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Unit Six – Quantum Operations1
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Open Quantum Systems

ρ U +UUρ
ρ

envρ

( )ρε
U

• Postulate 2 : the dynamics of a closed quantum system is
described by a unitary transform

• An open quantum system together with its environment
becomes a closed quantum system

• ρ : the density operator of the open quantum system, called
the principal quantum system

• ρenv : the density operator of the environment
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• U : a unitary operator on the state space of the closed
quantum system

• E(ρ) : the density operator of the principal quantum system
after the action of the unitary operator U

– Closed system

E(ρ) = UρU †

– Open system

E(ρ) = trenv
(

U (ρ⊗ ρenv)U †
)

∗ Assume that the principal quantum system is prepared
such that its correlation with the environment can be

completely destroyed (Correlated initial state of the

principal-environmental system will be discussed later)

∗ If the state space of the principal system has dimension d,
we will show that it is sufficient to model the environment

to have state space of dimension no greater than d2
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An Example

ρ

0

( )ρε

• ρ =
∑

ij αij |i〉〈j| : the density operator of the principal system
• ρenv = |0〉〈0| : the environment is in the pure state |0〉
• E(ρ) = P0ρP0 + P1ρP1 : P0 = |0〉〈0| and P1 = |1〉〈1| are
projective operators
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E(ρ) = tr2



U





∑

ij

αij |i〉〈j| ⊗ |0〉〈0|



U †





= tr2 (α00|0〉〈0| ⊗ |0〉〈0|+ α10|1〉〈0| ⊗ |1〉〈0|+
α01|0〉〈1| ⊗ |0〉〈1|+ α11|1〉〈1| ⊗ |1〉〈1|)

= α00|0〉〈0|+ α11|1〉〈1|
P0ρP0 = α00|0〉〈0|
P1ρP1 = α11|1〉〈1|
E(ρ) = P0ρP0 + P1ρP1
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Quantum Operations Formalism6
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The Input-Output Formalism

E(ρA) = trB
(

U
(

ρA ⊗ ρB
)

U †
)

or

E(ρA) = trA
(

U
(

ρA ⊗ ρB
)

U †
)

• ρA : the input density operator of quantum systems A

• ρB : the density operators of quantum system B

• E(ρA) : the output density operator of quantum systems A or
B
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A General Definition of Triplet 〈ψ|U |ϕ〉

• H1 and H2 : complex inner product spaces

• U : a linear operator on the tensor product space H1 ⊗H2

U =
∑

i

αiT
H1

i ⊗ TH2

i ,

where TH1

i and TH2

i are linear operators on H1 and H2

respectively

• |ψ〉 and |ϕ〉 : two vectors in H2

• 〈ψ|U |ϕ〉 : a linear operator on H1

〈ψ|U |ϕ〉4=
∑

i

αiT
H1

i 〈ψ|TH2

i |ϕ〉

• 〈ψ| · |ϕ〉 : a linear map from L(H1 ⊗H2, H1 ⊗H2) to L(H1, H1)
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Well-defined

• {|j〉} : an orthonormal basis of H2

• {|j〉〈k|} : a basis of L(H2, H2)

• Unique representation : with TH2

i =
∑

jk βijk|j〉〈k|, we have

U =
∑

jk

(

∑

i

αiβijkT
H1

i

)

⊗ |j〉〈k|

Thus we have

〈ψ|U |ϕ〉 4
=

∑

i

αiT
H1

i 〈ψ|TH2

i |ϕ〉 =
∑

i

αiT
H1

i

∑

jk

βijk〈ψ|j〉〈k|ϕ〉

=
∑

jk

(

∑

i

αiβijkT
H1

i

)

〈ψ|j〉〈k|ϕ〉.
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A Theorem

tr2(U) =
∑

i〈i|U |i〉

• H1 and H2 : complex inner product spaces

• U : a linear operator on the tensor product space H1 ⊗H2

• {|i〉} : an orthonormal basis of H2

1
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Proof

tr2(U) = tr2





∑

j

αjT
H1

j ⊗ TH2

j





=
∑

j

αjT
H1

j tr(TH2

j )

=
∑

j

αjT
H1

j

∑

i

〈i|TH2

j |i〉

=
∑

i

∑

j

αjT
H1

j 〈i|TH2

j |i〉

=
∑

i

〈i|





∑

j

αjT
H1

j ⊗ TH2

j



 |i〉

1
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=
∑

i

〈i|U |i〉1
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A General Definition of Inner Product 〈ψ|ϕ〉

• H1 and H2 : complex inner product spaces

• |ψ〉 : a vectors in H1

• |ϕ〉 =
∑

i αi|vi〉 ⊗ |wi〉 : a vector in H1 ⊗H2

• 〈ψ|ϕ〉 : a vector in H2

〈ψ|ϕ〉4=
∑

i

αi〈ψ|vi〉|wi〉

• 〈ψ|·〉 : a linear transformation from H1 ⊗H2 to H2

1
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Well-defined

• {|j〉} : an orthonormal basis of H2

• Unique representation : with |wi〉 =
∑

j βij |j〉, we have

|ϕ〉 =
∑

j

(
∑

i

αiβij |vi〉)⊗ |j〉

Thus we have

〈ψ|ϕ〉 4
=

∑

i

αi〈ψ|vi〉|wi〉

=
∑

i

αi〈ψ|vi〉
∑

j

βij |j〉

=
∑

j

〈ψ|
(

∑

i

αiβij |vi〉
)

|j〉

1
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The Operator-Sum Representation of E

