(PE(JY)V (W) Pe) = tr(Eowo|) (Y| Edyy + Erow|w) (@] Elyy)

= (1=-p)’p+ (1 -pp*=(1-pp
and the state after the syndrome measurement is

Eoo|) (Y| Ed1o + E101|¥) (W] Efo,

\ (1—=p)p /
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/ — Syndrome 3 : with probability \

tr(P3E([W) (W) Ps) = tr(Boor [¥) (| Edor + Erol) (V] Elp)
= (1-p)’p+ 1 —-pp°=1-p)p

and the state after the syndrome measurement is

Eoo1 [¥) (| Elgy + E10lt) (8| Ef,
(1—=p)p
e Ambiguity : two intact or corrupted states in the ensemble
{Nijk, Eijr|Y) /Niji } of the channel output state E(|¢)(y|) will
produce the same syndrome measurement output, called

syndrome
— Syndrome 0 : EOOO w /)\000 and E111 w /)\111

— Syndrome 2 : EOlO w /)\010 and E101 w

) )

— Syndrome 1: ElOO ¢>/)\100 and E011 ¢>/)\011
) )
) )

\ — Syndrome 3 E001 w /)\001 and E110 w /)\110 /
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e (Cosets : a coset is the set of all states in the ensemble
{Nijk, Bijk|1) /Aiji } of the channel output state £(|1)(v)])

which will result in the same syndrome
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Undetectable Error Probability.

e Undetectable error patterns : event patterns other than
E000|¢>/)\000 in the coset of E000|¢>/>\000, which is jU.St

Ei|Y) /A

e Undetectable error probability : A\j;1 = p°
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‘ Uncorrectable Error Probability I

e Correctable error patterns : (error) patterns each of which is
selected from distinct cosets of the ensemble of the channel

output states

— We usually select a pattern with the largest probability of
occurrence from a coset as a correctable error pattern

— If p < 0.5, we select the following correctable error patterns

Eooo|Y) / Xooos E100|v) /Moo, Eoo]¥) /Ao1o, Eoo1 1) / Aoot

e Uncorrectable error probability : the sum of the probability of

occurrence of each uncorrectable error pattern, which is

A110 + Aot + Aior + A1 = 3(1 — p)p* +p?

/
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Decoding Algorithm I

e Conditioned on the syndrome, the decoding procedure takes

the following actions

— Syndrome 0 : do nothing

— Syndrome 1 : flip qubit one
— Syndrome 2 : flip qubit two
— Syndrome 3 : flip qubit three

e All correctable error patterns can be completely removed and
in those cases, the original state is recovered perfectly

/
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Ilternative Syndrome Measurements by Two Observables

o /175(=7®Z ®I) : the first observable with spectral

decomposition

Z1Zy = (|0)0] = [1)(1]) @ (j0){0] = [1)(1]) & I
= (|00)(00| + |11)(11]) ® I — (]01)(01] 4+ |10)(10]) ® I
— A projective measurement with projectors
Pt = (]00)(00] +[11){(11))® 1, Pry" = (]01){01]+]10)(10)) I
— Outcome (syndrome) +1 : when the values of the first and
the second qubits are the same

— Outcome (syndrome) -1 : when the values of the first and
the second qubits are different

— The observable Z; Z5 provides one bit of information about
the error pattern without destroying the channel output /
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quantum state \

o />273(=1®Z®Z) : the second observable with spectral
decomposition

ZyZsz = 1@ (|0){0]—[1){1]) ® ([0)0] = [1)(1])
= 1® (|00)(00] + [11)(11]) — I ® (|01)(01] 4 |10)(10])
— A projective measurement with projectors
Pyt = I'®(]00)(00|+|11)(11]), Py' = I®(|01)(01]|+|10)(10|)

— Outcome (syndrome) +1 : when the values of the second
and the third qubits are the same

— Outcome (syndrome) -1 : when the values of the second and
the third qubits are different

— The observable Z5Z3 provides one bit of information about

the error pattern without destroying the channel output

quantum state /
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/ e Syndrome +1+1 : with probability

