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‘Unit Six — Quantum Operations'




/ ‘ Open Quantum Systems I \

Y e P £(p)

Peov —

e Postulate 2 : the dynamics of a closed quantum system is

described by a unitary transform

e An open quantum system together with its environment

becomes a closed quantum system

e p : the density operator of the open quantum system, called

the principal quantum system

\o Penv - the density operator of the environment /




/ e U : a unitary operator on the state space of the closed \

quantum system

e £(p) : the density operator of the principal quantum system
after the action of the unitary operator U

— Closed system
E(p) = UpUT

— Open system
E(p) = treny (U (P ® penv) UT)

x Assume that the principal quantum system is prepared
such that its correlation with the environment can be
completely destroyed (Correlated initial state of the
principal-environmental system will be discussed later)

x If the state space of the principal system has dimension d,
we will show that it is sufficient to model the environment

k to have state space of dimension no greater than d? /




/ An Example I \

0) D

o p=) . ;|i)(j| : the density operator of the principal system
® peny = |0){(0] : the environment is in the pure state |0)

o g(p) = P(),OP() —|—P1,0P1 . P() = ‘O><O‘ and P1 = ’1><1| are

\ projective operators /
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Quantum Operations Formalism.




The Input-Output Formalism.

E(p?) = trp (U (pA ® pP) UT)

or

E(p?) = try (U (pA ® pP)UT)

e p” : the input density operator of quantum systems A
e pB : the density operators of quantum system B

o £(p?) : the output density operator of quantum systems A or
B

\_ /




/ A General Definition of Triplet (¢|U|y) \

e [, and Hs : complex inner product spaces

e U : a linear operator on the tensor product space H; ® Hsy

U= Z aiTz’Hl ® Tz'H2a

where T’ Z-H Yand T Z-HQ are linear operators on H; and Hs

respectively
e |¢) and |p) : two vectors in Hy

e (Y|U|p) : a linear operator on H;

WUI)= Y ey (|7 )

\o (|- |p) : a linear map from L(H; ® Hy, Hy ® Hs) to L(H1,H1)/
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o {[7)}:
e {|7)(k|} : a basis of L(H2, H>)

‘ Well-defined '

an orthonormal basis of H

e Unique representation : with T,L-H2

ik Bijkl7) (K|, we have

U=> (S: Oéqﬁz'jkTim) ®17){k
jk

)

Thus we have

(|U] ) > T WIT o) =Y " T Biji(w]5) (kle)
i i gk

\_
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(S: a; B T

7

) (17) (k).
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A Theorem '

tra(U) = 32, (ilU])

e [, and Hs : complex inner product spaces

e U : a linear operator on the tensor product space H; ® Ho

e {|i)} : an orthonormal basis of Ho
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A General Definition of Inner Product (y|y)

H,{ and H5 : complex inner product spaces
[4) : a vectors in Hy
o) = > . aulv;) @ Jw;) ¢ a vector in Hy @ Ho

(Y]p) : a vector in Ha

(Plop)= Zaz o) |w;)

(1]-) : a linear transformation from H; ® Hy to Hy
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/ ‘ Well-defined '

e {|7)} : an orthonormal basis of Hs
e Unique representation : with |w;) = >, Bi;|7), we have

) = Z(Z a;Bij|vi)) @ |4)

J

Thus we have

(W)

>

Z&i<¢|vi>|wi>
_ Zaiwm) Zﬁij‘ﬁ

Z(W <Z ;i B Uz‘>> 7)

J
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The Operator-Sum Representation of £ I

E(p) = 21 (exlU(p @ pen)UTler) = X EkmpEL,,

where Eim = (ex|UVAm|¥Um)

e p : the density operator of the principal quantum system

e {|ex)} : an orthonormal basis of the (finite-dimensional) state

space of the environment

® Penv =D, Am|¥m)(¥m| : the density operator of the
environment with ensemble {\,,, %)}

e {Ey.} : operation elements for the quantum operation &£

\_

~
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‘ Proof'

o [/ — ZZ Oéz'Tipm ® Tienv
® Penv — Zm Am‘¢m><¢m‘

E(p)
= treny (U (10 ® penv) UT)

S (S wT ST) (66 pene) (S s T e

k ? J
* 1 rit env env
= Z Z e1e <€k‘ (sz ijp ® 1; peanj T) |€7€>

ko ij

- Z Z O‘ia;Tipmprrﬂ (ex |Tienvp€nUTJ¢an ex)

ko ij

/
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where Ei,, = (ex|UvVAin|m)
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4 o)

Let T be a linear operator on a Hilbert space H. If
tr(Tp) =1
for any density operators p on H, then we have
T=1
Proof.