E(ρ) =
∑

k〈ek|U(ρ⊗ ρenv)U †|ek〉 =
∑

kmEkmρE
†
km

where Ekm = 〈ek|U
√
λm|ψm〉

• ρ : the density operator of the principal quantum system

• {|ek〉} : an orthonormal basis of the (finite-dimensional) state
space of the environment

• ρenv =
∑

m λm|ψm〉〈ψm| : the density operator of the
environment with ensemble {λm, |ψm〉}

• {Ekm} : operation elements for the quantum operation E

1
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Proof

• U =
∑

i αiT
pri
i ⊗ T envi

• ρenv =
∑

m λm|ψm〉〈ψm|

E(ρ)
= trenv

(

U (ρ⊗ ρenv)U †
)

=
∑

k

〈ek|(
∑

i

αiT
pri
i ⊗ T envi ) (ρ⊗ ρenv) (

∑

j

αjT
pri
j ⊗ T envj )†|ek〉

=
∑

k

∑

ij

αiα
∗
j 〈ek|

(

T prii ρT prij

† ⊗ T envi ρenvT
env
j

†
)

|ek〉

=
∑

k

∑

ij

αiα
∗
jT

pri
i ρT prij

†〈ek|T envi ρenvT
env
j

†|ek〉

1
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=
∑

k

∑

ij

αiα
∗
jT

pri
i ρT prij

†∑

m

λm〈ek|T envi |ψm〉〈ψm|T envj
†|ek〉

=
∑

k

∑

m

λm(
∑

i

αiT
pri
i 〈ek|T envi |ψm〉)ρ(

∑

j

αjT
pri
j 〈ek|T envj |ψm〉)†

=
∑

k

∑

m

λm〈ek|
∑

i

αiT
pri
i ⊗ T envi |ψm〉ρ(〈ek|

∑

j

αjT
pri
j ⊗ T envj |ψm〉)†

=
∑

k

∑

m

〈ek|U
√

λm|ψm〉ρ(〈ek|U
√

λm|ψm〉)†

=
∑

k

∑

m

EkmρE
†
km

where Ekm = 〈ek|U
√
λm|ψm〉

1
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Lemma

Let T be a linear operator on a Hilbert space H. If

tr(Tρ) = 1

for any density operators ρ on H, then we have

T = I

Proof.

Note that tr(Tρ) = 1 for any density operator ρ on H if and only if

tr(T |ψ〉〈ψ|) = 1, i.e. 〈ψ|T |ψ〉 = 1, for any unit vector |ψ〉 in H. Let
{|ek〉} be an orthonormal basis of H. For any i 6= j and any

non-zero complex numbers a, b such that |a|2 + |b|2 = 1, we have

1 = (a|ei〉+ b|ej〉)†T (a|ei〉+ b|ej〉)

1
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which implies that

a∗b〈ei|T |ej〉+ ab∗〈ej |T |ei〉 = 0.

By taking a, b both real, we have

〈ei|T |ej〉+ 〈ej |T |ei〉 = 0.

But by taking a real and b pure imaginary, we have

〈ei|T |ej〉 − 〈ej |T |ei〉 = 0.

Thus we conclude that 〈ei|T |ej〉 = 〈ej |T |ei〉 = 0 and the matrix
representation of T relative to the orthonormal basis {|ek〉} is the
identity matrix which implies that T = I.

1
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Completeness Relation on Operation Elements

∑

kmE
†
kmEkm = I

• E is trace-preserving : for for any density operator ρ,

tr(E(ρ)) = tr(trenv(U(ρ⊗ ρenv)U †)) = tr(U(ρ⊗ ρenv)U †)

= tr(U †U(ρ⊗ ρenv)) = tr(ρ⊗ ρenv) = tr(ρ)tr(ρenv)
= 1

• 1 = tr(E(ρ)) =
∑

km tr(EkmρE
†
km) =

∑

km tr(E
†
kmEkmρ) =

tr((
∑

kmE
†
kmEkm)ρ) for any density operator ρ

2
0
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Purification of the Environment

• ρ : the density operator of the principal quantum system

• ρenv =
∑

m λm|ψm〉〈ψm| : the density operator of the
environment with ensemble {λm, |ψm〉}

• {|mR〉} : an orthonormal basis of the state space of a reference
system R, having the same cardinality as that of {|ψm〉}

• |envR〉 : a pure state of the composite environment-R system

|envR〉 =
∑

m

√

λm|ψm〉|mR〉

such that

ρenv = trR(|envR〉〈envR|)

2
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Purification of the Environment (Cont’)

ρ ( )ρε
U

ρ

envρ

( )ρε
U

{>envR|

E(ρ) = trenv
(

U (ρ⊗ ρenv)U †
)

= trenvR
(

(U ⊗ IR)(ρ⊗ |envR〉〈envR|)(U ⊗ IR)†
)

Proof.

