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Unit Four – Quantum Fourier Transform and Its Applications1
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Quantum Fourier Transform2
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Discrete Fourier Transform

• N : a positive integer

• x0, x1, . . . , xN−1 : N complex numbers

yk
4
= 1√

N

∑N−1
j=0 xje

2πijk/N

• y0, y1, . . . , yN−1 : the Fourier transform of xj ’s

• Discrete Fourier transform : a linear operator on CN

ej
F7→ 1√

N

N−1
∑

k=0

e2πijk/Nek

– {e0, e1, . . . , eN1
} : standard basis of CN
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Quantum Fourier Transform

• H : the state space of an n-qubit quantum system

• 2n : the dimension of H

• {|j〉} : an orthonormal basis of H

• Quantum Fourier transform : a linear operator on H

|j〉 F7→ 1

2n/2

2n−1
∑

k=0

e2πijk/2
n |k〉

– A unitary operator on H

2n−1
∑

k=0

1

2n/2
e2πijk/2

n 1

2n/2
e2πij′k/2n =

1

2n

2n−1
∑

k=0

e2πi(j−j
′)k/2n = δjj′
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Product Representation

|j1j2 · · · jn〉 F7→
(

|0〉+e2πi0.jn |1〉√
2

)(

|0〉+e2πi0.jn−1jn |1〉√
2

)

· · ·
(

|0〉+e2πi0.j1j2···jn |1〉√
2

)

• |j〉 = |j1j2 · · · jn〉 = |j1〉 ⊗ |j2〉 ⊗ · · · ⊗ |jn〉 :
j = j12

n−1 + j22
n−2 + · · ·+ jn20 binary representation of j

|27〉 = |11011〉

• 0.jljl+1 · · · jm = jl/2 + jl+1/4 + · · ·+ jm/2m−l+1 : binary

fraction

0.101 = 1 · 1/2 + 0 · 1/4 + 1 · 1/8 = 5/8 = 20/32

5
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Proof

|j〉 = |j1j2 · jn〉

F7→ 1

2n/2

2n−1
∑

k=0

e2πijk/2
n |k〉

=
1

2n/2

1
∑

k1=0

· · ·
1
∑

kn=0

e2πij(
∑

n

l=1
kl2

−l)|k1 · · · kn〉

=
1

2n/2

1
∑

k1=0

· · ·
1
∑

kn=0

n
⊗

l=1

e2πijkl2
−l |kl〉

=
1

2n/2

n
⊗

l=1

(

1
∑

kl=0

e2πijkl2
−l |kl〉

)

=

n
⊗

l=1

|0〉+ e2πij2−l |1〉√
2
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=
|0〉+ e2πi0.jn |1〉√

2

|0〉+ e2πi0.jn−1jn |1〉√
2

· · · |0〉+ e
2πi0.j1j2···jn |1〉√

2
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An Efficient Circuit Implementation
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1j

2j

1−n

nj

( ) 2/10 ....02 1 njjie π+

( ) 2/10 ....02 2 njjie π+

( ) 2/10 1.02 nn jjie −+ π

( ) 2/10 .02 njie π+

• A swap circuit network is necesarry
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• |0〉 H7→ (|0〉+ |1〉)/
√
2 and |1〉 H7→ (|0〉 − |1〉)/

√
2 :

|jl〉 H7→ (|0〉+ e2πi0.jl |1〉)/
√
2

• Rl =





1 0

0 e2πi2
−l



 = e2πi2
−(l+1)

Rz(2π2
−l) : 2π2−l rotation

about z-axis in the Bloch sphere

|j1j2 · · · jn〉 H7→ |0〉+e2πi0.j1 |1〉√
2

|j2 · · · jn〉
C(R2)7→ |0〉+e2πi0.j1j2 |1〉√

2
|j2 · · · jn〉

C(R3)7→ · · · C(Rn)7→ |0〉+e2πi0.j1j2···jn |1〉√
2

|j2 · · · jn〉

1
0



'&

$%

A Concrete Example - Three-Qubit
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• S =





1 0

0 e2πi2
−2



 and T =





1 0

0 e2πi2
−3





1
1
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Complexity

• n Hadamard gates

• (n− 1)+ (n− 2)+ · · ·+1 = n(n− 1)/2 controlled rotation gates

• n/2 swap gates = 3n/2 C-NOT gates

• Total complexity of quantum Fourier transform = O(n2) gates

– The complexity of classical fast Fourier transform (FFT) =

O(n2n)

1
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Obstacles in Using Quantum Fourier Transform

