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Unit Four — Quantum Fourier Transform and Its Applicatiol
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Quantum Fourier Transform.
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‘ Discrete Fourier Transform .

N : a positive integer

X0, T1,...,TN_1 : IN complex numbers
A N
27rz k/N
Yo, Y1, ---,YN—1 : the Fourier transform of x;’s

Discrete Fourier transform : a linear operator on C'*V

— {60,61,...,

F 1 N—1

2mijk /N
— — e e
v &

en, } : standard basis of C%V
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Quantum Fourier Transform.

e H : the state space of an n-qubit quantum system

e 2" : the dimension of H

e {|7)} : an orthonormal basis of H

e Quantum Fourier transform : a linear operator on H

2" —1

1 1 jom
‘]> |£> /2 Z 627szk/2 ’]47>
k=0

— A unitary operator on H

2" —1 1 1 1 2" —1

2mwijk /2™ o2mij'k/2m T 2mi(j—3)k/2™ __ 5
Z 2n/26 ’ 2n/26 IR = m Z ™ = 0jj
k=0 k=0
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Product Representation I

|]1.72 o ]n> =
(|O>+627T’L0.jn|1>) (|O>_|_627ri0.jn_1jn|1>) o <|O>_|_627Ti0.j1j2...jn|1>)
V2 V2 V2

o [J) =1|j1ij2 - Jn) =171) ®1J2) ® - @ |jn) :
G =312""1 4+ 452" 2 4 ... + 5,29 binary representation of j

27) = |11011)

o 0.51j1+1 " Jm = Ji/2+ Jig1/4+ -+ Jm /27" F ¢ binary
fraction

0101 =1-1/240-1/4+1-1/8 =5/8 = 20/32
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‘ Proof'

7) = l71d2 - Jn)
1 2™ —1
T2 Z e27m]l<:/2 ‘k>
k=0
271 k27!
o > - Z T By )
k1=0

2:/2 Z Z ée2m'jklzl‘k

k1=0 kn,=0 l=1

271'7,]2 l‘ >

2772]kl2l ‘O
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j1>7 H - R2 I Rn-] Rn

j2> Hp - Rn-Z ] Rn-] I
n_1> -
in)

e A swap circuit network is necesarry
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‘An Efficient Circuit Implementation.

(0)+ &) vz
(0)+ o)

(0)+ i)z
[0+ )2
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e [0) = (J0) +[1))/v/2 and [1) = (|0) — [1))/V2 -

1) 75 (|0) 4 €200t [1)) /v/2

1 0

0 e2m‘2—l

o R = = 62”2_(l+1)Rz(27r2_l) : 227! rotation

about z-axis in the Bloch sphere

L . H |0 _|_627ri0.j1 1 ) ) C(R) 0 _|_€27r7j0.j1j2 1 . .
jada e ) o B o ) Tt R )
CFS) . OBn) [0kt 0sn Iy oy

V2 J2 Jn
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A Concrete Example - Three-Qubit I

H

T

and T =
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Complexity I

n Hadamard gates

(n—1)4+(n—2)+---4+1=n(n—1)/2 controlled rotation gates

n/2 swap gates = 3n/2 C-NOT gates

Total complexity of quantum Fourier transform = O(n?) gates

— The complexity of classical fast Fourier transform (FFT) =

O(n2")

/
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Obstacles in Using Quantum Fourier Transform.

e The complex amplitudes cannot be directly accessed by

measurement

e No efficient ways to prepare the original state to be Fourier

transformed
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‘ Quantum Phase Estimation I
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‘Phase Estimation - First Stage. \

e |u) and e?™¥ : an eigenvector and the associated eigenvalue of
a unitary operator U on an m-qubit system

—  : a quantity in [0,1) to be estimated
— |u) : assumed be prepared by some black box

e Two registers are used
— The 1st register : t qubits initially in the state |0) and the
number ¢ is dependent on

«x The number of digits of accuracy we want in the estimate
for ¢

x The probability with which we want the phase estimation
procedure to be successful

— The 2nd register : m qubits initially prepared in the state

u) /
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Second register { |u)

\_

First register t qubits: |0) — A

(0)+ &)

