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Unit Seven –

Quantum Error-Correcting Codes
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A Three-Qubit Code over Bit Filp Channel2
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Obstacles

• No cloning : states cannot be cloned like in classical repetition

codes

• Error is continuous : the ”amount” of error a state (which is

continuous in the state space of a quantum system) will face

with is dependent on the state itself

– The bit flip channel will not affect the state (|0〉+ |1〉)/
√
2

of a qubit at all

– The bit flip channel will change the state |0〉 of a qubit to

the state |1〉 ( and vice versa) totally

• Measurement may destroy quantum information : decoding

procedure needs observation of the channel output, which may

destroy the quantum state under observation and make

recovery impossible

3



'&

$%

Encoding Algorithm

ψ

0

0

• |0〉 7→ |000〉

• |1〉 7→ |111〉

• a|0〉+ b|1〉 7→ a|000〉+ b|111〉
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Output of the Bit Flip Channel

• Assumption : each of the three encoded qubits is affected by a

bit flip channel independently

• Eijk = Ei ⊗ Ej ⊗ Ek with i, j, k ∈ {0, 1} : a list of linear

operators on the three-qubit system

– E0 =
√
1− pI and E1 =

√
pσx :

E†
0E0 = (1− p)I, E†

1E1 = pI

– Completeness identity :
∑

ijk

E†
ijkEijk =

∑

ijk

E†
iEi ⊗ E

†
jEj ⊗ E

†
kEk

=
∑

ijk

(1− p)1−ipi(1− p)1−jpj(1− p)1−kpkI ⊗ I ⊗ I

= ((1− p) + p)3I = I
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• E : quantum operation which describes the three-qubit bit flip

channel

E(ρ) =
∑

ijk

EijkρE
†
ijk

• Input state of the channel : |ψ〉 = a|000〉+ b|111〉
• Output state of the channel : a mixed state

E(|ψ〉〈ψ|) =
∑

ijk

Eijk|ψ〉〈ψ|E†
ijk

with ensemble {λijk, Eijk|ψ〉/λijk} where

Eijk|ψ〉 = aEi|0〉Ej |0〉Ek|0〉+ bEi|1〉Ej |1〉Ek|1〉

and

λijk = 〈ψ|E†
ijkEijk|ψ〉 = (1− p)1−ipi(1− p)1−jpj(1− p)1−kpk

– When a = b, Eijk(|ψ〉) = E1−i,1−j,1−k(|ψ〉) and the

ensemble of the mixed state E(|ψ〉〈ψ|) can be simplified
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Syndrome Measurement and Syndrome

• A thinking : each intact or corrupted state in the ensemble

{λijk, Eijk|ψ〉/λijk} of the channel output state E(|ψ〉〈ψ|) is in
one of the following orthogonal subspaces of the state space of

the three-qubit system

G0 = Span{|000〉, |111〉}, G1 = Span{|100〉, |011〉},
G2 = Span{|010〉, |101〉}, G3 = Span{|001〉, |110〉}

• Syndrome measurement : a measurement which is able to tells

us what error, if any, occurred on the quantum state without

destroying the quantum state
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– {P0, P1, P2, P3} : a legitimate projective measurement

where Pi is the projector of the subspace Gi

P0 = |000〉〈000|+ |111〉〈111|, P1 = |100〉〈100|+ |011〉〈011|,
P2 = |010〉〈010|+ |101〉〈101|, P3 = |001〉〈001|+ |110〉〈110|

• Syndrome : the result of the syndrome measurement

– Syndrome 0 : with probability

tr(P0E(|ψ〉〈ψ|)P0) = tr(E000|ψ〉〈ψ|E†
000 + E111|ψ〉〈ψ|E†

111)

= (1− p)3 + p3

and the state after the syndrome measurement is

E000|ψ〉〈ψ|E†
000 + E111|ψ〉〈ψ|E†

111

(1− p)3 + p3
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– Syndrome 1 : with probability

tr(P1E(|ψ〉〈ψ|)P1) = tr(E100|ψ〉〈ψ|E†
100 + E011|ψ〉〈ψ|E†

011)