• The complex amplitudes cannot be directly accessed by
measurement

• No efficient ways to prepare the original state to be Fourier
transformed

1
3
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Quantum Phase Estimation1
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Phase Estimation - First Stage

• |u〉 and e2πiϕ : an eigenvector and the associated eigenvalue of
a unitary operator U on an m-qubit system

– ϕ : a quantity in [0, 1) to be estimated

– |u〉 : assumed be prepared by some black box
• Two registers are used
– The 1st register : t qubits initially in the state |0〉 and the
number t is dependent on

∗ The number of digits of accuracy we want in the estimate
for ϕ

∗ The probability with which we want the phase estimation
procedure to be successful

– The 2nd register : m qubits initially prepared in the state

|u〉

1
5
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0 ( )( ) 2/10
122 ϕπ −

+
tie

02U
12 −t

U
22U

12U

0

0

0

u

( )( ) 2/10
022 ϕπie+

( )( ) 2/10
122 ϕπie+

( )( ) 2/10
222 ϕπie+

u

  qubits register First 
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�
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�
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t

�
�

�

register  Second
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• Output state of the 1st register :

|0〉+ e2πi2t−1ϕ|1〉√
2

|0〉+ e2πi2t−2ϕ|1〉√
2

· · · |0〉+ e
2πi20ϕ|1〉√
2

=
1

2t/2

2t−1
∑

k=0

e2πikϕ|k〉

– When ϕ = 0.b1b2 · · · bt, we have the output state

|0〉+ e2πi0.bt |1〉√
2

|0〉+ e2πi0.bt−1bt |1〉√
2

· · · |0〉+ e
2πi0.b1b2···bt |1〉√

2

which is the Fourier transform of the state |b1b2 · · · bt〉

1
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Proof

|0〉 ⊗ · · · ⊗ |0〉 ⊗ |0〉 ⊗ |u〉
⊗tH−→ H|0〉 ⊗ · · · ⊗H|0〉 ⊗ |0〉+ |1〉√

2
⊗ |u〉

Ct(U
20 )−→ H|0〉 ⊗ · · · ⊗ |0〉+ |1〉√

2
⊗ |0〉+ e

2πi20ϕ|1〉√
2

⊗ |u〉

Ct−1(U
21 )−→ H|0〉 ⊗ · · · ⊗ |0〉+ e

2πi21ϕ|1〉√
2

⊗ |0〉+ e
2πi20ϕ|1〉√
2

⊗ |u〉

...

C1(U
2(t−1))−→ |0〉+ e2πi2t−1ϕ|1〉√

2
⊗ · · · ⊗ |0〉+ e

2πi21ϕ|1〉√
2

⊗

1
8
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|0〉+ e2πi20ϕ|1〉√
2

⊗ |u〉1
9
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Phase Estimation - Second Stage

�

0

u u

j

• Apply inverse Fourier transform F−1 on the t qubits in the 1st

register

2
0
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• Output state of the 1st register at the 2nd stage after F−1 :

– When ϕ = 0.b1b2 · · · bt, we let b = ϕ2t =

b12
t−1 + b22

t−2 + · · ·+ bt20 and the output state is

F−1





1

2t/2

2t−1
∑

k=0

e2πikϕ|k〉





=
1

2t/2

2t−1
∑

k=0

e
2πikb

2t
1

2t/2

2t−1
∑

j=0

e
−2πijk

2t |j〉

=
1

2t

2t−1
∑

j=0

2t−1
∑

k=0

e
2πik(b−j)

2t |j〉 = |b〉 = |b1b2 · · · bt〉

– When ϕ = b2−t + δ with integer b, 0 ≤ b ≤ 2t − 1, and
0 < δ < 2−t, the output state |ϕ̃〉 is

2
1
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|ϕ̃〉 = F−1





1

2t/2

2t−1
∑

k=0

e2πikϕ|k〉





=
1

2t/2

2t−1
∑

k=0

e2πikϕ
1

2t/2

2t−1
∑

j=0

e
−2πijk

2t |j〉 = 1

2t

2t−1
∑

j=0

2t−1
∑

k=0

e2πik(ϕ−
j

2t
)|j〉

=
2t−1
∑

j=0

1

2t
1− e2πi(ϕ2t−j)

1− e2πi(ϕ−j2−t) |j〉 =
2t−1
∑

j=0

1

2t
1− e2πi(ϕ2t−(b+j))