Note that tr(Tp) = 1 for any density operator p on H if and only if
tr(T|y)(y|) =1, i.e. (Y|T|) =1, for any unit vector |¢p) in H. Let
{lex)} be an orthonormal basis of H. For any 7 # j and any

non-zero complex numbers a, b such that |a|? + |b]*> = 1, we have

S 1= (ales) + bley))T(ales) + blej)) Y,
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which implies that
a*b(e;|T|e;) + ab™(e;|T|e;) = 0.
By taking a, b both real, we have
(ei|Te;) + (e;|T|ei) = 0.
But by taking a real and b pure imaginary, we have
(ei| Tle;) — (ej]|Tes) = 0.

Thus we conclude that (e;|T|e;) = (e;|T|e;) = 0 and the matrix
representation of T relative to the orthonormal basis {|ex)} is the
identity matrix which implies that T' = 1.

\_
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Completeness Relation on Operation Elements I

ka El]::mEk?m =1

e ¢ is trace-preserving : for for any density operator p,

tr(€(p)) = tr(trenn(U(p® penv)UT)) =tr(U(p® penv)UT)

— tI’(UTU(,O X penv)) — tl"(p 024 ,Oenv) — tr(p)tr(penv)

= 1

o 1=1tr(€(p) = Xy tr(ExmpEL,) = Xy tr(Ely, Exmp) =
tr((D 4, E,:mEkm) p) for any density operator p

~

/
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Purification of the Environment '

p : the density operator of the principal quantum system

Penv = D Am|Um)(¥m| : the density operator of the

environment with ensemble {,,, |¥,,)}

Umg); -

~

an orthonormal basis of the state space of a reference

system R, having the same cardinality as that of {|i.,)}

lenvR) :

such that

a pure state of the composite environment- R system

envR) =Y v/ Amltm)Imr)

Penv = trr(lenvR){envR)|)

/
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/ ‘Puriﬁcation of the Environment (Cont’) I \

oo, Ele)

Pen o

yo

|envk >

E(p) = treny (U (P @ penv) UT)
= tTenuR ((U ® Ir)(p ® |envR)(envR|)(U ® IR)T)

Proof.

U

£(p)

Note that for an orthonormal basis {|e;)} of the state space of the

\environment, {lex)|mpr)} is an orthonormal basis of the state Space/
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where

of the composite environment-R system. We have

(ex|(mpg|(U ® Ig)|envR)

trenur (U ® Ir)(p ® [envR)(envR))(U © Ir)') =Y FumpF},

km

(ex|(mr|(U @ Ig) Z Vi) iR)

D VAjer| (mal(U @ In)lw;)lir)

D> VAjlerlUlg)malin)
(kU A |tm)

Ekzm

~
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Three Features of the Operator-Sum Representation
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‘ Physical Interpretation I

p : the density operator of the principal quantum system

Penv = D Am|Um)(¥m| : the density operator of the

environment

{lex)} : an orthonormal basis of the state space of the

environment

Principle of implicit measurement : the state of the principal
system will not be affected if measurement is performed on the

environment
{lex){ex|} : a projective measurement on the environment

pr : the state of the principal system given that outcome k

occurs /
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pp = tr ( (I ® lex){erDU(p ® pen)UTI & |ex)(exl) )
TNt (I @ lex)(er)U(p @ penu)UTI @ |ex) (ex]))
{

—  tr ( ek‘U</0 X penv)UT|6k> Y ‘€k><ek‘ )
o tr({ex|U(p ® penv)U”ek> ® |ek)(ex|)
_ (ex|U(p ® penv)UT|er)tr(lex) (exl)
tr((ex|U(p @ penv)UTler))tr(|ex)(ex])
> ErinP Bl
tr(3,, ExmpEL,,)

where Fi., = (ex|UVAm|¥Um)