= (1− p)2p+ (1− p)p2 = (1− p)p

and the state after the syndrome measurement is

E100|ψ〉〈ψ|E†
100 + E011|ψ〉〈ψ|E†

011

(1− p)p

– Syndrome 2 : with probability

tr(P2E(|ψ〉〈ψ|)P2) = tr(E010|ψ〉〈ψ|E†
010 + E101|ψ〉〈ψ|E†

101)

= (1− p)2p+ (1− p)p2 = (1− p)p

and the state after the syndrome measurement is

E010|ψ〉〈ψ|E†
010 + E101|ψ〉〈ψ|E†

101

(1− p)p
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– Syndrome 3 : with probability

tr(P3E(|ψ〉〈ψ|)P3) = tr(E001|ψ〉〈ψ|E†
001 + E110|ψ〉〈ψ|E†

110)

= (1− p)2p+ (1− p)p2 = (1− p)p

and the state after the syndrome measurement is

E001|ψ〉〈ψ|E†
001 + E110|ψ〉〈ψ|E†

110

(1− p)p
• Ambiguity : two intact or corrupted states in the ensemble

{λijk, Eijk|ψ〉/λijk} of the channel output state E(|ψ〉〈ψ|) will
produce the same syndrome measurement output, called

syndrome

– Syndrome 0 : E000|ψ〉/λ000 and E111|ψ〉/λ111

– Syndrome 1 : E100|ψ〉/λ100 and E011|ψ〉/λ011

– Syndrome 2 : E010|ψ〉/λ010 and E101|ψ〉/λ101

– Syndrome 3 : E001|ψ〉/λ001 and E110|ψ〉/λ110

1
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• Cosets : a coset is the set of all states in the ensemble

{λijk, Eijk|ψ〉/λijk} of the channel output state E(|ψ〉〈ψ|)
which will result in the same syndrome

1
1
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Undetectable Error Probability

• Undetectable error patterns : event patterns other than

E000|ψ〉/λ000 in the coset of E000|ψ〉/λ000, which is just

E111|ψ〉/λ111

• Undetectable error probability : λ111 = p3

1
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Uncorrectable Error Probability

• Correctable error patterns : (error) patterns each of which is

selected from distinct cosets of the ensemble of the channel

output states

– We usually select a pattern with the largest probability of

occurrence from a coset as a correctable error pattern

– If p ≤ 0.5, we select the following correctable error patterns

E000|ψ〉/λ000, E100|ψ〉/λ100, E010|ψ〉/λ010, E001|ψ〉/λ001

• Uncorrectable error probability : the sum of the probability of

occurrence of each uncorrectable error pattern, which is

λ110 + λ011 + λ101 + λ111 = 3(1− p)p2 + p3

1
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Decoding Algorithm

• Conditioned on the syndrome, the decoding procedure takes

the following actions

– Syndrome 0 : do nothing

– Syndrome 1 : flip qubit one

– Syndrome 2 : flip qubit two

– Syndrome 3 : flip qubit three

• All correctable error patterns can be completely removed and

in those cases, the original state is recovered perfectly

1
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Alternative Syndrome Measurements by Two Observables

• Z1Z2(= Z ⊗ Z ⊗ I) : the first observable with spectral

decomposition

Z1Z2 = (|0〉〈0| − |1〉〈1|)⊗ (|0〉〈0| − |1〉〈1|)⊗ I
= (|00〉〈00|+ |11〉〈11|)⊗ I − (|01〉〈01|+ |10〉〈10|)⊗ I

– A projective measurement with projectors

P+1
12 = (|00〉〈00|+|11〉〈11|)⊗I, P−1

12 = (|01〉〈01|+|10〉〈10|)⊗I
– Outcome (syndrome) +1 : when the values of the first and

the second qubits are the same

– Outcome (syndrome) -1 : when the values of the first and

the second qubits are different

– The observable Z1Z2 provides one bit of information about

the error pattern without destroying the channel output

1
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quantum state

• Z2Z3(= I ⊗ Z ⊗ Z) : the second observable with spectral

decomposition

Z2Z3 = I ⊗ (|0〉〈0| − |1〉〈1|)⊗ (|0〉〈0| − |1〉〈1|)
= I ⊗ (|00〉〈00|+ |11〉〈11|)− I ⊗ (|01〉〈01|+ |10〉〈10|)