1− e2πi(ϕ−(b+j)2−t)
|b+ j〉

=
2t−1
∑

j=0

1

2t
1− e2πi(δ2t−j)
1− e2πi(δ−j2−t) |b+ j〉 =

2t−1
∑

j=−2t−1+1

1

2t
1− e2πi(δ2t−j)
1− e2πi(δ−j2−t) |b+ j〉

where |b+ j〉 = |b+ j(mod 2t)〉

2
2
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• Apply projective measurement in the computational basis
– When ϕ = 0.b1b2 · · · bt, the result m of the measurement is

b = b12
t−1 + b22

t−2 + · · ·+ bt20 with probability one
– When ϕ = b2−t + δ with integer b, 0 ≤ b ≤ 2t − 1, and
0 < δ < 2−t, the probability that the result m of the

measurement is (b+ j)(mod 2t), −(2t−1 − 1) ≤ j ≤ 2t−1 is

|〈b+j(mod 2t)|ϕ̃〉|2 = 1

22t
|1− e2πi(δ2t−j)|2

|1− e2πi(δ−
j

2t
)|2
≤ 1

22(t+1)(δ − j
2t )

2

∗ |1− eiθ| ≤ 2
∗ |1− eiθ| = 2| sin θ/2| ≥ 2|θ|/π for all −π ≤ θ ≤ π
∗ −π ≤ 2π(δ − j2−t) ≤ π when −(2t−1 − 1) ≤ j ≤ 2t−1

2
3
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Thus the probability that the measurement result m is

|m− b| > e for some positive integer e as the desired

tolerance to error is

P(|m− b| > e)

=
1

4





−(e+1)
∑

j=−2t−1+1

1

(j − δ2t)2 +
2t−1
∑

j=e+1

1

(j − δ2t)2





≤ 1

4





−(e+1)
∑

j=−2t−1+1

1

j2
+

2t−1
∑

j=e+1

1

(j − 1)2



 ≤ 1
2

2t−1−1
∑

j=e

1

j2

≤ 1

2

∫ 2t−1−1

e−1

1

x2
dx ≤ 1

2

∫ ∞

e−1

1

x2
dx

=
1

2(e− 1)

2
4
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The Selection of the Value of t

• Approximating ϕ to an accuracy 2−n ⇒ e = 2t−n − 1

|m− b| ≤ e = 2t−n − 1
⇒ |ϕ−m2−t| = |δ + (b−m)2−t| ≤ δ + (2t−n − 1)2−t ≤ 2−n

• p = t− n : determining the probability that the measurement
result assures this accuracy, which is lower-bounded by

1− 1

2(2p − 2)
4
= 1− ε

t = n+ p = n+ dlog2
(

2 + 1
2ε

)

e

• ε = 10−2 ⇒ p = 6 ; ε = 10−3 ⇒ p = 9 ; ε = 10−4 ⇒ p = 13

2
5
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What If An Eigenstate Cannot Be Prepared for U ?

• |ψ〉 =
∑

u cu|u〉 : a generic state expanded by an eigenbasis
{|u〉} of the unitary operator U

• e2πiϕu : eigenvalue associated with eigenstate |u〉

• |η〉 =
∑

u cu|ϕ̃u〉|u〉 : output state of the composite quantum
system after running the phase estimation algorithm

• ρ12 = |η〉〈η| : density operator of the composite system

• ρ1 = tr2(ρ
12) : density operator of the 1st register

ρ1 =
∑

u

∑

u′

cucu′ |ϕ̃u〉〈ϕ̃u′ | tr(|u〉〈u′|) =
∑

u

|cu|2|ϕ̃u〉〈ϕ̃u|

2
6
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• {|m〉〈m|} : projective measurement with computational basis
{|m〉}

• P(m,u) : the probability that the state of the 1st register is
|ϕ̃u〉 and the result m occurs

P(m,u) = P(u)P(m|u) = |cu|2 tr(|m〉〈m|ϕ̃u〉〈ϕ̃u|) = |cu|2|〈m|ϕ̃u〉|2

• If t = n+ dlog2
(

2 + 1
2ε

)

e is selected, the probability for
measuring ϕu accurate to n bits by the phase estimation

algorithm is at least |cu|2(1− ε)

2
7
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Modular Arithmetic2
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The Ring of Integers Modulo N

• N : a positive integer

• ZN = {0, 1, . . . , N − 1} : the ring of integers modulo N
– Modular addition : x, y ∈ ZN , x+ y

4
=(x+ y) (mod N)

∗ Associative : (x+ y) + z = x+ (y + z)

∗ Additive identity : 0 + x = x+ 0 = x

∗ Additive inverse : x+ (N − x) = 0
∗ Commutative : x+ y = y + x

– Modular multiplication : x, y ∈ ZN , xy
4
=(xy) (mod N)

∗ Associative : (xy)z = x(yz)

∗ Distributive : (x+ y)z = (xz) + (yz) and
x(y + z) = (xy) + (xz)