\_

e P(k) : the probability that outcome k occurs

P(k) = t((I @ lex){ex)U(p ® penn)UT(I @ lex){ex]))
= (> ExmpE},,)
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E(p) =X w P(K)pr = X4 ExmpE},,

e The action of the quantum operation £ is equivalent to taking

the state p as input and randomly replacing it by

Zm EkmpElim
tr(3,,, ExmpE},,)

with probability
tr(z EkmpE;im)

e A quantum operation which describes a quantum noise process

/

will be referred to as a noisy quantum channel
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/ An Example (Revisited) I \

0) D K

e p : the density operator of the principal system

® peny = |0g)(0g| : the environment is in the pure state |0g)

o [/ =

\ 0p0g)(0p0g| + [0ple)(Oplg| + |1p1g){(1p0g| + |1POE><1P1E|/
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{|0g),|1g)} : an orthonormal basis of the state space of the

environment

Ey = (0g|U|0g) = [0p)(0p| = I
Ey = (1g|U[0g) = [1p)(1p| = P
E(p) = PopPo + PipP,
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Effect of Global Measurement . \

p : the density operator of the principal quantum system
Penv = D _; Aj| ;) (1;] : the density operator of the environment

{lex)} : an orthonormal basis of the state space of the

environment
{P,,} : projective measurement after the unitary operation U

The state of the principal system given that outcome m occurs

1S
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Define a map

Em(p)= trenv(P U(p @ penv) U P, ZE(m) E(m)]L

where
= (ex| PrnU/ Aj|95)

e The state of the principal system given that outcome m occurs
1S
Em(p)
tr(Em(p))

with probability tr(&,,(p))

e {£,(p)} : akind of measurement process which generalizes the
measurement described in Unit Three where &,,(p) = E,pE}

for a quantum measurement {E,, }

\_ /
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The Converse Problem'

e {EL} : a given collection of operator elements acting on a

principal quantum system and satistying the completeness

Y ElE, =1
k

e The problem : find a system-environment model, i.e., an

relation

environment, a unitary operator U on the composite
system-environment model such that {E}} is the operator
elements in the operator-sum representation of the quantum

operation &£
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‘ A System-Environment Model I \

p =, \i|ti)(¥;| : the density operator of the principal system

{lex)} : an orthonormal basis of the state space of a chosen

environment, having the same cardinality as that of {Fy}
|0) : an arbitrarily chosen state of the environment

U : a linear operator acting on the states of the form [¢}|0)

where [1)) is any state of the principal system

Ul)|0) = >~ Exlt)]ex)
k

and for any states |¢) and |¢) of the principal system,

(WIOIUTU|9)|0) = ) (Exlv)ex)) (Ejle)le;))

v Y




ve

= N WIBLE; o) erles) = W Y ELElp) = (wlo)
k

kj

Thus U can be extended to a unitary operator
U=>_ oT7" T on the composite system and we have for

any state |1) of the principal system

((ex|UO)[¢) = Zasz” K T5710)|4))
~ Zain”w (ex|T5"|0)
= (ex] <Z T @ TE™) ) |0)
= (ex|U[p)|0) = ekIZEglw ej) = Exlv)

which says that Ej = (ex|U|0)

\_
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‘Axiomatic Approach to Quantum Operations I
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Formal Definition of Quantum Operations I

A quantum operation £ is a map from the set of density operators
of the input space ()1 to the set of positive operators of the output

space ()2, satisfying the three axiomatic properties as follows.

\_ /
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‘ Three Axioms ' \

e Axiom I : tr(€(p)) is the probability that the process

represented by £ occurs, when p is the input density operator,
0<tr(&(p) <1

e Axiom II : £ is a convex-linear map on the set of density
operators, i.e., for non-negative numbers A; with > . A\; =1 and

density operators p;, E(3 . Aipi) = D, Mi€(pi)

e Axiom III : £ is a completely positive map, i.e., for an
arbitrarily introduced system R of arbitrary dimension and the
identity map Z on the set of all linear operators on R, I ® £ is
a well-defined map from the set of positive operators of the
composite system R(); to the set of positive operators of the

composite system RQ)- /
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4 N
Axiom 1 '

tr(E(p)) is the probability that the process represented by &£ occurs,

when p is the input density operator,
0<tr(€(p)) <1

e This is a mathematical convenience to include the case of
measurement as quantum operation, where the trace may not
be preserved and tr(€(p)) is exactly the probability of the
occurrence of a particular measurement outcome when the

state before measurement is p. The state after measurement

becomes E(p)/tr(E(p))