+1 +1
(PP o (Pt AT

= tr (P PR E(JV) (]) Py Pas')
= tr(Booolt) (W Elgy + Era1 ) (0| El,)
= (1-p)?+p°
and the state after the two projective measurements

+1_PLE( (WD P e
23 tr(PhL (v PhLY) " 23

P5§1>

_ Eooo|t) (Y| Elog + E111]¢) (¢|H

~

111

11 PRE() (W) PR 41 1 —p)3+p3
tr (P23 tr<11321216<|w><w|>113j21>P23 ) ( )

— This is the same as when syndrome 0 is produced by the

previous syndrome measurement

e Syndrome -14+1 : the same as syndrome 1 in the previous

\ syndrome measurement

/
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e Syndrome -1-1 : the same as syndrome 2 in the previous

syndrome measurement

e Syndrome +1-1 : the same as syndrome 3 in the previous

syndrome measurement
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A Three-Qubit Code over Phase Filp Channel.
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/ ‘Turning Phase Flip Channel to Bit Flip Channel. \

e {|0),[1)} : the computational basis of a qubit

o [+) = (|0) +]1))/v2,|=) = (|0) = [1))/v2 : another

orthonormal basis of the state space of the qubit
e 1) =a|+) + b|—) : a state of the qubit as channel input state

e Phase flip channel £,¢ : with probability 1 — p, the output
state is the same as the input state and with probability p, the
output state becomes

o:|) = al=) +b|+)

— The effect of the phase flip channel is to exchange the two
states |[4+) and |—), similar to the bit flip channel to

\ exchange the two states |0) and |1) /
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‘ Encoding Algorithm I

%) O

H

10> o H %

10> a

o [0) — |+ ++)
o 1) - )

e al0) +b[1) — a| + ++) +b] — ——)
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Output of the Phase Flip Channel. \

e Assumption : each of the three encoded qubits is affected by a
phase flip channel independently

o F,it =E, 9 E; ® £, with 4,5,k € {0,1} : a list of linear
operators on the three-qubit system

— Fg=+/1—pl and Ey = \/po :
EjEy=(1—-p)I, E|E =pl
— Completeness identity :

Y El, Eyx=) ElE;®ElE; & E]E,

17k 17k
= > (1=-p) ' -p) YA -p pIeIo]
ijk

= (1-p) +pl=1I /
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/ e £ : quantum operation which describes the three-qubit phase \

flip channel
ZEijlO @]k
17k

e Input state of the channel : |¢) = a|+ ++) + b] — ——)

e QOutput state of the channel : a mixed state

W W ZE’Uklw z]k

17k
with ensemble {)\’ijka Ewk|¢>/)\wk} where

Eijk|¢) = aEi|+)Ej|+) Ex|+) + bEi|—) Ej| =) Ex|-)
and
Z]k <¢’EzjkEZ]k|¢> (1 o p)l—’bp’&(l _p)l_jp](l o p)l_kpk
— When a = b, Ezgk(|¢>) = El—i,l—j,l—k(‘w» and the

k ensemble of the mixed state £(|¢)(y|) can be simplified /
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‘Syndrome Measurement and Syndrome.

e A thinking : each intact or corrupted state in the ensemble

{Nijk, Eijk|)/Aiji} of the channel output state £(|¢)(¢]) is in
one of the following orthogonal subspaces of the state space of

the three-qubit system

G6 — Span{\ + ++>7 | R __>}7 Gll — Span{\ o ++>7 | + __>}7
Gy = Span{| + —+),| —+—)}, Gz =Span{|++-),| - —+H)}

o {P),P/,P;, Pi} : alegitimate syndrome measurement where P/

/
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is the projector of the subspace G/

Pp=|+++)(++++|-—)-——|=HPRH,
Pi=]-++)(—+++|+—-——)+——-|=HPH,
Py=]+—+)(+—+[+|—+-){—+—|=HPH,
Py=|++-)++—|+|-—+)(——+=HPH

o H®32122H®3 = X1X2 and H®BZQZ3H®3 = X2X3 : two
consecutive observables as an alternative syndrome

measurement

— X1X5 : comparing the sign of the first two qubits with

spectral decomposition

X1 Xy = () (HH+ == (==l = (=) {(+=|+|-H){-+]&

\ — X5 X3 : comparing the sign of the last two qubits with /
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spectral decomposition