∗ Multiplicative identity : 1x = x1 = x

∗ Commutative : xy = yx

2
9
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• Multiplicative inverse : x ∈ ZN is said to have a
(multiplicative) inverse if there exists a y ∈ ZN such that
xy = 1, i.e., xy ≡ 1 (mod N)

– Example : 5 has an inverse in Z6 but 3 does not

– x ∈ ZN has an inverse x−1 if and only if (x,N) = 1

• Z∗N = {x ∈ ZN |x−1 exists} : the group of invertible elements in
ZN

– Closure : if x, y ∈ Z∗N , then xy ∈ Z∗N
– Associative : (xy)z = x(yz)

– Multiplicative identity : 1 ∈ Z∗N and 1x = x1 = x

– Multiplicative inverse : xx−1 = 1

– Commutative : xy = yx

• p : a prime number
– Z∗p = Zp\{0} and then Zp is a field

3
0
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The Euler ϕ Function

• ϕ(N) = |Z∗N | : the Euler ϕ function
• Properties :
– If N = pk then ϕ(pk) = pk − pk−1 = pk−1(p− 1)
– If (M,N) = 1, then ϕ(MN) = ϕ(M)ϕ(N)

∗ Each element in ZMN can be uniquely represented as

i+ jM with 0 ≤ i ≤M − 1 and 0 ≤ j ≤ N − 1
∗ If (i,M) > 1 then (i+ jM,M) > 1 and then

(i+ jM,MN) > 1 for all j

∗ For a fixed i, (i,M) = 1, if i+ jM = i+ j ′M (mod N),

then (j − j′)M = 0 (mod N) and then j = j′. Thus

ZN = {i+ jM (mod N), 0 ≤ j ≤ N − 1} and there are
exactly ϕ(N) of i+ jM , 0 ≤ j ≤ N − 1, which are
co-prime with N and with M respectively

3
1
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• If N = Πipkii is the prime factorization of N , then
ϕ(N) = Πip

ki−1
i (pi − 1)

• Examples :

ϕ(7) = 6,

ϕ(27) = 9(3− 1) = 18
ϕ(21) = ϕ(3)ϕ(7) = 2 · 6 = 12

ϕ(1800) = ϕ(23)ϕ(32)ϕ(52) = 22(2− 1)3(3− 1)5(5− 1) = 480

3
2
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Fermat’s Little Theorem

• x ∈ Z∗N

xϕ(N) ≡ 1 (mod N)

• Since x ∈ Z∗N , the mapping y 7→ xy (mod N) is a permutation

on Z∗N , Thus we have {xy (mod N)|y ∈ Z∗N} = Z∗N and then

Πy∈Z∗
N
xy ≡ Πy∈Z∗

N
y (mod N)

⇒ xϕ(N)Πy∈Z∗
N
y ≡ Πy∈Z∗

N
y (mod N)

⇒ xϕ(N) ≡ 1 (mod N)

3
3
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The order of x modulo N

• x,N : relatively prime positive integers with x < N

• oN (x) : the order of x modulo N , which is the least positive
integer r such that

xr ≡ 1 (mod N)

• Example : o21(5) = 6

51 ≡ 5 (mod 21), 52 ≡ 4 (mod 21), 53 ≡ 20 (mod 21),

54 ≡ 16 (mod 21), 55 ≡ 17 (mod 21), 56 ≡ 1 (mod 21)

• oN (x)|ϕ(N)

3
4
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Quantum Order-Finding Algorithm3
5
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A Unitary Operator for Finding oN (x)

• x,N : relatively prime positive integers with x < N

• L = dlog2Ne : the minimum number of bits to represent N

• H : the state space of an L-qubit quantum system

• {|y〉, 0 ≤ y ≤ 2L − 1} : a computational basis of H

• Ux,N : a unitary operator on H such that

Ux,N |y〉
4
=







|xy (mod N)〉, if 0 ≤ y ≤ N − 1,
|y〉, if N ≤ y ≤ 2L − 1.

– Since x ∈ Z∗N , the mapping π : y 7→ xy (mod N) is a

permutation on ZN .