\_ /
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/ Axiom II . \

£ is a convex-linear map on the set of density operators, i.e., for
non-negative numbers p; with ) . p; = 1 and density operators p;,

S(mei) = ng(pi)

e p=) .pipi: the input quantum state as a random selection
from the ensemble {p;, p;} of quantum (mixed) states

o E(p)/tr(E(p)) = E(p)/p(E) : the resulting state as a random
selection from the ensemble {p(i|E),E(p;)/tr(E(p;))} of
quantum (mixed) states, where p(¢|€) is the probability that
the state prepared is p;, given that the process described by £

occurs, i.e., we demand

E(p) ; E(pi)
o) ~ 2= o)

\_ /
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e A Bayesian rule :
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‘ Axiom III .

& is a completely positive map, i.e., for an arbitrarily introduced
system R of arbitrary dimension and the identity map Z on the set
of all linear operators on R, Z ® £ is a well-defined map from the
set of positive operators of the composite system R(); to the set of
positive operators of the composite system R(Q)-

e It is required for a physical system that if p7*?! is a (mixed)
state of a composite system R(); and the quantum operation &
acts solely on the system @1, then the result Z ® £(p%%1) must

also be a state (up to a normalization factor) of the composite
system R(Q)s

\_ /
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Theorem '

the set of positive operators of the output space ()5 satisfies the

above three axiomatic properties if and only if
E(p) =) EppE] (
k

for a collection of linear transformations F; from the input space
(21 to the output space ()2 and

Y EjE. <1
k

Furthermore, £ is trace-preserving, i.e., £(p) is a density operator

for any density operator p if and only if ), E;Ek = 1.

\_

A map £ from the set of density operators of the input space ()1 to

~

1)

/
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/ \ Proof < . \

From (1), it is clear that £(p) is a positive operator on )2 for any

density operator p on ()1 and £ is a linear map.

e Axiom I : for a density operator p =} A;|7)(j| on @1, we have

0<u(E(p) = Ztr (ExpE]) = sz Exlj) (51 B})
= ZZW\EJLEMJ ZA i ELEol)
Z)\ jli) =1

since Y2, Bl By < T

IA

\o Axiom II : it is clear from the linearity of £ /
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o Axiom III : for any positive operator B = > . o, T R T in on

the composite system R()1, we define
(Z ®E&)(B)
> aL(T) @ (Y BT E)

>

7 k
Z Z 87 (IRTiRIR> &) (EkT,L-QlE);)
k 7

— O;\LR k i iQ R k
YN ailr @ By )(TF @ TP ) (I ® EJ)

Y (Ir® Ex)B(Ir ® E})
k

which is clearly well-defined .

~
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Let [¢)) be a state of the composite system RQ- and let
lor) = (Ur ® E};)W) for all k, we have

(I @EB)Y) = Y (W|(Ir® Ex)B(Ir® E})W)

k

= > (vxlBlox) >0

k

which implies that (Z ® £)(B) is a positive operator on RQ)>

\_ /
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‘ Proof — '

R : an arbitrarily introduced space, with the same dimension

as Q1
{lir)} and {|ig,)} : orthonormal bases for R and ),

respectively

lu) = > . |ir)|ig,) : a (maximally entangled) vector in the
composite system R(@)q

7 ® €& : amap from the set of positive operators on R(@); to the
set of positive operators on R()> by the complete positivity of

E from Axiom III
o= (Z®E)(Ju){u|) : a positive operator on RQs

0 = Z |ZR><.]R| ® g(‘iQ1><jQ1 |)

©J

~

/
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/ — It will be seen that the positive operator o completely \

specifies the quantum operation &£
o |v) =) lig,) : a vector in @y
e |U) =) .af|ir) : a vector in R corresponding to the vector |v)
in @1

e An identity : a strong connection between o and £

@l | - lir)inl © (lia,) a,)) | 15)
= Y G@lir) Rl (i, )

= Y aajE(ig,) o, )

©J

(0]o|o)

= &(jv)(vl)
\_ /
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® 0 =), Mi|sk)(sk| : spectral decomposition of o