(0)+e2@#)1))s 2

(0) +e27@¢)1)sv2

0)+e2"@9)1))i2

—_—
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e Output state of the 1st register :

0) + €22 #|1) [0) + 2T TNL) |0) 4 €29

V2 V2 V2

1 2t —1
_ ﬁ Z e27mkg0‘k,>
k=0

— When ¢ = 0.b1bs - - - by, we have the output state

~

‘0> i 627m:0.btu> ‘O> + 627r'120-bt_1bt|1> ‘O> 4 627rz‘0.blb2---bt’1>

V2 V2 V2

which is the Fourier transform of the state |b1bs - - - by)

/
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Cl(U2(t_1))
—

‘ Proof'

0)®---©]0) ®[0) ® |u)

0) + 1)
H|0) & -+ @ H|0) © ===t @ fu)
0) + 1) _ |0) + €221}
|O> _i_627ri2190|1> ‘O> _i_627ri2090|1>
HO)®: - ® 7 7

|O> 4 627m'2t_1g0|1>

0) + 62m‘21¢‘1>

®

V2

V2

D |u)

/
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‘Phase Estimation - Second Stage.

H

)

FT*

U’

u)

e Apply inverse Fourier transform F~! on the ¢ qubits in the 1st

register

/
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Output state of the 1st register at the 2nd stage after F~1 :
— When ¢ = 0.b1by - - - b, we let b = 2! =
b2 + 592072 + ... 4+ b,2° and the output state is

2t 1

2t/2 Z QMIWVC

2t —1 2t —1

1 27Tzk:b —27T'Z,j]{: .
== _— (& ot
ot/2 2t/2 Z
k=0

- 2l Z Z TR = () = [baba o)

— When ¢ = b27% 4+ § with integer b, 0 < b < 2% — 1, and
0 <4 < 2%, the output state |@) is
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2t 1

7 3

2t 1

|0) =

2t 1

= t/2 Z QMWQt/z Z _%W |
1
;O 201 —

2°71 1 _ p2mi(e2t—)) 2
— : ? 1 627”'(90 j2- t) ‘J>
J=0 J
2t —1 1 1 627m'(52t—j) '
T L 9t] _ g2mi(6—j27) b+7) =
7=0
where |b+ j) = [b+ j(mod 2%))

\_

~

2t—1 2t 1

Z Z 27rzk(ap— )|]>

7=0 k=0

p2mi(92" —(b+7))

t—1
2 __2mi(62t—5)

1 1—e .
Z 9t 1 _ e2mi(6—j52-1) b+ )
j=—2t=141

/
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e Apply projective measurement in the computational basis

— When ¢ = 0.b1bs - - - by, the result m of the measurement is
b=0b2"1 + 52072 ... 4+ b,2° with probability one

— When ¢ = b27% 4+ § with integer b, 0 < b < 2% — 1, and
0 < 6 < 27t, the probability that the result m of the
measurement is (b + j7)(mod 2?), —(271 —1) < j <271 ig

1 |1— 627ri(52t—j)|2 1
b-+j(mod 2")|p)|? = . ~
[(b+j(mod 20)2)] 22t 1 €2m(5—§—t)|2 T 220t (§ — L2

2t

¥ |1—e? <2
x |1 — e =2|sinf/2| > 2|0|/7 for all -7 < <7
x —m < 27(6 — 527 < 7w when —(271 — 1) < j <2t

/
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Thus the probability that the measurement result m is

lm — b| > e for some positive integer e as the desired

tolerance to error is

P(|lm —b| > e)
1 —(e+1) ot—1
U | Z ( 5215 T Z (5 _5215
j=—2t=141 j=e+1
1 —(e+1) 21 2
< gl 2 —+ Z G-17) =2
j:—2t—1+1 Jj=e+1 Jj=
12 1 [~ 1
< —/ —2d:13 —/ —dx
2 e—1 2 2 e—1 -
B 1
- 2(e—1)