3
6
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Special Eigenvalues and Eigenstates of Ux,N

• r = oN (x) : the order of x modulo N

• e(2πis)/r, 0 ≤ s ≤ r − 1 : eigenvalues of Ux,N associated with
eigenstates |us〉

|us〉 =
1√
r

r−1
∑

k=0

e
−2πisk

r |xk (mod N)〉

Ux,N |us〉 = 1√
r

∑r−1
k=0 e

−2πisk
r |xk+1 (mod N)〉 = e

2πis
r |us〉

• |us〉, 0 ≤ s ≤ r − 1 : inverse Fourier transform of |xk(mod N)〉,
0 ≤ k ≤ r − 1, and then

|xk (mod N)〉 = 1√
r

r−1
∑

s=0

e
2πisk
r |us〉

3
7
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• To find the order r = oN (x) of x modulo N , we estimate the

phase s/r of the corresponding eigenvalue e
2πis
r of eigenstate

|us〉 of Ux,N

3
8
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Preparing the initial state of the 2st Register

• Unable to prepare any of eigenstates |us〉

• An observation:
1√
r

r−1
∑

s=0

|us〉 = |1〉

– |1〉 : the initial state of 2nd register to be prepared

3
9
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Implementing Quantum Order-Finding Algorithm
�

0

1

j

Nx j mod

tH ⊗

��� � ��� �� 	 
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 � ��
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|0〉|1〉 H⊗t⊗I−→ 1√
2t

2t−1
∑

j=0

|j〉|1〉 Ûx,N−→ 1√
2t

2t−1
∑

j=0

|j〉|xj (mod N)〉

=
1√
r2t

r−1
∑

s=0

2t−1
∑

j=0

e2πisj/r|j〉|us〉 F
−1⊗I−→ 1√

r

r−1
∑

s=0

| s̃
r
〉|us〉

• Ûx,N : the controlled-U j
x,N unitary operator on the

(t+ L)-qubit composite system

• | s̃r 〉 =
∑2t−1

x=−2t−1+1
1
2t

1−e2πi(δs2t−x)
1−e2πi(δs−x2−t) |bs + x〉 with

s/r = bs2
−t + δs such that 0 ≤ bs ≤ 2t − 1 and 0 < δs < 2

−t

4
1
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• L = dlog2Ne : minimum number of bits to represent N

• t = 2L+ 1 + dlog2
(

2 + 1
2ε

)

e
– 2L+ 1 : accuracy of phase estimation to 2−(2L+1)

– (1− ε)/r : the least probability that an estimate of the
phase ϕ ≈ s/r accurate to (2L+ 1) bits

• How to deduce r from the phase estimate ϕ ?

4
2
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Continued Fraction Expansion

• Continued fractions : representing real numbers
– Finite continued fractions :

[a0, a1, · · · , aM ]
4
=a0 +

1

a1 +
1

···+ 1
aM

,

where a0 a real number, a1, . . . , aM positive real numbers

– Finite simple continued fractions : finite continued fractions

with ai’s all integers

– Infinite simple continued fractions :

[a0, a1, a2, · · ·]
4
=a0 +

1

a1 +
1

a2+
1
···

,

where a0 an integer and ai, i ≥ 1 positive integers

4
3
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• Example : 30/17 = [1, 1, 3, 4]
30

17
→ 1+13

17
→ 1+ 117

13

→ 1+ 1

1 + 4
13

→ 1+ 1

1 + 1
13
4

→ 1+ 1

1 + 1
3+ 1

4

• α is a rational number if and only if α is uniquely expressible
as a finite simple continued fraction [a0, a1, · · · , aM ] with
aM ≥ 2 if M ≥ 1

• α is an irrational number if and only if α is uniquely
expressible as an infinite simple continued fraction

• γm = [a0, a1, . . . , am] is called the mth convergent of a finite

continued fraction α = [a0, a1, · · · , aM ]

• Example : α = 30/17 = [1, 1, 3, 4]

γ0 = [1] = 1, γ1 = [1, 1] = 2, γ2 = [1, 1, 3] =
7

4
, γ3 = α =

30

17

4
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A Theorem

• α : a real number

• p/q : a rational number with q > 0 and (p, q) = 1

If
∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

≤ 1

2q2
,

then p/q is a convergent of the simple continued fraction expansion

of α

• With α = 30/17 = [1, 1, 3, 4], we have 7/4 = [1, 1, 3] is a
convergent of the simple continued fraction expansion of α since

|7/4− α| = 1/(4 · 17) ≤ 1/(2 · 42)

4
5



'&

$%

• Not every convergent of α satisfies the above inequality

|1− α| = 13/17 > 1/(2 · 12)

where 1 is a convergent of the simple continued fraction

expansion of α

4
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The Implication

• With probability ≥ (1− ε)/r, the estimated phase ϕ
approximates s/r accurate to (2L+ 1) bits, i.e.,

∣

∣

∣ϕ− s

r

∣

∣

∣ ≤ 1

2(2L+1)
=

1

2(2L)2
≤ 1

2N2
≤ 1

2r2

• Continued fraction algorithm efficiently produces numbers s′
and r′, with no common divisor, such that s′/r′ = s/r once a

convergent s′/r′ of the estimated phase ϕ satisfies
∣

∣

∣

∣

ϕ− s′

r′

∣

∣

∣

∣

≤ 1

2(2L+1)

• r′ : candidate of r

• Verification : Is xr′ ≡ 1 (mod N) ?