(V]o|v)y = ZA’“ V]sk)(Sk|0)

e F;. : a linear transformation from () to ()2 defined as

N ERYANNGILTS

for any vector |v) in @y

Thus for any state |¢) in @1, we have

E()W)) = (Wlo]d) = 3, Exlv) (0| E]

and then for any density operator p = ) . A;|1;)(¢;| with ensemble
{)‘ia |¢Z>}7 we have

\_ /
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5(2 Ai| i) (il

Z ME([¥:) (1hi]) by Axiom II
ZMZEMWWE;L
ZEk ZA\% (i) Ef
ZEkaT
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To show that
Y ElE, <.
k

we need to show that
(|(I - ;E;Eww >0
for any state ¢ in Q1. But
(|(T - ;E,EEM = (h|¢h) — <w|<; ELEy)|¢)
= 1= (GE[Ef) =1 - zkjtrwkwxwl)

k

= 11—t} E)WDE]) = 1= te(E(9)(w]) = 0
k

by Axiom I
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Freedom in the Operator-Sum Representation
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Unitary Freedom in the Operator-Sum Representation.

e {F£1,FE,,...,F,} : operation elements of a quantum operation
E

o {[1,Fy, ..., F,} : operation elements of a quantum operation
f’

e m = n : by appending zero operators in the shorter list of

operation elements

Then £ = F if and only if

Ei = Zuiij
J

where |u;;] is an m X m unitary matrix

\_ /
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/ ‘ Proof — '

Suppose that for any density operator p, we have

E(p) = EwpE] =) FupF| = F(p)
k k

e R : an introduced space, with the same dimension as (04

e {|ir)} and {|ig,)} : orthonormal bases for R and (),
respectively

o |u) =) .|ir)lig,) : a (maximally entangled) vector in the
composite system R(Q)
e T ®E =1 ®F : amap from the set of positive operators on

R()1 to the set of positive operators on R()o by the complete
positivity of £ from the 3rd axiomatic property

\* 0 =T &&E)(|u)(u]) = (T F)(|u)(ul)

/
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oW,

(Z@&)(|up(u)) = D _lir)irl © E(lig,) (o, )

— Z|7»R><]R|®(ZE7€’ZQ1><JQ1‘E£)
= > O IiR>(EinQ1>))(Z 7r) (Ekliq.)))

)

(Z @ F)(Ju){ul)

||
=
=

where we define

)= D lin)(Exlio)). |f)= D lin) (Filio,)).

\_
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/N ow we have

o=>lex)(erx] =D 4 1fe)(fxl

and for any vector |v) = ) . o;]ig,) in @1, we have

Eylv) = (Olex), Frlv) = (0]fk),

where |0) = ) . a|ir) is the vector in R corresponding to the

vector |v)

e Unitary freedom in the ensemble for density operators : there

exists an m X m unitary matrix |ug;] such that

ler) = uwilf1)
z

Thus we have Ei|v) = (Vlex) = D>, uri(0|fi) = >, uniFi|v), ie.,

\_

Er =) upk
z
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Two Examples of Quantum Operations.
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Trace as a Quantum Operation.

e (): a quantum systems with state space Hg

e {|i)} : an orthonormal basis of the state space Hg of @

e ()': a quantum systems with one-diemnsional state space Hg-

e {|0)}: an

orthonormal basis of the state space Hgs of Q'

a linear transformation from Hg to Hg-

e A completeness relation : ) EJ E;, =1

e £ : a quantum operation defined as

It is clear that

\_

E(p) = ZEipEf = Z 10) il pl2) (O]

~
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Partial Trace as a Quantum Operation. \

() and R : two quantum systems with state spaces Hg and Hp
{|7)} : an orthonormal basis of the state space Hr of R

> ; lv;)|7) : a vector (in a unique representation format) in
Ho ® Hg

E; : a linear transformation from Hg ® Hgr to Hg defined as
Ei | > lop)li) | = lvi)
J

EZT . the adjoint of F;, which is a linear transformation from
Hg to Hp ® Hgi and can be shown to be

El(Jv)) = |v) i) /
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e A completeness relation : ) . EJ By =1

e £ : a quantum operation can be defined as
E(p) =) EipE]

for all density operators p on the composite quantum QR. In
fact, £ is a linear map from L(Hg ® Hr, Hg ® HR) to
L(Hg, Hq)

e T? : a linear operator on H 0, we have

E(TC @ |j){5']) = T9655 = trr(T9 @ 15){5'])
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= ZETQ

system (QR, we have

For each linear operator T@% = S~ i I ;’JQ ®

Proof. Let |v) € Hgp. Then
E(T @ 15)('1)( ZE (T° ®

G'DE (1))

@ |7) G D (vl ZE (T%v) @ §ij15))

= Z5ij5ij’TQ”U> =6, T%v) = trR(TQ &

E(TRH)

= Y. B TORE! = trp(TQR)

\_

by linearity of £ and trg.