~
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The Selection of the Value of t' \

e Approximating ¢ to an accuracy 27" = e = 207" — 1

im—bl <e=2""-1

= Jp-—-m27 =10+ (b-m27 <+ (2" —1)27 <27

e p =1t —n : determining the probability that the measurement

result assures this accuracy, which is lower-bounded by

1
| — 21 ¢
2(20 — 2)

t:n—|—p:’n+ﬂog2 (2_|_2i€)1

o c=102=p=6;e=103=2p=9:e=10"*=p=13

/
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‘What If An Eigenstate Cannot Be Prepared for U ? I

e |Y)) =)  cy|u) : a generic state expanded by an eigenbasis

{|u)} of the unitary operator U

271y

¢ . eigenvalue associated with eigenstate |u)

o |7) =), Culpu)|u) : output state of the composite quantum
system after running the phase estimation algorithm

e p'2 = |n){n| : density operator of the composite system

o pt =try(p!?) : density operator of the 1st register

p —chucu | Pu)(Pur| tr(fu)(u]) Zlcu\ |Pu) {Pul
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o {|m)(m|} : projective measurement with computational basis
Um)}

e P(m,u) : the probability that the state of the 1st register is
|©.,) and the result m occurs

P(m,u) = P(u)P(mlu) = leu? tr(fm) (ml3.)(Bul) = leul(m|20)

o If t = n+ [log, (24 )] is selected, the probability for
measuring ¢, accurate to n bits by the phase estimation
algorithm is at least |c,|*(1 — €)
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‘ Modular Arithmetic .
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/ ‘The Ring of Integers Modulo N I \

e N : a positive integer
e Z/n =10,1,...,N — 1} : the ring of integers modulo N

— Modular addition : =,y € Zn, © + yé(a: +vy) (mod N)
x Associative : (x +y)+z=x+ (y + 2)
x Additive identity : O+ x =2+ 0==x
x Additive inverse : z + (N —x) =0
x Commutative : x+y=y+=x
— Modular multiplication : z,y € Zy, zz:yé(xy) (mod N)
* Associative : (xy)z = z(yz)
* Distributive : (z 4+ y)z = (z2) + (yz) and
r(y + 2) = (zy) + (22)
« Multiplicative identity : lz =zl ==z

\ x Commutative : zy = yx /
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/ e Multiplicative inverse : x € Z is said to have a \
(multiplicative) inverse if there exists a y € Zn such that
ry=1,ie,zy=1 (mod N)

— Example : 5 has an inverse in Zg but 3 does not
— 1 € Zy has an inverse z 7! if and only if (z,N) =1
o 7% ={x € Zy|z~! exists} : the group of invertible elements in
ZN
— Closure : if z,y € Zy, then zy € Z%,
— Associative : (zy)z = x(yz)
— Multiplicative identity : 1 € Z3 and lx =zl =«
— Multiplicative inverse : zz=! =1

— Commutative : xy = yx

e p : a prime number

k — Zy = Z,\{0} and then Z, is a field /
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The Euler ¢ Function. \

e ©o(N)=|Z%| : the Euler ¢ function
e Properties :

— If N = p* then p(pi) = p* —p* 1 =p*1(p—1)
— If (M,N) =1, then o(MN) = o(M)p(N)
x Each element in Z;;n can be uniquely represented as
i+ M with0<i<M—-1and0<j<N—1
« If (¢, M) > 1 then (¢ 4+ jM, M) > 1 and then
(t+jM,MN) > 1 for all j
x For a fixed i, (¢, M) =1,if i +jM =i+ j'M (mod N),
then (j — 7/ )M =0 (mod N) and then j = j'. Thus
Zn ={t+jM (mod N),0<j < N —1} and there are
exactly o(N) of i +jM, 0 < j < N — 1, which are
co-prime with N and with M respectively /
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o If N = Hz-pfi is the prime factorization of IV, then
o(N) =Ly~ (p; — 1)

e Examples :

p(7) = 6,
0(27) = 9(3—1)=18
p(21) = ©B)p(7) =2-6=12
©(1800) = (2%)p(3%)p(5%) =2%(2 —1)3(3 —1)5(5 — 1) = 480

/
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‘ Fermat’s Little Theorem '