Note that for an orthonormal basis {|ek〉} of the state space of the
environment, {|ek〉|mR〉} is an orthonormal basis of the state space

2
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of the composite environment-R system. We have

trenvR
(

(U ⊗ IR)(ρ⊗ |envR〉〈envR|)(U ⊗ IR)†
)

=
∑

km

FkmρF
†
km

where

Fkm = 〈ek|〈mR|(U ⊗ IR)|envR〉
= 〈ek|〈mR|(U ⊗ IR)

∑

j

√

λj |ψj〉|jR〉

=
∑

j

√

λj〈ek|〈mR|(U ⊗ IR)|ψj〉|jR〉

=
∑

j

√

λj〈ek|U |ψj〉〈mR|jR〉

= 〈ek|U
√

λm|ψm〉
= Ekm

2
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Three Features of the Operator-Sum Representation2
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Physical Interpretation

• ρ : the density operator of the principal quantum system

• ρenv =
∑

m λm|ψm〉〈ψm| : the density operator of the
environment

• {|ek〉} : an orthonormal basis of the state space of the
environment

• Principle of implicit measurement : the state of the principal
system will not be affected if measurement is performed on the

environment

• {|ek〉〈ek|} : a projective measurement on the environment

• ρk : the state of the principal system given that outcome k
occurs

2
5



'&

$%

ρk = trenv

(

(I ⊗ |ek〉〈ek|)U(ρ⊗ ρenv)U †(I ⊗ |ek〉〈ek|)
tr((I ⊗ |ek〉〈ek|)U(ρ⊗ ρenv)U †(I ⊗ |ek〉〈ek|))

)

= trenv

( 〈ek|U(ρ⊗ ρenv)U †|ek〉 ⊗ |ek〉〈ek|
tr(〈ek|U(ρ⊗ ρenv)U †|ek〉 ⊗ |ek〉〈ek|)

)

=
〈ek|U(ρ⊗ ρenv)U †|ek〉tr(|ek〉〈ek|)
tr(〈ek|U(ρ⊗ ρenv)U †|ek〉)tr(|ek〉〈ek|)

=

∑

mEkmρE
†
km

tr(
∑

mEkmρE
†
km)

where Ekm = 〈ek|U
√
λm|ψm〉

• P(k) : the probability that outcome k occurs

P(k) = tr((I ⊗ |ek〉〈ek|)U(ρ⊗ ρenv)U †(I ⊗ |ek〉〈ek|))
= tr(

∑

m

EkmρE
†
km)

2
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E(ρ) =
∑

k P(k)ρk =
∑

kmEkmρE
†
km

• The action of the quantum operation E is equivalent to taking
the state ρ as input and randomly replacing it by

∑

mEkmρE
†
km

tr(
∑

mEkmρE
†
km)

with probability

tr(
∑

m

EkmρE
†
km)

• A quantum operation which describes a quantum noise process
will be referred to as a noisy quantum channel

2
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An Example (Revisited)

ρ

0

( )ρε

• ρ : the density operator of the principal system

• ρenv = |0E〉〈0E | : the environment is in the pure state |0E〉

• U =
|0P 0E〉〈0P 0E |+ |0P 1E〉〈0P 1E |+ |1P 1E〉〈1P 0E |+ |1P 0E〉〈1P 1E |

2
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• {|0E〉, |1E〉} : an orthonormal basis of the state space of the
environment

• E0 = 〈0E |U |0E〉 = |0P 〉〈0P | = P0

• E1 = 〈1E |U |0E〉 = |1P 〉〈1P | = P1

• E(ρ) = P0ρP0 + P1ρP1

2
9
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Effect of Global Measurement

• ρ : the density operator of the principal quantum system

• ρenv =
∑

j λj |ψj〉〈ψj | : the density operator of the environment

• {|ek〉} : an orthonormal basis of the state space of the
environment

• {Pm} : projective measurement after the unitary operation U

• The state of the principal system given that outcome m occurs

is

trenv

(

PmU(ρ⊗ ρenv)U †Pm
tr(PmU(ρ⊗ ρenv)U †Pm)

)

with probability

tr(PmU(ρ⊗ ρenv)U †Pm)

3
0
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Define a map

Em(ρ)
4
=trenv(PmU(ρ⊗ ρenv)U †Pm) =

∑

kj

E
(m)
kj ρE

(m)
kj

†

where

E
(m)
kj = 〈ek|PmU

√

λj |ψj〉

• The state of the principal system given that outcome m occurs

is
Em(ρ)
tr(Em(ρ))

with probability tr(Em(ρ))

• {Em(ρ)} : a kind of measurement process which generalizes the
measurement described in Unit Three where Em(ρ) = EmρE