4
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Failure of the Order-Finding Algorithm

• Case I : with probability at most ε, the phase estimation
procedure produces a bad estimate ϕ with an error greater

than 2−(2L+1) to each s/r

• Case II : the continued fraction algorithm returns an r′ which is
a proper divisor of r in case that s and r has a common divisor

4
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Quantum Factoring Algorithm4
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A Theorem

• N : a positive integer with N ≥ 4

• 2 ≤ x ≤ N − 2

• x2 ≡ 1 (mod N)

Then at least one of gcd(x− 1, N) and gcd(x+ 1, N) is a proper
factor of N

5
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A Theorem

• N = pk1
1 p

k2
1 · · · pkmm : prime factorization of an odd positive

integer N with m ≥ 2

• x : an integer in Z∗N chosen uniformly at random

• r = oN (x)

P(r is even and xr/2 6≡ −1 (mod N)) ≥ 1− 1

2m

5
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The Factoring Algorithm

• If N is even, return the factor 2 (to reduce the size of N by

N ← N/2)

• Determine whether N = ab for integer a ≥ 3 and b ≥ 2 and if
so, return the factor a (to reduce the size of N by N ← a)

• Randomly choose x in [3, N − 2], if gcd(x,N) > 1, then return
the factor gcd(x,N) (to reduce the size of N by

N ← N/gcd(x,N))

• Use the order-finding algorithm to find r = oN (x)

• If r is even and xr/2 6≡ −1 (mod N), then compute

gcd(xr/2 − 1, N) and gcd(xr/2 + 1, N), and test to see if one of
these is a proper factor of N and return the factor if so.

Otherwise, the algorithm fails

5
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Factoring N = 15

• L = log2N = 4
• ε = 1/4
• t = 2L+ 1 + dlog2

(

2 + 1
2ε

)

e = 9 + 2 = 11
• No factor of 2 : 15 is an odd number
• Not a power ab with a ≥ 3 and b ≥ 2
• Randomly select an integer x in [3, 13] :
– If x is a multiple of 3, 5, then return gcd(x,N) = 3, 5 > 0.

– If x is not a multiple of 3, 5, says x = 7, then x ∈ Z∗15
• Compute oN (x) = o15(7) (which is equal to 4, but we do not

know it) by the quantum order-finding algorithm

– Preparing the state |0〉|1〉 of the (t+ L)-qubit composite
system

5
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– Applying Hadamard transform to the 1st register, the

resulted state is

1√
2t

2t−1
∑

k=0

|k〉|1〉

– Applying the controlled Uk
x,N gate, the resulted state is

1√
2t

2t−1
∑

k=0

|k〉|xk (mod N)〉

=
1√
2t
{|0〉|1〉+ |1〉|7〉+ |2〉|4〉+ |3〉|13〉+ |4〉|1〉+ |5〉|7〉+ · · ·}

– Applying the inverse Fourier transform to the 1st register

and measuring the resulted state

5
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– Or before applying the inverse Fourier transform to the 1st

register, we use the principle of implicit measurement by

assuming that 2nd register is measured with result m

P(m = 1) = P(m = 7) = P(m = 4) = P(m = 13) = 1
4

– Suppose m = 4 (any of the results works) is measured. The

state of the 1st register input to the inverse FT is

√

4

2t
{|2〉+ |6〉+ |10〉+ |14〉+ · · ·} =

√

1

2t−2

2t−2−1
∑

j=0

|2 + 4j〉

– The output state after applying inverse FT to the 2nd

register is

2√
2t

2t−2−1
∑

j=0

1√
2t

2t−1
∑

k=0

e−2πi(2+4j)k2−t |k〉 =
2t−1
∑

l=0

αl|l〉

5
5



'&

$%

with

αl =
1

2t−1

2t−2−1
∑

j=0

e−2πi(2+4j)l2−t

=







1
2e
−kπi, if l = k2t−2, k = 0, 1, 2, 3

0, otherwize

– The probability distribution of |αl|2 is

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

|α
l|2

l
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– The measurement output is l = 0, 512, 1024, 1536 each with

probability 1/4

– Suppose l = 1536. With continued fraction, we obtain

1536/2048 = 1(1 + (1/3)) = [0113] so that 3/4 = [0113]

occurs as a convergent of [0113]. This gives r′ = 4 and by

checking 74 ≡ 1 (mod 15), we conclude that r = o15(7) = 4

• Since r = 4 is even and xr/2 = 72 6≡ −1 (mod 15), then

compute gcd(72 − 1, 15) = 3 and gcd(72 + 1, 15) = 5, which
tells us that 15 = 3× 5