– A projective measurement with projectors

P+1
23 = I⊗(|00〉〈00|+|11〉〈11|), P−1

23 = I⊗(|01〉〈01|+|10〉〈10|)
– Outcome (syndrome) +1 : when the values of the second

and the third qubits are the same

– Outcome (syndrome) -1 : when the values of the second and

the third qubits are different

– The observable Z2Z3 provides one bit of information about

the error pattern without destroying the channel output

quantum state

1
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• Syndrome +1+1 : with probability

tr(P+1
12 E(|ψ〉〈ψ|)P+1

12 ) · tr
(

P+1
23

P+1
12 E(|ψ〉〈ψ|)P+1

12

tr(P+1
12 E(|ψ〉〈ψ|)P+1

12 )
P+1

23

)

= tr
(

P+1
23 P

+1
12 E(|ψ〉〈ψ|)P+1

12 P
+1
23

)

= tr(E000|ψ〉〈ψ|E†
000 + E111|ψ〉〈ψ|E†

111)

= (1− p)3 + p3

and the state after the two projective measurements

P+1
23

P+1

12
E(|ψ〉〈ψ|)P+1

12

tr(P+1

12
E(|ψ〉〈ψ|)P+1

12
)
P+1

23

tr
(

P+1
23

P+1

12
E(|ψ〉〈ψ|)P+1

12

tr(P+1

12
E(|ψ〉〈ψ|)P+1

12
)
P+1

23

) =
E000|ψ〉〈ψ|E†

000 + E111|ψ〉〈ψ|E†
111

(1− p)3 + p3

– This is the same as when syndrome 0 is produced by the

previous syndrome measurement

• Syndrome -1+1 : the same as syndrome 1 in the previous

syndrome measurement

1
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• Syndrome -1-1 : the same as syndrome 2 in the previous

syndrome measurement

• Syndrome +1-1 : the same as syndrome 3 in the previous

syndrome measurement

1
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A Three-Qubit Code over Phase Filp Channel1
9
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Turning Phase Flip Channel to Bit Flip Channel

• {|0〉, |1〉} : the computational basis of a qubit

• |+〉 = (|0〉+ |1〉)/
√
2, |−〉 = (|0〉 − |1〉)/

√
2 : another

orthonormal basis of the state space of the qubit

• |ψ〉 = a|+〉+ b|−〉 : a state of the qubit as channel input state

• Phase flip channel Epf : with probability 1− p, the output

state is the same as the input state and with probability p, the

output state becomes

σz|ψ〉 = a|−〉+ b|+〉

– The effect of the phase flip channel is to exchange the two

states |+〉 and |−〉, similar to the bit flip channel to

exchange the two states |0〉 and |1〉

2
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Encoding Algorithm

� � �

� � �

H

H

H

ψ

• |0〉 7→ |+++〉

• |1〉 7→ | − −−〉

• a|0〉+ b|1〉 7→ a|+++〉+ b| − −−〉

2
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Output of the Phase Flip Channel

• Assumption : each of the three encoded qubits is affected by a

phase flip channel independently

• Eijk = Ei ⊗ Ej ⊗ Ek with i, j, k ∈ {0, 1} : a list of linear

operators on the three-qubit system

– E0 =
√
1− pI and E1 =

√
pσz :

E†
0E0 = (1− p)I, E†

1E1 = pI

– Completeness identity :
∑

ijk

E†
ijkEijk =

∑

ijk

E†
iEi ⊗ E

†
jEj ⊗ E

†
kEk

=
∑

ijk

(1− p)1−ipi(1− p)1−jpj(1− p)1−kpkI ⊗ I ⊗ I

= ((1− p) + p)3I = I

2
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• E : quantum operation which describes the three-qubit phase

flip channel

E(ρ) =
∑

ijk

EijkρE
†
ijk

• Input state of the channel : |ψ〉 = a|+++〉+ b| − −−〉
• Output state of the channel : a mixed state