†
m

for a quantum measurement {Em}

3
1
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The Converse Problem

• {Ek} : a given collection of operator elements acting on a
principal quantum system and satisfying the completeness

relation
∑

k

E†
kEk = I

• The problem : find a system-environment model, i.e., an
environment, a unitary operator U on the composite

system-environment model such that {Ek} is the operator
elements in the operator-sum representation of the quantum

operation E

3
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A System-Environment Model

• ρ =
∑

i λi|ψi〉〈ψi| : the density operator of the principal system

• {|ek〉} : an orthonormal basis of the state space of a chosen
environment, having the same cardinality as that of {Ek}

• |0〉 : an arbitrarily chosen state of the environment

• U : a linear operator acting on the states of the form |ψ〉|0〉
where |ψ〉 is any state of the principal system

U |ψ〉|0〉 =
∑

k

Ek|ψ〉|ek〉

and for any states |ψ〉 and |ϕ〉 of the principal system,

〈ψ|〈0|U †U |ϕ〉|0〉 =
∑

kj

(Ek|ψ〉|ek〉)†(Ej |ϕ〉|ej〉)

3
3
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=
∑

kj

〈ψ|E†
kEj |ϕ〉〈ek|ej〉 = 〈ψ|

∑

k

E†
kEk|ϕ〉 = 〈ψ|ϕ〉

Thus U can be extended to a unitary operator

U =
∑

i αiT
pri
i ⊗ T envi on the composite system and we have for

any state |ψ〉 of the principal system

(〈ek|U |0〉)|ψ〉 =
∑

i

αiT
pri
i 〈ek|T envi |0〉|ψ〉

=
∑

i

αiT
pri
i |ψ〉〈ek|T envi |0〉

= 〈ek|(
∑

i

αiT
pri
i ⊗ T envi )|ψ〉|0〉

= 〈ek|U |ψ〉|0〉 = 〈ek|
∑

j

Ej |ψ〉|ej〉 = Ek|ψ〉

which says that Ek = 〈ek|U |0〉

3
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Axiomatic Approach to Quantum Operations3
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Formal Definition of Quantum Operations

A quantum operation E is a map from the set of density operators
of the input space Q1 to the set of positive operators of the output

space Q2, satisfying the three axiomatic properties as follows.

3
6
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Three Axioms

• Axiom I : tr(E(ρ)) is the probability that the process
represented by E occurs, when ρ is the input density operator,

0 ≤ tr(E(ρ)) ≤ 1

• Axiom II : E is a convex-linear map on the set of density
operators, i.e., for non-negative numbers λi with

∑

i λi = 1 and

density operators ρi, E(
∑

i λiρi) =
∑

i λiE(ρi)

• Axiom III : E is a completely positive map, i.e., for an
arbitrarily introduced system R of arbitrary dimension and the

identity map I on the set of all linear operators on R, I ⊗ E is
a well-defined map from the set of positive operators of the

composite system RQ1 to the set of positive operators of the

composite system RQ2

3
7
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Axiom I

tr(E(ρ)) is the probability that the process represented by E occurs,
when ρ is the input density operator,

0 ≤ tr(E(ρ)) ≤ 1

• This is a mathematical convenience to include the case of
measurement as quantum operation, where the trace may not

be preserved and tr(E(ρ)) is exactly the probability of the
occurrence of a particular measurement outcome when the

state before measurement is ρ. The state after measurement

becomes E(ρ)/tr(E(ρ))

3
8
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Axiom II

E is a convex-linear map on the set of density operators, i.e., for
non-negative numbers pi with

∑

i pi = 1 and density operators ρi,

E(
∑

i

piρi) =
∑

i

piE(ρi)

• ρ =
∑

i piρi : the input quantum state as a random selection

from the ensemble {pi, ρi} of quantum (mixed) states
• E(ρ)/tr(E(ρ)) = E(ρ)/p(E) : the resulting state as a random
selection from the ensemble {p(i|E), E(ρi)/tr(E(ρi))} of
quantum (mixed) states, where p(i|E) is the probability that
the state prepared is ρi, given that the process described by E
occurs, i.e., we demand

E(ρ)
p(E) =

∑

i

p(i|E) E(ρi)
tr(E(ρi))

3
9
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• A Bayesian rule :

p(i|E) = p(E|i)pi
p(E) =

tr(E(ρi))pi
p(E)

• Justification :

E(ρ) = p(E)
∑

i

p(i|E) E(ρi)
tr(E(ρi))

=
∑

i

piE(ρi)

4
0
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Axiom III

E is a completely positive map, i.e., for an arbitrarily introduced
system R of arbitrary dimension and the identity map I on the set
of all linear operators on R, I ⊗ E is a well-defined map from the
set of positive operators of the composite system RQ1 to the set of

positive operators of the composite system RQ2

• It is required for a physical system that if ρRQ1 is a (mixed)

state of a composite system RQ1 and the quantum operation E
acts solely on the system Q1, then the result I ⊗ E(ρRQ1) must

also be a state (up to a normalization factor) of the composite

system RQ2

4
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Theorem

A map E from the set of density operators of the input space Q1 to

the set of positive operators of the output space Q2 satisfies the

above three axiomatic properties if and only if

E(ρ) =
∑

k

EkρE
†
k (1)

for a collection of linear transformations Ek from the input space

Q1 to the output space Q2 and
∑

k

E†
kEk ≤ I.