® ¥ C Ly

r?N) =1 (mod N)

e Since xz € Z3;, the mapping y — 2y (mod N) is a permutation
on Zx, Thus we have {xy (mod N)|y € Zx} = Z% and then
Hyezrxy =lyezzy (mod N)
= :ESO(N)Hyezxjy =1l cz:y (mod N)
= W) =1 (mod N)
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The order of x modulo N '

x, N : relatively prime positive integers with x < IV

on(z) : the order of x modulo N, which is the least positive

integer r such that
" =1 (mod N)

Example : 021(5) =6

51 =5 (mod21), 52 =4 (mod 21), 5° =20 (mod 21),
5* =16 (mod 21), 5° =17 (mod 21), 5°=1 (mod 21)

on (z)|p(N)

/
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‘ Quantum Order-Finding Algorithm I
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A Unitary Operator for Finding oy(z)

x, N : relatively prime positive integers with z < IV

L = [log, N| : the minimum number of bits to represent N
H : the state space of an L-qubit quantum system

{ly),0 <y < 2L —1} : a computational basis of H

U, n @ a unitary operator on H such that

A lzy (mod N)), if0<y<N -1,

Uaz,N’y>
), if N <y<2b—1.

— Since x € Z3%;, the mapping 7 : y — zy (mod N) is a
permutation on Z .

~

/
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‘Special Eigenvalues and Eigenstates of U, n I \

e 7 =on(x) : the order of x modulo N

° 6(27”8)/7“, 0<s<r—1: eigenvalues of U, y associated with
eigenstates |us)

r—1

1 _ QWZSk
[us) —WZG

k=0

(mod N))

271s

U, N|us) = ka 06 = | el (mod N)) =e"r

Us)

o |uy), 0 <s<r—1: inverse Fourier transform of |z*(mod N)),
0 <k<r—1, and then

\:I:k (mod N)) = Z et
—0

/
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e To find the order r = on(x) of x modulo N, we estimate the
2mis

phase s/r of the corresponding eigenvalue e = of eigenstate
lug) of Uy N
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Preparing the initial state of the 2st Register.

e Unable to prepare any of eigenstates |us)

e An observation:
r—1
1
— 3 Jus) = 1)
\/77 s=0

— |1) : the initial state of 2nd register to be prepared
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‘Implementing Quantum Order-Finding Algorithm.

Register 1

{ qubits

Register 2

\_

L qubits

0 /-

HD'[

)

FT*

oy

x! modN

%
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2t 1 ot _1
H®tQT 1
o)1) T —= > )L Z 7)a?  (mod N))
V2t =0
r—12t—1

7“1~

s=0 5=0

e U, n : the controlled-U ajj n unitary operator on the
(t + L)-qubit composite system

2t_ 1 1— 62771(5 ot

[ |%> ] Zx__Qt 141 2t 1_e2mi(ds—w2— t) |b _|_:I;> Wlth
s/r =0s27" 4§, such that 0 < b, <2 —1and 0 < §, < 27¢

MZZ 277sz/?“|] .7: <§§>I 1 Z|— "U,S

~

/
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e [ = [log, N| : minimum number of bits to represent N

o t=2L+1+[logy (2+ 5)]

— 2L + 1 : accuracy of phase estimation to 2~ (2L+1)

— (1 —€)/r : the least probability that an estimate of the
phase ¢ = s/r accurate to (2L + 1) bits

e How to deduce r from the phase estimate ¢ 7
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Continued Fraction Expansion. \

e Continued fractions : representing real numbers

— Finite continued fractions :

A 1
[CL(),CLl,"',CLM]:CLO—|— 1 ’
a1 + T 1
where ag a real number, a4, ..., aps positive real numbers

— Finite simple continued fractions : finite continued fractions

with a;’s all integers

— Infinite simple continued fractions :

A 1
[a'()a&l?aQa”']:a’O_'_ 4 1 ’
a1 as+ -+

where ag an integer and a;,? > 1 positive integers /
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Example : 30/17 = [1,1, 3, 4]

~

5 1—|—13 1+ ! 1+ ! 1+ ! 1+ !