E(|ψ〉〈ψ|) =
∑

ijk

Eijk|ψ〉〈ψ|E†
ijk

with ensemble {λijk, Eijk|ψ〉/λijk} where

Eijk|ψ〉 = aEi|+〉Ej |+〉Ek|+〉+ bEi|−〉Ej |−〉Ek|−〉

and

λijk = 〈ψ|E†
ijkEijk|ψ〉 = (1− p)1−ipi(1− p)1−jpj(1− p)1−kpk

– When a = b, Eijk(|ψ〉) = E1−i,1−j,1−k(|ψ〉) and the

ensemble of the mixed state E(|ψ〉〈ψ|) can be simplified

2
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Syndrome Measurement and Syndrome

• A thinking : each intact or corrupted state in the ensemble

{λijk, Eijk|ψ〉/λijk} of the channel output state E(|ψ〉〈ψ|) is in
one of the following orthogonal subspaces of the state space of

the three-qubit system

G′
0 = Span{|+++〉, | − −−〉}, G′

1 = Span{| −++〉, |+−−〉},
G′

2 = Span{|+−+〉, | −+−〉}, G′
3 = Span{|++−〉, | − −+〉}

• {P ′
0, P

′
1, P

′
2, P

′
3} : a legitimate syndrome measurement where P ′

i

2
4
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is the projector of the subspace G′
i

P ′
0 = |+++〉〈+++|+ | − −−〉〈− − −| = HP0H,

P ′
1 = | −++〉〈−++|+ |+−−〉〈+−−| = HP1H,

P ′
2 = |+−+〉〈+−+|+ | −+−〉〈−+−| = HP2H,

P ′
3 = |++−〉〈++−|+ | − −+〉〈− −+| = HP3H

• H⊗3Z1Z2H
⊗3 = X1X2 and H⊗3Z2Z3H

⊗3 = X2X3 : two

consecutive observables as an alternative syndrome

measurement

– X1X2 : comparing the sign of the first two qubits with

spectral decomposition

X1X2 = (|++〉〈++|+|−−〉〈−−|)⊗I−(|+−〉〈+−|+|−+〉〈−+|)⊗I

– X2X3 : comparing the sign of the last two qubits with

2
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spectral decomposition

X2X3 = I⊗(|++〉〈++|+|−−〉〈−−|)−I⊗(|+−〉〈+−|+|−+〉〈−+|)

2
6
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The Shor Code

• Correct an arbitrary error on a single qubit

• The encoding circuit diagram

� � �

� � �

H

H

H

�� �

�� �

�� �

�� �

�� �

�� �

ψ

2
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The Encoding Algorithm

There are two stages

• 1st stage : three-qubit phase flip code

|0〉 7→ |+++〉, |1〉 7→ | − −−〉

• 2nd stage : three-quit bit flip code

|+〉 7→ |000〉+ |111〉√
2

, |−〉 7→ |000〉 − |111〉√
2

• A nine-qubit code

|0〉 7→ |0L〉 =
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

2
√
2

,

|1〉 7→ |1L〉 =
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

2
√
2

2
8
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Theory of Quantum Error-Correcting Codes2
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Key Features of Quantum Error-Corretion

• Encoding : a unitary transformation which maps the state

space of a k-qubit quantum system (embeded as a subspace of

the state space H of an n-qubit quantum system, called the

information space A) into a quantum error-correcting code C

(also as a subspace of H, called the code space)

– H : the state space of a 3-qubit quantum system

– A = {(a|0〉+ b|1〉)⊗ |0〉 ⊗ |0〉} : the information space

– C = {a|000〉+ b|111〉} : the code space

– P : the projector from H to the code space C

• Noise : described by a quantum operation E with operation

elements {Ei}, which may not be trace-preserving

– Ei : correctable error patterns which map the code spaces

into undeformed and orthogonal subspaces of H

3
0
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∗ Orthogonality : Reliable distinguishability by the

syndrome measurement

∗ Undeformation : each error pattern Ei maps orthogonal

codewords to orthogonal states in order to be able to

recover codewords from the error

3
1
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• Error-correction operation : a trace-preserving quantum

operation R such that for any state ρ whose support lies in the

code space C, we have

(R ◦ E)(ρ) ∝ ρ

3
2
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Quantum Error-Correting Conditions