Furthermore, E is trace-preserving, i.e., E(ρ) is a density operator
for any density operator ρ if and only if

∑

k E
†
kEk = I.

4
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Proof ⇐=

From (1), it is clear that E(ρ) is a positive operator on Q2 for any

density operator ρ on Q1 and E is a linear map.

• Axiom I : for a density operator ρ =
∑

j λj |j〉〈j| on Q1, we have

0 ≤ tr(E(ρ)) =
∑

k

tr(EkρE
†
k) =

∑

k

∑

j

λjtr(Ek|j〉〈j|E†
k)

=
∑

k

∑

j

λj〈j|E†
kEk|j〉 =

∑

j

λj〈j|(
∑

k

E†
kEk)|j〉

≤
∑

j

λj〈j|j〉 = 1

since
∑

k E
†
kEk ≤ I

• Axiom II : it is clear from the linearity of E

4
3
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• Axiom III : for any positive operator B =
∑

i αiT
R
i ⊗ TQ1

i on

the composite system RQ1, we define

(I ⊗ E)(B)
4
=

∑

i

αiI(TRi )⊗ (
∑

k

EkT
Q1

i E†
k)

=
∑

k

∑

i

αi(IRT
R
i IR)⊗ (EkTQ1

i E†
k)

=
∑

k

∑

i

αi(IR ⊗ Ek)(TRi ⊗ TQ1

i )(IR ⊗ E†
k)

=
∑

k

(IR ⊗ Ek)B(IR ⊗ E†
k)

which is clearly well-defined .

4
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Let |ψ〉 be a state of the composite system RQ2 and let

|ϕk〉 = (IR ⊗ E†
k)|ψ〉 for all k, we have

〈ψ|(I ⊗ E)(B)|ψ〉 =
∑

k

〈ψ|(IR ⊗ Ek)B(IR ⊗ E†
k)|ψ〉

=
∑

k

〈ϕk|B|ϕk〉 ≥ 0

which implies that (I ⊗ E)(B) is a positive operator on RQ2

4
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Proof =⇒

• R : an arbitrarily introduced space, with the same dimension
as Q1

• {|iR〉} and {|iQ1
〉} : orthonormal bases for R and Q1

respectively

• |u〉 =∑i |iR〉|iQ1
〉 : a (maximally entangled) vector in the

composite system RQ1

• I ⊗ E : a map from the set of positive operators on RQ1 to the

set of positive operators on RQ2 by the complete positivity of

E from Axiom III

• σ = (I ⊗ E)(|u〉〈u|) : a positive operator on RQ2

σ =
∑

ij

|iR〉〈jR| ⊗ E(|iQ1
〉〈jQ1

|)

4
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– It will be seen that the positive operator σ completely

specifies the quantum operation E

• |v〉 =
∑

i αi|iQ1
〉 : a vector in Q1

• |ṽ〉 =
∑

i α
∗
i |iR〉 : a vector in R corresponding to the vector |v〉

in Q1

• An identity : a strong connection between σ and E

〈ṽ|σ|ṽ〉 = 〈ṽ|





∑

ij

|iR〉〈jR| ⊗ E(|iQ1
〉〈jQ1

|)



 |ṽ〉

=
∑

ij

〈ṽ|iR〉〈jR|ṽ〉E(|iQ1
〉〈jQ1

|)

=
∑

ij

αiα
∗
jE(|iQ1

〉〈jQ1
|)

= E(|v〉〈v|)

4
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• σ =
∑

k λk|sk〉〈sk| : spectral decomposition of σ

〈ṽ|σ|ṽ〉 =
∑

k

λk〈ṽ|sk〉〈sk|ṽ〉

• Ek : a linear transformation from Q1 to Q2 defined as

Ek(|v〉)
4
=
√

λk〈ṽ|sk〉

for any vector |v〉 in Q1

Thus for any state |ψ〉 in Q1, we have

E(|ψ〉〈ψ|) = 〈ψ̃|σ|ψ̃〉 =
∑

k Ek|ψ〉〈ψ|E
†
k

and then for any density operator ρ =
∑

i λi|ψi〉〈ψi| with ensemble
{λi, |ψi〉}, we have

4
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E(ρ) = E(
∑

i

λi|ψi〉〈ψi|)

=
∑

i

λiE(|ψi〉〈ψi|) by Axiom II

=
∑

i

λi
∑

k

Ek|ψi〉〈ψi|E†
k

=
∑

k

Ek(
∑

i

λi|ψi〉〈ψi|)E†
k

=
∑

k

EkρE
†
k

4
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To show that
∑

k

E†
kEk ≤ I,

we need to show that

〈ψ|(I −
∑

k

E†
kEk)|ψ〉 ≥ 0

for any state ψ in Q1. But

〈ψ|(I −
∑

k

E†
kEk)|ψ〉 = 〈ψ|ψ〉 − 〈ψ|(

∑

k

E†
kEk)|ψ〉

= 1−
∑

k

〈ψ|E†
kEk|ψ〉 = 1−

∑

k

tr(Ek|ψ〉〈ψ|E†
k)