— — — — — — — —

L7 17 % 1+ 1% = 1+ 3i1
4 4

« is a rational number if and only if o is uniquely expressible
as a finite simple continued fraction [ag, a1, -, ap] with

ay > 2if M > 1

« is an irrational number if and only if « is uniquely

expressible as an infinite simple continued fraction

Ym = @, A1, - - ., 0] is called the mth convergent of a finite
continued fraction o« = [ag, a1, -, ap]
Example : a =30/17 =[1,1, 3, 4]
7 30
70:[1]:17 71:[171 = 2, 72_[17173]:_7 ’73:04:1_7
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4 N
A Theorem .

e « : a real number

e p/q : a rational number with ¢ > 0 and (p,q) =1
If

then p/q is a convergent of the simple continued fraction expansion

of «

e With a =30/17=[1,1,3,4], we have 7/4 = [1,1,3] is a

convergent of the simple continued fraction expansion of « since

7/4—a|=1/(4-17) < 1/(2-4%)

\_ /
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e Not every convergent of o satisfies the above inequality
1 —a|=13/17>1/(2-1%)

where 1 is a convergent of the simple continued fraction

expansion of «




LY

The Implication I

With probability > (1 — €)/r, the estimated phase ¢
approximates s/r accurate to (2L + 1) bits, i.e.,
s;_ 11 _ 1 _ 1
‘9"_ ?’ = 20L+1) T 2(2L)2 = 2N2 — 272

Continued fraction algorithm efficiently produces numbers s’
and 7', with no common divisor, such that s’ /r’ = s/r once a
convergent s’ /1’ of the estimated phase ¢ satisfies

| s’ 1

2(2L+1)

— = <
r

r’ . candidate of r

/

Verification : Is 2™ =1 (mod N) 7
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Failure of the Order-Finding Algorithm.

e Case I : with probability at most €, the phase estimation

procedure produces a bad estimate ¢ with an error greater
than 2~ 2L+ to each s/r

e Case II : the continued fraction algorithm returns an r’ which is
a proper divisor of r in case that s and r has a common divisor

/
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‘ Quantum Factoring Algorithm I
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A Theorem '

e N : a positive integer with N >4
e 2<x <N -2
e =1 (mod N)

Then at least one of ged(x — 1, N) and ged(x + 1, N) is a proper
factor of N

\_

/
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A Theorem '

o N = plfl plfQ ...pFm . prime factorization of an odd positive
integer N with m > 2

e 7 : an integer in Z} chosen uniformly at random

e 1 =opn(x)

P(ris even and 2"/2 # —1 (mod N)) > 1 — —
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‘ The Factoring Algorithm I \

If N is even, return the factor 2 (to reduce the size of N by
N «— N/2)

Determine whether N = a® for integer @ > 3 and b > 2 and if

so, return the factor a (to reduce the size of N by N « a)

Randomly choose z in [3, N — 2], if ged(x, N) > 1, then return
the factor ged(x, N) (to reduce the size of N by
N — N/ged(z, N))

Use the order-finding algorithm to find r = oy ()

If r is even and 2"/2 # —1 (mod N), then compute
ged(z™/2 — 1, N) and ged(z™/2 + 1, N), and test to see if one of

these is a proper factor of N and return the factor it so.

Otherwise, the algorithm fails /
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Factoring NV =15 I

L=1log, N=14

e=1/4

t=2L+1+[log, (24 2)]=9+2=11
No factor of 2 : 15 is an odd number
Not a power a’ with ¢ > 3 and b > 2

Randomly select an integer = in [3,13] :

— If x is a multiple of 3,5, then return ged(z, N) = 3,5 > 0.

— If z is not a multiple of 3,5, says x = 7, then x € Z7;

Compute oy (x) = 015(7) (which is equal to 4, but we do not

know it) by the quantum order-finding algorithm

— Preparing the state |0)|1) of the (¢t + L)-qubit composite
system

/
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— Applying Hadamard transform to the 1st register, the

resulted state is
2t 1

1
NG ;:% [£)[1)

— Applying the controlled U f ~ gate, the resulted state is

ﬁgkn (mod N))

1
= ﬁ{|0>|1>+‘1>|7>+’2>‘4>+|3>’13>+‘4>|1>+’5>‘7>+'”