• C : a quantum code

• P : the projector onto C

• E : a quantum operation with operation elements {Ei}

A neccesary and sufficient codition for the existence of an

error-correction operation R correcting E on C is that

PE†
iEjP = αijP

for some Hermitian matrix α of complex numbers

• Ei : (noise E) error patterns and if such an error-correction

operation R exists, correctable error patterns

3
3
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⇐=

• d = u†αu : a diagonalization of the Hermitian matrix α by the

unitary matrix u

• Fk
4
=
∑

i uikEi : a unitary equivalent set of operation elements

for the noise E

PF †
kFlP =

∑

ij

u†kiujlPE
†
iEjP =

∑

ij

u†kiαijujlP = dklP

– dkk ≥ 0 : PF †
kFlP is a positive operator

∗ α : a positive operator

– If dkk = 0 then Fk is the zero operator and will be ignored

3
4
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• FkP = Uk

√

PF †
kFkP =

√
dkkUkP : left polar decomposition of

FkP , where U is a unitary operator

– Fk : rotating the code space C = P (H) into the subspace

defined by the projector

Pk = UkPU
†
k = FkPU

†
k/
√

dkk

• {Pk(H)} : a collection of orthogonal subspaces of H

PkPl = P †
kPl =

UkPF
†
kFlPU

†
l√

dkkdll
=
dklUkPU

†
l√

dkkdll

• {Pk} : a projective measurement as a syndrome measurement,

where additional projectors Pk′ may be augmented to satisfy

the completeness relation
∑

k Pk +
∑

k′ Pk′ = I

• U †
k : recovery operator when the syndrome is k

3
5
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• R(σ) =
∑

k U
†
kPkσPkUk : the error-correction operation

• ρ : a density operator whose support is in the code space C,

i.e., ρ = Pρ and then
√
ρ = P

√
ρ, which implies

U †
kPkFl

√
ρ = U †

kP
†
kFlP

√
ρ

= U †
kUkPF

†
kFl
√
ρ/
√

dkk

= δkl
√

dkkP
√
ρ

= δkl
√

dkk
√
ρ

• R(E(ρ)) ∝ ρ :

R(E(ρ)) =
∑

kl

U †
kPkFlρF

†
l PkUk

=
∑

kl

δkldkkρ =

(

∑

k

dkk

)

ρ ∝ ρ

3
6
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=⇒

• {Ei} : correctable (noise E) error patterns

• R : error-correction operation with operation elements {Rj}

• EC : a quantum operation such that for any density operator ρ,

not necessarily having support in the code space C, we have

EC(ρ) = E(PρP )

• R(EC(ρ)) = R(E(PρP )) ∝ PρP : the operator PρP has suport

in C and the proportional positive constant c is independent of

ρ since both R ◦ EC and P · P are linear maps, we have
∑

ij

RjEiPρPE
†
iR

†
j = cPρP

for any density operator ρ

3
7
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• {RjEiP} and {√cP} : two sets of operation elements for the

same quantum operation and by the unitary freedom, we have

RkElP = βklP,

where βkl are complex numbers, and then

PE†
iR

†
kRkEjP = β∗kiPβkjP = β∗kiβkjP

and summing over k, we have

PE†
iEjP = (

∑

k

β∗kiβkj)P = αijP

with αij =
∑

k β
∗
kiβkj a Hermitian matrix, since

∑

k

R†
kRk = I

3
8
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The Error Discretization Theorem