= 1− tr(
∑

k

Ek|ψ〉〈ψ|)E†
k) = 1− tr(E(|ψ〉〈ψ|)) ≥ 0

by Axiom I

5
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Freedom in the Operator-Sum Representation5
1



'&

$%

Unitary Freedom in the Operator-Sum Representation

• {E1, E2, . . . , Em} : operation elements of a quantum operation
E

• {F1, F2, . . . , Fn} : operation elements of a quantum operation
F

• m = n : by appending zero operators in the shorter list of

operation elements

Then E = F if and only if

Ei =
∑

j

uijFj

where [uij ] is an m×m unitary matrix

5
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Proof =⇒

Suppose that for any density operator ρ, we have

E(ρ) =
∑

k

EkρE
†
k =

∑

k

FkρF
†
k = F(ρ)

• R : an introduced space, with the same dimension as Q1

• {|iR〉} and {|iQ1
〉} : orthonormal bases for R and Q1

respectively

• |u〉 =
∑

i |iR〉|iQ1
〉 : a (maximally entangled) vector in the

composite system RQ1

• I ⊗ E = I ⊗ F : a map from the set of positive operators on
RQ1 to the set of positive operators on RQ2 by the complete

positivity of E from the 3rd axiomatic property
• σ = (I ⊗ E)(|u〉〈u|) = (I ⊗ F)(|u〉〈u|)

5
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Now,

(I ⊗ E)(|u〉〈u|) =
∑

ij

|iR〉〈jR| ⊗ E(|iQ1
〉〈jQ1

|)

=
∑

ij

|iR〉〈jR| ⊗ (
∑

k

Ek|iQ1
〉〈jQ1

|E†
k)

=
∑

k

(
∑

i

|iR〉(Ek|iQ1
〉))(
∑

j

|jR〉(Ek|jQ1
〉))†

=
∑

k

|ek〉〈ek|

(I ⊗ F)(|u〉〈u|) =
∑

k

|fk〉〈fk|

where we define

|ek〉
4
=
∑

i

|iR〉(Ek|iQ1
〉), |fk〉

4
=
∑

i

|iR〉(Fk|iQ1
〉).

5
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Now we have

σ =
∑

k |ek〉〈ek| =
∑

k |fk〉〈fk|

and for any vector |v〉 =
∑

i αi|iQ1
〉 in Q1, we have

Ek|v〉 = 〈ṽ|ek〉, Fk|v〉 = 〈ṽ|fk〉,

where |ṽ〉 =
∑

i α
∗
i |iR〉 is the vector in R corresponding to the

vector |v〉
• Unitary freedom in the ensemble for density operators : there
exists an m×m unitary matrix [ukl] such that

|ek〉 =
∑

l

ukl|fl〉

Thus we have Ek|v〉 = 〈ṽ|ek〉 =
∑

l ukl〈ṽ|fl〉 =
∑

l uklFl|v〉, i.e.,

Ek =
∑

l

uklFl

5
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Two Examples of Quantum Operations5
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Trace as a Quantum Operation

• Q: a quantum systems with state space HQ

• {|i〉} : an orthonormal basis of the state space HQ of Q

• Q′: a quantum systems with one-diemnsional state space HQ′

• {|0〉} : an orthonormal basis of the state space HQ′ of Q′

• Ei = |0〉〈i| : a linear transformation from HQ to HQ′

• A completeness relation :
∑

iE
†
iEi = I

• E : a quantum operation defined as

E(ρ) =
∑

i

EiρE
†
i =

∑

i

|0〉〈i|ρ|i〉〈0|

It is clear that

E(ρ) = tr(ρ)|0〉〈0|

5
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Partial Trace as a Quantum Operation

• Q and R : two quantum systems with state spaces HQ and HR

• {|j〉} : an orthonormal basis of the state space HR of R

•
∑

j |vj〉|j〉 : a vector (in a unique representation format) in
HQ ⊗HR

• Ei : a linear transformation from HQ ⊗HR to HQ defined as

Ei





∑

j

|vj〉|j〉



 = |vi〉

• E†
i : the adjoint of Ei, which is a linear transformation from

HQ to HQ ⊗HR and can be shown to be

E†
i (|v〉) = |v〉|i〉

5
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• A completeness relation :
∑

iE
†
iEi = I

• E : a quantum operation can be defined as

E(ρ) =
∑

i

EiρE
†
i

for all density operators ρ on the composite quantum QR. In

fact, E is a linear map from L(HQ ⊗HR, HQ ⊗HR) to

L(HQ, HQ)

• TQ : a linear operator on HQ, we have

E(TQ ⊗ |j〉〈j′|) = TQδjj′ = trR(T
Q ⊗ |j〉〈j′|)

5
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Proof. Let |v〉 ∈ HQ. Then

E(TQ ⊗ |j〉〈j′|)(|v〉) =
∑

i

Ei(T
Q ⊗ |j〉〈j′|)E†

i (|v〉)

=
∑

i

Ei(T
Q ⊗ |j〉〈j′|)(|v〉|i〉) =

∑

i

Ei(T
Q|v〉 ⊗ δij′ |j〉)

=
∑

i

δijδij′T
Q|v〉 = δjj′T

Q|v〉 = trR(TQ ⊗ |j〉〈j′|)(|v〉)

For each linear operator TQR =
∑

jj′ T
Q
jj′ ⊗ |j〉〈j′| on the composite

system QR, we have

E(TQR) =∑iEiT
QRE†

i = trR(T
QR)

by linearity of E and trR.