— Applying the inverse Fourier transform to the 1st register

and measuring the resulted state

/
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— Or before applying the inverse Fourier transform to the 1813\
register, we use the principle of implicit measurement by

assuming that 2nd register is measured with result m

— Suppose m = 4 (any of the results works) is measured. The

state of the 1st register input to the inverse FT is

2t—=2_1

Z 12 + 45)

— The output state after applying inverse F'T' to the 2nd

o2 {12)16) + [10) + 1) + -} =

register is

2t—=2_1 2t 1 2t 1

2 1 —27i(2+45) k27"
— =y e k)= > all)
Va2t o V2t i = Y,

]_
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/ with

1 2t—=2_1 | o
= 5 Z o 2mi(2+45)12
§=0
B ze Fmo il =k2"2k=0,1,2,3
B 0 otherwize

— The probability distribution of |o;|? is

0.25¢

0.2

o,

0.1f

0.05

o0 ]
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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— The measurement output is [ = 0,512, 1024, 1536 each with
probability 1/4

— Suppose [ = 1536. With continued fraction, we obtain
1536,/2048 = 1(1 + (1/3)) = [0113] so that 3/4 = [0113]
occurs as a convergent of [0113]. This gives r’ = 4 and by
checking 7* =1 (mod 15), we conclude that r = 015(7) =

e Since r =4 is even and 2"/2 =72 # —1 (mod 15), then
compute ged(72 — 1,15) = 3 and ged(7% + 1,15) = 5, which
tells us that 15 =3 x5

/
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Period-Finding I
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/ Periodic Function ' \

e f : periodic function from Ny = {0,1,2,...} to {0,1}

e r : period length of f, 1 <r <2 — 1, to be evaluated
flat+r)=f(z), Va=0

e {|x)} : computational basis of the state space of an ¢t-qubit
system

— {|z)} : served as (a subset of) the domain of the periodic

function f

— ¢t : no less than L (at least to cover one period) and
dependent on the desired accuracy for r

e {|y)} : computational basis of the state space of a single qubit

\ — {]y)} : served as the co-domain of the periodic function f /
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o [|F(0)),]/(1)),...,|f(r —1))] : r-tuple representing the Inverse
Fourier transform of the r-tuple [|f(0)), |f(1)),...,|f(r —1))] of

states

Q) = 5= X pe e/ f(x)), 0<I<r—1

— [|£0), |f(1)),...,|f(r —1))] : representing the dynamics of

the periodic function f in one period

f(@)) = 9= 2212 ™| f(1)), 0 <@ <2t -1
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Simultaneous Evaluation of f I

e U : unitary operator acting on the (¢ + 1)-qubit composite
system

Ulz)ly) = |x)ly ® f(z))
e Quantum parallelism :

2t 1 2t 1

0y[0) =8 Zwo % le!f
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idden Interaction Between t-qubit and 1-qubit Systems

2t 1 2t 1

Jr LRI = m S Tie%“m”\ﬂl»

-1 2t —1 )
_ Z Z 2m:n(l/r)|x |f(l)>
=0 x=0

e The period r is embedded in the phases [/r which will be
estimated by the phase estimation algorithm on the t-qubit
system

— Applying inverse Fourier transform to the t-qubit system to
obtain

|
[ —

r

1

\_ v

1)

=S | e

I
o

/




€9

\_

where
~ 2‘[3—1 . t
] 1 1— 627m(5l2 —x)
‘¥> - X ot 1 — e2mi(8—w271) b1 + )
r=—2t—141

with l/?“ = b;27¢ + §; such that 0 < b; < 2t — 1 and
0<§ <27t

— For each 0 <1 <7 —1,|f(])) = wpol0) + w;|1) with

1 —2milx/r 1 —2milx /T
“w:ﬁzez i uM:WZ@Q o/

x € Py re Py

where Py ={x € [0,7—1] | f(z) =0} and
Pr={xze|0,r—1]| f(x) =1}




79

/ e Resulted state after applying inverse Fourier transform \

r—1 £t r—1 £t
1 [ 1 [
— g —) 110 — g — |1
(ﬁ 1=0 UZOT>> R <\/F 1=0 Ul1|r>> Y
e With the principle of implicit measurement by assuming that
2nd register is measured with result m