Xo X3 = IQ(|++) (++|+|==) (= =) = I (|4 =) {(+ = |+]|=+)(—+
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/ ‘ The Shor Code '

e Correct an arbitrary error on a single qubit

e The encoding circuit diagram

%) O H I

10>

10> ® [ J

10>

10> g H I

10>
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‘ The Encoding Algorithm I

There are two stages

\_

e 1st stage : three-qubit phase flip code
0) = [+ ++), [H—=]-——)

e 2nd stage : three-quit bit flip code

~|000) + [111)
‘+>' \/5

Y ~000) — [111)
’ | V2

e A nine-qubit code

(J000) + [111))(]000) + [111))(]000) + [111))

0) +— |01) = 773
1) (1) = (]000) — [111))(|000) — |111))(|000) — |111))
L) = 7

~

Y

/
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Theory of Quantum Error-Correcting Codes I
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Key Features of Quantum Error-CorretionI \

e Encoding : a unitary transformation which maps the state
space of a k-qubit quantum system (embeded as a subspace of
the state space H of an n-qubit quantum system, called the
information space A) into a quantum error-correcting code C
(also as a subspace of H, called the code space)

— H : the state space of a 3-qubit quantum system
— A={(a|0) +0|1)) ® |0) ® |0)} : the information space
— C = {a|000) + b[111)} : the code space
— P : the projector from H to the code space C
e Noise : described by a quantum operation £& with operation
elements {F;}, which may not be trace-preserving

— FE); : correctable error patterns which map the code spaces
into undeformed and orthogonal subspaces of H /
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+x Orthogonality : Reliable distinguishability by the
syndrome measurement

*x Undeformation : each error pattern F; maps orthogonal
codewords to orthogonal states in order to be able to

recover codewords from the error

~
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e Lirror-correction operation : a trace-preserving quantum
operation R such that for any state p whose support lies in the

code space C', we have

(Ro&)(p) xp
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Quantum Error-Correting Conditions

e (: a quantum code
e P : the projector onto C
e £ : a quantum operation with operation elements { F;}

A neccesary and sufficient codition for the existence of an

error-correction operation R correcting £ on C'is that
PE/E;P = oy, P
for some Hermitian matrix o of complex numbers

e F;: (noise &) error patterns and if such an error-correction

operation R exists, correctable error patterns

\_

~
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e d =u'ou : a diagonalization of the Hermitian matrix a by the

unitary matrix u

A : : :
o [ = ZZ u;kE; - a unitary equivalent set of operation elements

for the noise &

PFIRP =) uluyPEE;P =) ul.a;uyP = duP
ij ij
— dir >0 : PF,:[FZP is a positive operator
x o : a positive operator

— If dip, = 0 then F}, is the zero operator and will be ignored

/
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o [I.P =U, \/PF,IFkP = /dp UL P : left polar decomposition of

F, P, where U is a unitary operator

— F}, : rotating the code space C' = P(H) into the subspace
defined by the projector

Py = UxPU! = Fy PU /\/ds
e {P.(H)} : a collection of orthogonal subspaces of H

Uy PF.F,PU}  dyUyPU]
vV dikdy Vdikdy

e {P.} : a projective measurement as a syndrome measurement,

PP, = PIP, =

where additional projectors P, may be augmented to satisfy
the completeness relation >, Py + > ,, P =1

o U ,;[ : Tecovery operator when the syndrome is k

/
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/o R(o)=>_,.U ,iPkaPkUk . the error-correction operation \
e p : a density operator whose support is in the code space C,
i.e., p = Pp and then /p = P,/p, which implies
UlP.F\/p = UPEP\/p
= U UxPFF/p/Vduk
= SV Py/p
= S/ diry/p

R(E(p)) = Y UlP.FpFPUy
kl

= Z Okldkkp = (Z dkk) poxXp
ki k




YRS

N

{E;} : correctable (noise &) error patterns
R : error-correction operation with operation elements {R; }