6
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Geometric Visualization of Quantum Operations on a Qubit6
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Bloch Vector Representation of Density Operators of a Qubit

• {|0〉, |1〉} : a computational basis of the state space H of a qubit

• ρ : a density operator of the qubit with matrix representation
relative to the computational basis

[ρ] =





1+rz

2
rx−iry

2
rx+iry

2
1−rz

2





• σx, σy, σz : Pauli operators
• Bloch vector representation :

ρ =
I + rxσx + ryσy + rzσz

2
=
I + ~r · ~σ
2

– ρ is a density operator =⇒ ||~r||2 = r2x + r
2
y + r

2
z ≤ 1

• ρ = I/2⇐⇒ ~r = ~0

6
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• tr(ρ2) = (1 + ||~r||2)/2

• ρ = |ψ〉〈ψ| is a pure state if and only if ||~r|| = 1
– |ψ〉 = cos θ2 |0〉+ eiϕ sin θ

2 |1〉 with the visualizing
representation

(cosϕ sin θ, sinϕ sin θ, cos θ)

on the Bloch sphere in Unit Four, which is equal to the

Bloch vector ~r in above, i.e.,

[ρ] =





1+cos θ
2

cosϕ sin θ−i sinϕ sin θ
2

cosϕ sin θ+i sinϕ sin θ
2

1−cos θ
2





6
3



'&

$%

The Vector Space L(H) with Trace Inner Product

• L(H) : the vector space of all linear operators on H

• (T, S) 4= tr(T †S) : the Hilbert-Schmidt or trace inner product

of T and S in L(H)

– (T, T ) = tr(T †T ) ≥ 0 : T †T is a positive operator

∗ (T, T ) = tr(T †T ) = 0 ⇐⇒ all singular values of T are

zeros ⇐⇒ rank(T )=0 ⇐⇒ T = 0

– (T, S) = tr(T †S) = tr((S†T )†) = tr(S†T ) = (S, T ) :

Hermitian symmetry

– (T, α1S1 + α2S2) = tr(T
†(α1S1 + α2S2)) =

α1 tr(T, S1) + α2 tr(T, S2) = α(T, S1) + α2(T, S2) : linearity

• L(H) : a 4-dimensional complex inner product space with trace
inner product

6
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• {I/
√
2, σx/

√
2, σy/

√
2, σz/

√
2} : an orthonormal basis of L(H)6
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Trace-Preserving Quantum Operations as Affine Maps

from Bloch Sphere to Itself

• σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2

• E =
∑

k EkρE
†
k : a trace-preserving quantum operation on a

qubit (where input system = output system) with

Ek = αk0I +

3
∑

i=1

αkiσi

where
∑

k E
†
kEk = I which implies that

∑

k

3
∑

i=0

|αki|2 = 1,
∑

k

<{αk0α∗k1}+ ={αk2α∗k3} = 0,

∑

k

<{αk0α∗k2}+={αk3α∗k1} = 0,
∑

k

<{αk0α∗k3}+={αk1α∗k2} = 0

6
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• ρ = I+~r·~σ
2 and E(ρ) = I+~r′·~σ

2

~r
E−→ ~r′ =M~r + ~c

where

Mij =
∑

k

(

2<{αkiα∗kj}+ 2={α∗k0
3
∑

p=1

εijpαkp}+
(

|αk0|2 −
3
∑

p=1

|αkp|2
)

δij

)

and

cj = 2i
∑

k

∑

mn

εmnjαknα
∗
km

6
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Examples of Single Qubit Noisy Quantum Channels6
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Bit Flip Channel

• The bit flip channel flips the state of a qubit from |0〉 to |1〉
(and vice versa) with probability p

• E(ρ) = E0ρE
†
0 + E1ρE

†
1

– ρ : the density operator of single qubit

– E0 =
√
1− pI = √1− p





1 0

0 1





– E1 =
√
pσx =

√
p





0 1

1 0





• Trace-preserving : E†
0E0 + E

†
1E1 = I

6
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Visualization of the Bit Flip Channel

• ρ = (I + ~r · ~σ)/2 and E(ρ) = (I + ~r′ · ~σ)/2

~r′ =









1 0 0

0 1− 2p 0

0 0 1− 2p









~r

7
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Phase Flip Channel

• The phase flip channel flips the phase of the state |1〉 of a qubit
with probability p