5
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Period-Finding5
8



'&

$%

Periodic Function

• f : periodic function from N0 = {0, 1, 2, . . .} to {0, 1}

• r : period length of f , 1 ≤ r ≤ 2L − 1, to be evaluated

f(x+ r) = f(x), ∀ x ≥ 0

• {|x〉} : computational basis of the state space of an t-qubit
system

– {|x〉} : served as (a subset of) the domain of the periodic
function f

– t : no less than L (at least to cover one period) and

dependent on the desired accuracy for r

• {|y〉} : computational basis of the state space of a single qubit
– {|y〉} : served as the co-domain of the periodic function f

5
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• [|f̂(0)〉, |f̂(1)〉, . . . , |f̂(r − 1)〉] : r-tuple representing the Inverse
Fourier transform of the r-tuple [|f(0)〉, |f(1)〉, . . . , |f(r− 1)〉] of
states

|f̂(l)〉 = 1√
r

∑r−1
x=0 e

−2πilx/r|f(x)〉, 0 ≤ l ≤ r − 1

– [|f(0)〉, |f(1)〉, . . . , |f(r − 1)〉] : representing the dynamics of
the periodic function f in one period

|f(x)〉 = 1√
r

∑r−1
l=0 e

2πilx/r|f̂(l)〉, 0 ≤ x ≤ 2t − 1

6
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Simultaneous Evaluation of f

• U : unitary operator acting on the (t+ 1)-qubit composite
system

U |x〉|y〉 = |x〉|y ⊕ f(x)〉

• Quantum parallelism :

|0〉|0〉 H
⊗t⊗I−→ 1√

2t

2t−1
∑

x=0

|x〉|0〉 U−→ 1√
2t

2t−1
∑

x=0

|x〉|f(x)〉

6
1



'&

$%

Hidden Interaction Between t-qubit and 1-qubit Systems

1√
2t

2t−1
∑

x=0

|x〉|f(x)〉 =
1√
2t

2t−1
∑

x=0

|x〉 1√
r

r−1
∑

l=0

e2πilx/r|f̂(l)〉

=
1√
r

r−1
∑

l=0





1√
2t

2t−1
∑

x=0

e2πix(l/r)|x〉



 |f̂(l)〉

• The period r is embedded in the phases l/r which will be
estimated by the phase estimation algorithm on the t-qubit

system

– Applying inverse Fourier transform to the t-qubit system to

obtain
1√
r

r−1
∑

l=0

| l̃
r
〉|f̂(l)〉

6
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where

| l̃
r
〉 =

2t−1
∑

x=−2t−1+1

1

2t
1− e2πi(δl2t−x)
1− e2πi(δl−x2−t) |bl + x〉

with l/r = bl2
−t + δl such that 0 ≤ bl ≤ 2t − 1 and

0 < δl < 2
−t

– For each 0 ≤ l ≤ r − 1, |f̂(l)〉 = ul0|0〉+ ul1|1〉 with

ul0 =
1√
r

∑

x∈P0

e−2πilx/r, ul1 =
1√
r

∑

x∈P1

e−2πilx/r

where P0 = {x ∈ [0, r − 1] | f(x) = 0} and
P1 = {x ∈ [0, r − 1] | f(x) = 1}

6
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• Resulted state after applying inverse Fourier transform
(

1√
r

r−1
∑

l=0

ul0|
l̃

r
〉
)

|0〉+
(

1√
r

r−1
∑

l=0

ul1|
l̃

r
〉
)

|1〉

• With the principle of implicit measurement by assuming that
2nd register is measured with result m

P(m = 0) = |Q0|
2t

, P(m = 1) = |Q1|
2t

where Q0 = {x ∈ [0, 2t − 1] | f(x) = 0} and
Q1 = {x ∈ [0, 2t − 1] | f(x) = 1}

• Suppose that m = 0 is measured (which occurs with
probability |Q0|/2t). Then the output state of the 1st register
after applying inverse Fourier transform is

√

2t

r|Q0|

r−1
∑

l=0

ul0|
l̃

r
〉

6
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Discrete Logarithm

• a, b,N : positive integers with 1 < a, b < N and (a,N) = 1

such that

as = b (mod N)