3G D))

17) (4’| on the composite

~

/
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Geometric Visualization of Quantum Operations on a Qubit I




¢9
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Bloch Vector Representation of Density Operators of a Qublt I

e {|0),]1)} : a computational basis of the state space H of a qubit

e p : a density operator of the qubit with matrix representation
relative to the computational basis

1+Tz Ty —’l;’l”y
_ 2 2
[IO] - Ty +’L'r'y 1—7"z

® 0,,0,,0, : Pauli operators

e Bloch vector representation :

I +ryop +ry0y +10, I4+7-0
p: —
2 2
— p is a density operator = ||F]|* =77 + 1, + 77 < 1

\.pzl/m:m?:@ /
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o tr(p®) = (1+|71]%)/2

e p = |1))(1)| is a pure state if and only if ||7]| =1

— |¢) = cos g|0> + e sin g|1> with the visualizing

representation

(cos ¢ sin B, sin @ sin 6, cos 0)

on the Bloch sphere in Unit Four, which is equal to the

Bloch vector 7 in above, i.e.,

o] =

14+cos 6
2

cos @ sin 041 sin ¢ sin 6

cos @ sin 0 —1 sin @ sin 6

2

2

1—cos @
2
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/ The Vector Space L(H) with Trace Inner Product \

e L(H) : the vector space of all linear operators on H

o (T,9) = tr(T7S) : the Hilbert-Schmidt or trace inner product

of T'and S in L(H)
— (T,T) =tx(TTT) > 0 : T'T is a positive operator
x (T,T) =tr(TTT) = 0 <= all singular values of T are
zeros <= rank(7)=0 <= T =0

— (T,S) = tr(TTS) = tr((STT)") = tx(STT) = (S,T) :
Hermitian symmetry

— <T, 157 + OéQSQ) = tI‘(TT<04151 —+ OéQSQ)) =
aq tr(T,S1) + as tr(T,53) = (T, 51) + as(T, S2) : linearity

e [(H) : a4-dimensional complex inner product space with trace

\ inner product /




<9

o {I/V2,0./V2,0,/V2,0./\/2} : an orthonormal basis of L(H)
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/’I‘race-Preserving Quantum Operations as Affine Maps
from Bloch Sphere to Itself

® 0109 =— ’iO’g, 0203 — ?:0'1, 0301 — ’iO’Q

o £=) L pE,i . a trace-preserving quantum operation on a
qubit (where input system = output system) with

3
By = agol + E Qi O
i—1

where > E;Ek = I which implies that

3
SN anl? =1, R{anoads } + S{arzajs} =0,
k 1=0 k

Z R{akoags }+S{aksag, } =0, Z R{akoas t+S{ar1ags}
k k

=0

/




29

where

3 3
Mz’j = Z <2§R{OzkiOzzj} -+ 2%{0420 Z Gz‘ijékp} + <|Oék02 — Z |Oz;q
k p=1

p=1

and

. b S
c; =22 g g €Emnj Ohkn Ly

k. mn
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Examples of Single Qubit Noisy Quantum Channels.




69

-~

\_

‘ Bit Flip Channel I

e The bit flip channel flips the state of a qubit from |0) to |1)
(and vice versa) with probability p

e &(p) = EopEj + E1pE]
— p : the density operator of single qubit

1 0

— Fg=+1—pl=+1—-p 0
0 1
_Elz\/Z_DU%:\/Z_? L0

e Trace-preserving : ESEO + EI by =1

~
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‘Visualization of the Bit Flip Channel.

o p=I+7-3)/2and E(p)= (I +1"-3)/2

1 0 0
=10 1-2 0
0 0 1 —2p |

=l
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Phase Flip Channel.