• C : a quantum code

• P : the projector onto C

• R : the error-correction operation

• E : a quantum operation with correctable error patterns

(operation elements) {Ei}

• F : a quantum operation with error patterns (operation

elements) {Fj} which are linear combinations of the correctable

error patterns Ei, i.e, Fj =
∑

i βjiEi for any complex numbers

βji

Then for any density operator ρ whose support is in C, we have

R(F(ρ)) ∝ ρ

3
9



'&

$%

Proof

• PE†
iEjP = dijP : the matrix [dij ] is diagonal with positive

entries

• {U †
kPk} : operation elements of the error-correction operation

R such that for any density operator ρ whose support is in the

code space C

U †
kPkEi

√
ρ = δki

√

dkk
√
ρ

which implies that

U †
kPkFj

√
ρ =

∑

i

βjiδki
√

dkk
√
ρ = mjk

√

dkk
√
ρ

and thus

R(F(ρ)) =
∑

kj

U †
kPkFj

√
ρF †

j PkUk =
∑

jk

|mjk|2dkkρ ∝ ρ

4
0
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A Theory of Classical Binary Linear Block Codes4
1
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Binary Linear Block Codes

•

•

•

4
2
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Construction of Quantum Error-Correcting Codes4
3
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Calderbank-Shor-Steane Codes

• C1 and C2 : [n, k1] and [n, k2] classical binary linear codes with

– C2 ⊂ C1

– C1 and C⊥
2 both correct t errors

• x̄ = x+ C2 : a coset of C2 in C1 containing x ∈ C1

• H : the state space of an n-qubit quantum system

• |x̄〉 = |x+ C2〉 : a state in H corresponding to the coset

x̄ = x+ C2

|x̄〉 = |x+ C2〉 =
1

√

|C2|
∑

y∈C2

|x+ y〉

• The [n, k1 − k2] quantum code CSS(C1, C2) : the subspace of

H spanned by the orthonormal set {|x̄〉, x̄ ∈ C1/C2}

4
4
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Error Model

• Independent error model : error affects each qubit

independently

• The error discretization theorem : an arbitrary single-qubit

error pattern (a linear combination of the error patterns

I, σx, σz, σxσz) is correctable if {I, σx, σz, σxσz} are correctable

error patterns

– The error pattern σxσz is the total effect of firstly applying

error pattern σz and then secondly applying error pattern

σx

• ez : n-bit phase flip (error pattern) indicator with 1s where

phase flip occur and 0s otherwise

• ex : n-bit bit flip (error pattern) indicator with 1s where bit

flip occur and 0s otherwise

4
5
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• An error pattern with which each qubit is affected by any of

the single qubit error patterns I, σx, σz, σxσz can be

represented by an indicator as the concatenation ex ◦ ez of an

bit flip indicator ex and an phase flip indicator ez

– An example : (1, 0, 0, 1) ◦ (0, 1, 0, 1) means that the first

qubit is affected by a bit flip error, the second qubit is

affected by a phase flip error, the third qubit is error-free,

and the last qubit is affected by a bit and phase flip error

– The effect of error pattern with indicator ex ◦ ez : for a

computational basis {|l〉} of H, we have

|l〉 ex◦ez−→ (−1)l·ez |l + ex〉

• Correctable error patterns : all error patterns with indicator

ex ◦ ez such that wH(ex) ≤ t and wH(ez) ≤ t

4
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Error-Detection and Error-Correction

• |x̄〉 = |x+ C2〉 = 1√
|C2|

∑

y∈C2
|x+ y〉 : the transmitted

codeword

• ex ◦ ez : the correctable error pattern occurred

• |r〉 = 1√
|C2|

∑

y∈C2
(−1)(x+y)·ez |x+ y + ex〉 : the received

(corrupted) state

• Two stages : firstly detect and correct the bit flip error

indicator ex and secondly detect and corrrect the phase flip

error indicator

• A1 : a k1-qubit ancillary quantum system to store the

syndrome of C1, whose initial state is set to |0〉
• H1 : a parity-check matrix of the classical binary linear code C1