Note that (b,N) = 1, too

• Find the least positive integer s
– r = ON (a) : the order of a modulo N , which is assumed

known by the order-finding algorithm

– We must have 1 ≤ b ≤ r − 1

6
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Doubly Periodic Function

• f : a function from N0 ×N0 to (a), where N0 = {0, 1, 2, . . .}
and (a) = {ak (mod N) | 0 ≤ k ≤ r − 1}

f(x1, x2) = bx1ax2 (mod N) = asx1+x2 (mod N)

• f : a doubly periodic function with 2-tuple periods
– (l,−sl) for each integer l :

f(x1 + l, x2 − sl) = f(x1, x2), ∀ x1, x2 ≥ 0

– (r, r) :

f(x1 + r, x2 + r) = f(x1, x2), ∀ x1, x2 ≥ 0

• L = dlog2 re

6
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• {|x〉} : computational basis of the state space of an t-qubit
system

– {|x〉} : served as (a subset of) a factor (N0) of the domain

of f

– t = L+ dlog2
(

2 + 1
2ε

)

e : no less than L (at least to cover
one period) and dependent on the desired accuracy for s

– Two registers of length t are needed

• {|y〉} : computational basis of the state space of an L-qubit
system

– {|y〉} : served as the co-domain of the function f through
the following one-to-one correspondence

|y〉 ↔ |ay (mod N)〉

for 0 ≤ y ≤ r − 1

6
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• {|f̂(l1, l2)〉, 0 ≤ l1, l2 ≤ r − 1} : inverse Fourier transform of
states {|f(x1, x2)〉, 0 ≤ x1, x2 ≤ r − 1}

|f̂(l1, l2)〉 =
1

r

r−1
∑

x1=0

r−1
∑

x2=0

e−2πi(l1x1+l2x2)/r|f(x1, x2)〉

=







∑r−1
j=0 e

−2πil2j/r|f(0, j)〉, if l1 = sl2,

0, othersiwe

– {|f(x1, x2)〉, 0 ≤ x1, x2 ≤ r − 1} : representing the dynamics
of the periodic function f in at least one period (r, r)

|f(x1, x2)〉 =
1

r

r−1
∑

l1=0

r−1
∑

l2=0

e2πi(l1x1+l2x2)/r|f̂(l1, l2)〉

=
1

r

r−1
∑

l2=0

e2πi(sl2x1+l2x2)/r|f̂(sl2, l2)〉

6
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Simultaneous Evaluation of f

• U : unitary operator acting on the (2t+ L)-qubit composite
system

U |x1〉|x2〉|y〉 = |x1〉|x2〉|y ⊕ f(x1, x2)〉

• Quantum parallelism :

|0〉|0〉|0〉 H⊗t⊗H⊗t⊗I−→ 1

2t

2t−1
∑

x1=0

2t−1
∑

x2=0

|x1〉|x2〉|0〉

U−→ 1

2t

2t−1
∑

x1=0

2t−1
∑

x2=0

|x1〉|x2〉|f(x1, x2)〉

6
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Hidden Interaction Between (2t+ L)-qubit Composite Systems

1

2t

2t−1
∑

x1=0

2t−1
∑

x2=0

|x1〉|x2〉|f(x1, x2)〉

=
1

r2t

r−1
∑

l2=0

2t−1
∑

x1=0

2t−1
∑

x2=0

e2πi(sl2x1+l2x2)/r|x1〉|x2〉|f̂(sl2, l2)〉

=
1

r

r−1
∑

l2=0





1√
2t

2t−1
∑

x1=0

e2πisl2x1/r|x1〉









1√
2t

2t−1
∑

x2=0

e2πil2x2/r|x2〉





|f̂(sl2, l2)〉

7
0



'&

$%

• The discrete logarithm s is embedded in the phases (sl2)/r and

l2/r which will be estimated by the phase estimation algorithm

on each t-qubit system

– Applying inverse Fourier transform to each t-qubit system

to obtain
1

r

r−1
∑

l2=0

| s̃l2
r
〉| l̃2
r
〉|f̂(sl2, l2)〉

where

| s̃l2
r
〉 =

2t−1
∑

x=−2t−1+1

1

2t
1− e2πi(δsl22t−x)

1− e2πi(δsl2−x2−t)
|bsl2 + x〉

| l̃2
r
〉 =

2t−1
∑

x=−2t−1+1

1

2t
1− e2πi(δl22t−x)

1− e2πi(δl2−x2−t)
|bl2 + x〉

with (sl2)/r = bsl22
−t + δsl2 , l2/r = bl22

−t + δl2 such that

0 ≤ bsl2 , bl2 ≤ 2t − 1 and 0 < δsl2 , δl2 < 2
−t
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