• E(ρ) = E0ρE
†
0 + E1ρE

†
1

– ρ : the density operator of single qubit

– E0 =
√
1− pI = √1− p





1 0

0 1





– E1 =
√
pσz =

√
p





1 0

0 −1





• Trace-preserving : E†
0E0 + E

†
1E1 = I

7
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Visualization of the Phase Flip Channel

• ρ = (I + ~r · ~σ)/2 and E(ρ) = (I + ~r′ · ~σ)/2

~r′ =









1− 2p 0 0

0 1− 2p 0

0 0 1









~r

• p = 1/2 : ~r′ = (0, 0, rz) and the collection of operator elements

E0 =
1√
2
I, E1 =

1√
2
σz,

is unitarily equivalent to the collection of operator elements

P0 = |0〉〈0| =
1√
2
E0 +

1√
2
E1, P1 = |1〉〈1| =

1√
2
E0 −

1√
2
E1

which is the projective measurement on the basis {|0〉, |1〉}

7
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Bit-Phase Flip Channel

• The bit-phase flip channel flips the state of the qubit from |0〉
to |1〉 (and vice versa) and then flips the phase of the state |1〉
of the qubit with probability p

• σy = −iσzσx
• E(ρ) = E0ρE

†
0 + E1ρE

†
1

– ρ : the density operator of single qubit

– E0 =
√
1− pI = √1− p





1 0

0 1





– E1 =
√
pσy =

√
p





0 −i
i 0





• Trace-preserving : E†
0E0 + E

†
1E1 = I

7
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Visualization of the Bit-Phase Flip Channel

• ρ = (I + ~r · ~σ)/2 and E(ρ) = (I + ~r′ · ~σ)/2

~r′ =









1− 2p 0 0

0 1 0

0 0 1− 2p









~r

7
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The Depolarizing Channel

• With probability p, the single qubit is depolarized, i.e., its state
is replaced by the completely mixed state I/2

• E(ρ) = p(I/2) + (1− p)ρ

• A circuit implementation of the depolarizing channel
ρ

2/I

( ) 11001 pp +−

7
8



'&

$%

Visualization of the Depolarizing Channel

• ρ = (I + ~r · ~σ)/2 and E(ρ) = (I + ~r′ · ~σ)/2

~r′ =









1− p 0 0

0 1− p 0

0 0 1− p









~r

7
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The Operator-Sum Representation of Depolarizing Channels

• An identity :
I

2
=
ρ+ σxρσx + σyρσy + σzρσz

4

• E(ρ) = (1− (3/4)p)ρ+ (p/4)(σxρσx + σyρσy + σzρσz)
– E0 =

√

1− 3p/4I
– E1 =

√
pσx/2

– E2 =
√
pσy/2

– E3 =
√
pσz/2

• Trace-preserving :
∑3

k=0E
†
kEk = I

• Another expression :

E(ρ) = (1− p′)ρ+ (p′/3)(σxρσx + σyρσy + σzρσz)

8
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The Depolarizing Channel for n-Qubit Systems

• With probability p, the n-qubit system is depolarized, i.e., its
state is replaced by the completely mixed state I/(2n)

• E(ρ) = pI/(2n) + (1− p)ρ

8
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Amplitude Damping Channel

• |0〉 : the ground state without a quantum of energy
• |1〉 : the state with a quantum of energy
• E(ρ) = E0ρE

†
0 + E1ρE

†
1

– ρ : the density operator of a single qubit

– E0 =





1 0

0
√
1− γ



 : a quantum of energy was not lost to

the environment such that the qubit must be more probably

in the state |0〉 than in the state |1〉

– E1 =
√
p





0
√
γ

0 0



 : a quantum of energy was lost to the

environment with probability γ such that the the qubit

must be in the state |1〉

8
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• Trace-preserving : E†
0E0 + E

†
1E1 = I

8
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Visualization of the Amplitude Damping Channel

• ρ = (I + ~r · ~σ)/2 and E(ρ) = (I + ~r′ · ~σ)/2

~r′ =









√
1− γ 0 0

0
√
1− γ 0

0 0 1− γ









~r +









0

0

γ









• When describing γ = 1− e−t/T1 as a time-varying function, the

effect of amplitude damping is as a flow on the Bloch sphere,

which moves every points in the unit sphere to the north pole

of the unit sphere on which the state |0〉 resides

8
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Phase Damping Channel

• The phase damping channel is the same as the phase flip
channel

• E(ρ) = E0ρE
†
0 + E1ρE

†
1

– ρ : the density operator of single qubit

– E0 =
√
1− pI = √1− p





1 0

0 1





– E1 =
√
pσz =

√
p





1 0

0 −1





• Trace-preserving : E†
0E0 + E

†
1E1 = I

8
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Visualization of the Phase Damping Channel

• ρ = (I + ~r · ~σ)/2 and E(ρ) = (I + ~r′ · ~σ)/2

~r′ =









1− 2p 0 0

0 1− 2p 0

0 0 1









~r

• When describing p = (1− e−t/T1)/2 as a time-varying function,

the effect of phase damping is as a flow on the Bloch sphere,

which perpendicularly moves every points in the unit sphere to

the z-axis of the unit sphere

8
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