• C1-syndrome calculation : a unitary operator on the

4
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(n+ k1)-qubit composite system

|x+y+ex〉|0〉 −→ |x+y+ex〉|H1(x+y+ex)〉 = |x+y+ex〉|H1ex〉

– Since x+ y ∈ C1, we have H1(x+ y) = 0

– Since C1 can correct up to t classical errors, x+ y + ex are

all different for different coset leader x in C1/C2, different

y ∈ C2 and different ex with wH(ex) ≤ t

• 1√
|C2|

∑

y∈C2
(−1)(x+y)·ez |x+ y + ex〉|H1ex〉 : the state of the

(n+ k1)-qubit composite system after C1-syndrome calculation

• Detection of the Bit flip error indicator ex : projective

measuremnet on the computational basis of the ancilla

– The outcome is H1ex with probability 1 which is used to

find the correctable error pattern ex by any calssical

error-correcting procedure

4
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– The state of the n-qubit system after the measurement is

1
√

|C2|
∑

y∈C2

(−1)(x+y)·ez |x+ y + ex〉

• Correction of the Bit flip error indicator ex : applying a bit flip

operator σx to each qubit where a bit flip occurred and

resulting in the state

1
√

|C2|
∑

y∈C2

(−1)(x+y)·ez |x+ y〉

• H⊗n : applying a Hadamard gate to each qubit (to convert

phase flip errors to bit flip errors) and leaving the state

1
√

|C2|2n
2n−1
∑

k=0

∑

y∈C2

(−1)(x+y)·(ez+k|k〉

4
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=
1

√

|C2|2n
2n−1
∑

k′=0

∑

y∈C2

(−1)(x+y)·k′ |k′ + ez〉,where k′ = ez + k

=
1√

2n/|C2|
∑

k′∈C⊥

2

(−1)x·k′ |k′ + ez〉

– When k′ ∈ C⊥
2 , we have y · k′ = 0 for all y ∈ C2 and then

∑

y∈C2

(−1)y·(k′ = |C2|

– When k′ 6∈ C⊥
2 , we have y · k′ = 0 for half of y ∈ C2 and

y · k′ = 1 for half of y ∈ C2 and then
∑

y∈C2

(−1)y·(k′ = 0

• A2 : a (n− k2)-qubit ancillary quantum system to store the

syndrome of C⊥
2 , whose initial state is set to |0〉

5
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• H2 : a parity-check matrix of the classical binary linear code

C⊥
2

• C⊥
2 -syndrome calculation : a unitary operator on the

(2n− k2)-qubit composite system

|k′ + ez〉|0〉 −→ |k′ + ez〉|H2(k
′ + ez)〉 = |k′ + ez〉|H2ez〉

– Since k′ ∈ C⊥
2 , we have H2k

′ = 0

– Since C⊥
2 can correct up to t classical errors, k′ + ez are all

different for different k′ ∈ C⊥
2 and different ez with

wH(ez) ≤ t

• 1√
2n/|C2|

∑

k′∈C⊥

2

(−1)x·k′ |k′ + ez〉|H2ez〉 : the state of the

(2n− k2)-qubit composite system after C⊥
2 -syndrome

calculation

• Detection of the Bit flip error indicator ez : projective

measuremnet on the computational basis of the ancilla

5
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– The outcome is H2ez with probability 1 which is used to

find the correctable error pattern ez by any calssical

error-correcting procedure

– The state of the n-qubit system after the measurement is

1
√

2n/|C2|
∑

k′∈C⊥

2

(−1)x·k′ |k′ + ez〉

• Correction of the phase flip error indicator ez : applying a bit

flip operator σx to each qubit where a bit flip occurred and

resulting in the state

1
√

2n/|C2|
∑

k′∈C⊥

2

(−1)x·k′ |k′〉 = 1
√

|C2|2n
2n−1
∑

k′=0

∑

y∈C2

(−1)(x+y)·k′ |k′〉

• H⊗n : applying a Hadamard gate to each qubit again and

5
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recovering the state

|x̄〉 = |x+ C2〉 =
1

√

|C2|
∑

y∈C2

|x+ y〉
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An Example : the Steane Code

• C1 = C : the [7,4,3] Hamming code with parity-check matrix

H =









0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1









• C2 = C⊥ : a [7,3,4] linear code with parity-check matrix

H ′ =















1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1















• C2 ⊂ C1
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• C⊥
2 = C

• Both C1 and C⊥
2 are 1-error-correcting codes

• The Steane code is a [7, 1] CSS quantum code which can

correct one arbitrary error
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