Ec : a quantum operation such that for any density operator p,

not necessarily having support in the code space C', we have

Ec(p) = E(PpP)

R(Ec(p)) = R(E(PpP)) < PpP : the operator PpP has suport
in C' and the proportional positive constant c is independent of

p since both R o £~ and P - P are linear maps, we have

Y " R;E;PpPE|R! = cPpP
]

for any density operator p /
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e {R,;E;P} and {/cP} : two sets of operation elements for the

same quantum operation and by the unitary freedom, we have
Ry E1 P = O P,
where (3;; are complex numbers, and then
PE'RIRLE,;P = (;;PBr; P = [3;,81; P
and summing over k, we have

PE]E;P = Zﬁkzﬁm =y P

with a;; = >, 67, 0k; a Hermitian matrix, since

Y RiR, =1
k
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Then for any density operator p whose support is in C', we have

‘The Error Discretization Theorem' \

e (' : a quantum code
e P : the projector onto C
e R : the error-correction operation

e £ : a quantum operation with correctable error patterns
(operation elements) {F;}

e F : a quantum operation with error patterns (operation
elements) {F;} which are linear combinations of the correctable

error patterns Ej;, i.e, F; = > . 3;;EF; for any complex numbers

Bji

R(F(p)) xp

/
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o PEZ.T E;P = d;; P : the matrix [d;;] is diagonal with positive

entries

o {U ,1 Py} : operation elements of the error-correction operation
R such that for any density operator p whose support is in the
code space C

U;;rPkEz'\/ﬁ = 0kiV/ drkA/pP

which implies that
U,IPij\/ﬁ = Zﬁjicski\/ dri\/P = Mjk\ drk/pP

and thus

R(F(p) = Y ULP:Fj/pF] Pelx = 3 mjk[*dirp o< p
kj Jjk

/
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A Theory of Classical Binary Linear Block Codes.
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‘Binary Linear Block Codes'




eV

Construction of Quantum Error-Correcting Codes
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/ ‘ Calderbank-Shor-Steane Codes ' \

e (1 and (s : [n, k1] and [n, ko] classical binary linear codes with
— CQ C Cl

— O and C5 both correct t errors
e T =x+ C5: acoset of (s in (' containing x € (4
e H : the state space of an n-qubit quantum system
e |Z) =|r+ () : astate in H corresponding to the coset

z) = |z + Cy) = T+ )

yGC’2

e The [n, k1 — ko] quantum code CSS(C4,Cs) : the subspace of
\ H spanned by the orthonormal set {|z),z € C1/C5} /
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k flip occur and Os otherwise /

‘ Error Model ' \

e Independent error model : error affects each qubit
independently

e The error discretization theorem : an arbitrary single-qubit
error pattern (a linear combination of the error patterns
I,0.,0,,0,0,) is correctable if {I,0,,0,,0,0,} are correctable

error patterns

— The error pattern o0, is the total effect of firstly applying
error pattern o, and then secondly applying error pattern

Oz

e ¢, : n-bit phase flip (error pattern) indicator with 1s where
phase flip occur and Os otherwise

e ¢, : n-bit bit flip (error pattern) indicator with 1s where bit
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e An error pattern with which each qubit is affected by any of
the single qubit error patterns I,0,,0.,0,0, can be
represented by an indicator as the concatenation e, o e, of an

bit flip indicator e, and an phase flip indicator e,

— An example : (1,0,0,1)0(0,1,0,1) means that the first
qubit is affected by a bit flip error, the second qubit is
affected by a phase flip error, the third qubit is error-free,
and the last qubit is affected by a bit and phase flip error

— The effect of error pattern with indicator e, o e, : for a
computational basis {|l)} of H, we have

1) == (1) L+ )

e Correctable error patterns : all error patterns with indicator
e, o e, such that wy(e,) <t and wy(e,) <t
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‘ Error-Detection and Error-Correction ' \

— _ _ 1 ) .