~

e The phase flip channel flips the phase of the state |1) of a qubit

with probability p

o £(p) = EopEj + E1pE]
— p : the density operator of single qubit

— By=T=pl=T—p

—Elz\/]_)()'z:

e Trace-preserving : ESEO + EI by =1

VP

1
0

0
—1

1 0

0 1
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/ Visualization of the Phase Flip Channel. \

e p=I+7-5)/2and E(p) = (T +71-5)/2

1-2» 0 0
= 0 1—2p 0
0 0 1

=l

e p=1/2: = (0,0,7,) and the collection of operator elements

1 1
boy=—4I, b1 =—
0 1 \/§

7l

is unitarily equivalent to the collection of operator elements

1 1
\/_EO+7E17 P1 = |1><1‘ \/_Eo—TEl

\ which is the projective measurement on the basis {|0), 1)} /

0z,

Py =10){0] =
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/ ‘ Bit-Phase Flip Channel I \

e The bit-phase flip channel flips the state of the qubit from |0)
to |1) (and vice versa) and then flips the phase of the state |1)
of the qubit with probability p

® 0, = —10,0,
o E(p) = EopE} + E1pE]
— p : the density operator of single qubit
_ o -
0 1

— By=T=pl=T—p

— Ly = \/poy = /p

\o Trace-preserving : ESEO + EI Ey=1 /
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‘Visualization of the Bit-Phase Flip Channel'

o p=I+7-3)/2and E(p)= (I +1"-3)/2

1-2 0 0
= 0 1 0
0 0 1—2p

=l
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The Depolarizing Channel.

e With probability p, the single qubit is depolarized, i.e., its state
is replaced by the completely mixed state I/2

e E(p) =pI/2)+ (1 —p)p

e A circuit implementation of the depolarizing channel

Jo

| /2

(1~ p)0){0|+ p2)(1 ¢




6.

Visualization of the Depolarizing Channel.

o p=I+7-3)/2and E(p)= (I +1"-3)/2
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/The Operator-Sum Representation of Depolarizing Channeli I

e An identity :
I p+oyp0: +oypoy + o.p0,

2 4

e E(p)=(1-@/Yp)p+ (p/4)(0xpos + oypoy + 0:.p0)
— Eq=+/1—3p/4I

— Elz\/ﬁax/Q
— EQZ\/]_?O'y/Q
— Egz\/]_?O'Z/Q

e Trace-preserving : 2220 E};Ek =1

e Another expression :

E(p) = (1—p)p+ (0 [3)(00p0s + 0,00, + 0.p0) Y

\_
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‘The Depolarizing Channel for n-Qubit Systems.

e With probability p, the n-qubit system is depolarized, i.e., its
state is replaced by the completely mixed state I/(2™)

e E(p) =pI/(2")+ (1 —p)p
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‘ Amplitude Damping Channel I \

e |0) : the ground state without a quantum of energy

e |1) : the state with a quantum of energy

o £(p) = EopE} + E1pE]

— p : the density operator of a single qubit

1 0

— By =
0 1—v

: a quantum of energy was not lost to

the environment such that the qubit must be more probably
in the state |0) than in the state |1)

UV

R P

: a quantum of energy was lost to the

environment with probability ~ such that the the qubit

must be in the state |1)

/
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e Trace-preserving : EgEo + EI Ey=1
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‘Visualization of the Amplitude Damping Channel'

e p=(I+7-5)/2and E(p) = (T +71-5)/2

Ry
|

e When describing v =1 — e %/™" as a time-varying function, the
effect of amplitude damping is as a flow on the Bloch sphere,
which moves every points in the unit sphere to the north pole
of the unit sphere on which the state |0) resides

v1—r 0 0

~

/
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‘ Phase Damping Channel I

e The phase damping channel is the same as the phase flip
channel

o &(p) = EopEj + E1pE]
— p : the density operator of single qubit

1 0

— Fg=+1—pl=+1—-p 0
1 0
_E’lz\/po_z:\/]_9 0 !

e Trace-preserving : ESEO + EI by =1

\_
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‘Visualization of the Phase Damping Channel'

o p=I+7-5)/2and E(p) = (T +71-5)/2

1-2 0 0
= 0 1—2p 0
0 0 1

=y

e When describing p = (1 — e~%/71)/2 as a time-varying function,
the effect of phase damping is as a flow on the Bloch sphere,
which perpendicularly moves every points in the unit sphere to

the z-axis of the unit sphere

\_ /




89