_ 1@l

=<
where Qo = {x € [0,2" — 1] | f(z) =0} and
Q1={z€0,2" - 1] | f(z) =1}

e Suppose that m = 0 is measured (which occurs with

probability |Qq|/2"). Then the output state of the 1st register
after applying inverse Fourier transform is

P(mzl):@

P(m = 0) 5

\_
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‘ Discrete Logarithm I

e a,b, N : positive integers with 1 < a,b < N and (a,N) =1
such that
a®=b (mod N)

Note that (b, N) =1, too
e Find the least positive integer s

— 7 =0On/(a) : the order of @ modulo N, which is assumed
known by the order-finding algorithm

— We must have 1 <b<r—1
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/ Doubly Periodic Function.

e f: a function from Ny x Ny to (a), where Ng = {0,1,2,...}
and (a) = {a® (mod N) |0<k<r—1}

flz1,22) = b"a®® (mod N) = a***"*2 (mod N)

e f : a doubly periodic function with 2-tuple periods

— (I, —sl) for each integer [ :
flry + 1,20 —sl) = f(x1,22), V1,29 >0

— (r,r) :

f(CC1+T,CC2+T> :f(x17x2)7 \V/.flfl,xQ ZO

o [ = [log,r]

\_

~
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. computational basis of the state space of an t-qubit

— {|z)} : served as (a subset of) a factor (Ny) of the domain
of f
— t =L+ [log, (24 5)] : no less than L (at least to cover

one period) and dependent on the desired accuracy for s
— Two registers of length ¢ are needed
e {|y)} : computational basis of the state space of an L-qubit
system

— {|y)} : served as the co-domain of the function f through

the following one-to-one correspondence

y) < [ (mod N))

for0<y<r-—1
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/o {17 (l1,12)),0 < 1y,lo < r —1} : inverse Fourier transform of \
states {|f(x1,22)),0 < x1,20 <71 —1}

r—1 r—1

flnl) = =30 ST el g )
1
0

=0

r1=0x

Si o e 2RI £(0,5)), i Iy = sla,
0,

othersiwe

— {|f(z1,22)),0 < z1,79 <7 — 1} : representing the dynamics
of the periodic function f in at least one period (r,r)

r—1 r—1

- Z Z 27Tz(l1:1:1—|—l2x2)/7°|f(l1,l2)>

l1 0l5=0
r—1

| f(z1,22))

4 Z 277@(812901+l2m2)/r‘f(3127 l2)>

N Y
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Simultaneous Evaluation of f I

e U : unitary operator acting on the (2t 4+ L)-qubit composite

system

Ulz1)|z2)|y) = |z1)|72)|y & f(21, 72))

e Quantum parallelism :

10)10)10)

2t 1 2t—1

H® @H®ter 1
eSS fenlan) o)

331:0 $2:0

2t 12t 1

Y, % >0 Jz)ma) | f(z, 22))

1 =0 332:0
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Hidden Interaction Between (2t 4+ L)-qubit Composite Syster

2t —12'—1

Z > ) |wo) | f (a1, 22))

1= 05132 0

r—1 2t—1 2t —1

3 Y S e g ) (s, 1)

l2 Ox1= Oxg 0

1 r—1 2t —1
_E : E : 27Tzsl2x1/r’x>
r

ZQZO $1 0

1 (sl2,12))

2t 1

E : 271'7,[2302/7“‘33

$QO

/
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/ e The discrete logarithm s is embedded in the phases (sls)/r and\
lo /7 which will be estimated by the phase estimation algorithm
on each t-qubit system

— Applying inverse Fourier transform to each t-qubit system

to obtain
1 Slg
. Z = If sy, 12))
lo=0
where
~ ot—1
slo 1 1 — 277@(5le t_x)
7> - Z ? 1 — 627m(58l2 —x271) |b3l2 ZE>
r=—2t—141
l; 2t_1 1 1 L 627T’1:(5l22t—213)
?> - Z ot 1 _ p2mi(01,—a27 1) bi, + )
r=—2t—141

with (slg)/r = bg, 27" + 041, lo/7 = 11,27 + 6;, such that

k OSbSZZ,bb§2t—1and0<5852,5l2<2_t /