Z) = |+ Cs) = A D yec, |T +y) ¢ the transmitted
codeword

e, 0 €, : the correctable error pattern occurred

—1)@Fv)ez 1z 49+ e,) : the received

= 7= T yee

(corrupted) state

Two stages : firstly detect and correct the bit flip error
indicator e, and secondly detect and corrrect the phase flip
error indicator

A1 : a kqp-qubit ancillary quantum system to store the
syndrome of C7, whose initial state is set to |0)

H, : a parity-check matrix of the classical binary linear code C'y

C'1-syndrome calculation : a unitary operator on the /
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/ (n + k1)-qubit composite system

e Detection of the Bit flip error indicator e, : projective

~

lz+y+e)|0) — |z+yte) | Hi(z+y+er)) = |lx+yter)|Hiey)

— Since x +y € C1, we have Hy(x +y) =0

— Since (7 can correct up to t classical errors, x + y + e, are
all different for different coset leader x in Cy/C5, different
y € Cy and different e, with wy(e;) <t

r+y)-e, .
\/|C—Zy€CQ( 1)@+v)e: |z 4y + e, )|Hye,) : the state of the

(n + k1)-qubit composite system after Ci-syndrome calculation

measuremnet on the computational basis of the ancilla

— The outcome is Hie, with probability 1 which is used to

find the correctable error pattern e, by any calssical

error-correcting procedure /
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— The state of the n-qubit system after the measurement is

1
S (=)@ |z 4y 46,

V |02| yECQ

e Correction of the Bit flip error indicator e, : applying a bit flip

operator o, to each qubit where a bit flip occurred and

resulting in the state

1 Xr &
o > (FLEFe | 4y
2 yeCs

e H®™ : applying a Hadamard gate to each qubit (to convert

phase flip errors to bit flip errors) and leaving the state

2" —1

T 2 2 (D

k=0 yECg
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1
V ‘C2\2n k’=0 yECQ

1 /
— _1 x-k k/+ez

— When k' € C5-, we have y - k' = 0 for all y € Cy and then

D ()7 = |Cy|

yeCa

— When k' & C5-, we have y - k' = 0 for half of y € Cy and
y - k' = 1 for half of y € Cy and then

> ()7 =0

yeCa

e As: a (n — ko)-qubit ancillary quantum system to store the

\ syndrome of Cy, whose initial state is set to |0)

~

Z Z (_1)(w+y)'k/\k/ +e,), where k' = e, + k

/
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/ e H, : a parity-check matrix of the classical binary linear code \

Cy
o Ci-syndrome calculation : a unitary operator on the

(2n — ko )-qubit composite system
K+ e2)|0) — |k + ex)|Ho(K' + €.)) = |k + e.)| Haex)

— Since k¥’ € C3, we have Hok' = 0

different for different k' € C3 and different e, with
wr(e,) <t

* Vo 2wect (7D

(2n — ky)-qubit composite system after C3--syndrome

vk |k + e,)|Hae,) : the state of the

calculation

e Detection of the Bit flip error indicator e, : projective

k measuremnet on the computational basis of the ancilla

— Since O3 can correct up to t classical errors, k' + e, are all

/
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e Correction of the phase flip error indicator e, :

— The outcome is Hoe, with probability 1 which is used to
find the correctable error pattern e, by any calssical

error-correcting procedure

— The state of the n—qubit system after the measurement is

mk’|k/_|_ez>

V 2”/|C2 Z

flip operator o, to each qubit where a bit flip occurred and

resulting in the state

2" —1

1 a: k’ :c—l—y
NeTe ZC \/\c 7 2 2 (1

o H®" : applying a Hadamard gate to each qubit again and

~

applying a bit

FIK)
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recovering the state

|f> = |$—|-CQ> =




78S

-~

\o Cy C (]

‘An Example : the Steane Code.

0
0
1

1
0
0
0

0
1
0

0
1
0
0

0
1
1

0
0
1
0

1
0
0

0
0
0
1

1
0
1

—_ = = O

1
1
0

1
0
1
1

1
1
1

1
1
0
1

e C; =C : the [7,4,3] Hamming code with parity-check matrix

e Oy =Ct: al7,3,4] linear code with parity-check matrix

~
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e O =C
e Both C; and Cf are 1-error-correcting codes

e The Steane code is a [7,1] CSS quantum code which can

correct one arbitrary error




