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‘ Unit Three — Quantum Circuits I




Visualization of Unitary Operations on a Qubit I




/ Visualizing State of a Single Qubit on Bloch Sphere I \

e 1) = l0) + G|1) : the state of a qubit
a=ael’, 3= bed (V+¢)
with a,6 > 0 and 0 < v, < 27

Since a? + b? = 1, there is a unique 0, 0 < 6 < 7 such that
0 0

a = cos —,b=sin —
2 2

Thus g
) = el (COS g\D) + /¥ sin §|1>)

and by ignoring the global factor e/”, we have

9) = cos 410) + /¥ sin ¢[1), 0< O <m, 0<p<2r

\_ /




/ Visualizing State of a Single Qubit on Bloch Sphere I \

e (cospsin@, sinpsinf, cosf) : the Bloch vector




/‘ Complex Coordinate Vector Versus Real Bloch Vector I\

o |¢) =al0)+ B|1) = eI (cos £]0) + €7 sin 2]1)), 0 <6 <
m, 0< 7,90 < 27 : a qubit state where |a]? + |3]? =

— cos ¥ = |a and then cosf = 2aa — 1

0ei¢ sin & = 2a0

— 699081n6:2cos2 5

e (r,y,2) = (cosysin, Smgpsme cos ) : the Bloch vector of |)

\oz\ 1—|—cos@ /1

— 2@6:(399081n9::13—|—zy

r+iy = e%sinf = 200

z = cos = 2aa—1




Elementary Unitary Operators on a Single Qubit I

e B={]0),|1)} : an orthonormal basis of state space of the qubit

® 0,,0,,0, : Pauli operators with matrix representations

X = |0s],Y = |oy]|B, Z = |0.]5 respectively

0 1 0 —i
X = Y = 7 =
10 i 0

e Spectral decompositions of Pauli operators

00 = [F)(F] = [N =l 0y = [H )N+ = [=) (=], 0= = |0)(0] — [1)(1
(

= [+) = ([0) +11))/v2,[=) = (|0) — [1))/v2
= [+ = (0) +i1))/v2,[-") = (10) = i[1))/ V2

\_

/
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Elementary Unitary Operators on a Single Qubit (Cont’) I

\_

e 0},05,0; : Hadamard, phase, m/8 operators with matrix
representations H = |05, 5 = |0s]s,T = |0t|p respectively

H IS r—| 1 Y
V211 -1 |’ 0 i |’ 0 ¢

N

® 0y,04,0y,0, : Hermitian operators
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Visualizing Pauli Operators on Bloch Sphere.

~




A° Rotation about n Axis of the Sphere.

A coordinate transformation on the sphere

n = (Ng,Ny,n,) = (sinf cos ¢, sinfsin p, cosP) : the rotation

axis

£ =(1,0,0),5 =(0,1,0),2 = (0,0,1) : standard right-hand
orthogonal coordinate system S in R?

2’ = (—cosf cos p, — cossinp,sinf), §' = (sin p, — cos g, 0),
2" =n = (sin 0 cos g, sin fsin @, cos #) : another right-hand

orthogonal coordinate system {n} in R3

/




OT

/ o [{n} — S|,[S — {n}] : Coordinate transformations

I —cosfcosyp singp  sinfcosp |
{n} = S]=| —cosfsingy —cosy sinfsing

I sin 6 0 cos

I —cosfcosypy —cosfsingy sinf |
S — {n}] = sin ¢ — COS 0

| sinflcosp sinffsing  cosf |

e [A°]r4 ¢ A° Rotation about 7 axis in the {f} right-hand
orthogonal coordinate system

cosA —sinA O_
[A°lgpy = | sinA  cosA 0

\ 0 0 1

~
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e [A°—n]: A° Rotation about n axis in the standard right-hand
orthogonal coordinate system

[A” =7
= [1n; = S|[A%1ay S — {n}]

(1 — cos A)n2 + cos A
(1 —cosA)ngn, + sin An,

(1 —cos A)n,n, — sin An,

(1 — cos A)ngyn, —sin An,
(1 — cos A)nZ + cos A

(1 —cos A)nyn, + sin An,

(1 —cos A)n,ny + sin An,

(1 — cos A)nyn, — sin An,

(1 — cos A)n? + cos A

/
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Special Examples I

1 0

0

[A° — 2] = 0 cosA —sinA

cos A

A" =g = 0

cos A
[A° — 2] = sin A
0

0 sinA cosA

0 sinA
1 0

—sinA 0 cosA

—sinA 0
cosA 0
0 1
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/ Visualizing Pauli-X Operator on Bloch Sphere.

0 - 0 — 0
COS §|O> + e’? sin§\1> X, cos © 5

Tl Tl

[ —2]

. _9
0) + e /¥ sin T

~

1)

(cos psin @, sin psinf,cos )t —> (cospsinf, —sinpsinf, — cos )’

e Pauli-X operator corresponds to a 180° rotation along the

\ t-axis on the Bloch sphere, i.e., [180° — Z]

1 0 0 cos @ sin ¢
0 cosm —sinTm sin o sin 6
0O sinm cosw cos 0

/




Vi

0 - 0 — 0
COS §|O> + e’? sin§\1> Y, cos~ 5

Tl Tl

A~

[m—

cosm 0 sinm
0 1 0

—sinmt O cosT

\ g-axis on the Bloch sphere, i.e., [180° — ¢

0) + e/("=¥) gin

/ ‘Visualizing Pauli-Y Operator on Bloch Sphere I

(cos psin @, sin p sin @, cos #)* Ty (— cos @ sin 6, sin @ sin §, — cos 0)*

cos @ sin ¢

sin o sin 6

cos

e Pauli-Y operator corresponds to a 180° rotation along the

T — 6

~

1

/
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0 - 0
COS §|O> + €’% sin 5\1}

Tl

(cos psin @, sin p sin @, cos #)*

Z

[m—2]

—

(— cos @ sinf, —sin psin @, cos 0)*

COS T
SIn 7

0

0

—10
— C082|>

—sint 0
cosm O
0 1

\ z-axis on the Bloch sphere, i.e., [180° — Z]

/ ‘Visualizing Pauli-Z Operator on Bloch Sphere I

e Pauli-Z operator corresponds to a 180° rotation along the

0
—11
1)

cos @ sin ¢

sin  sin 6

cos 0

/
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‘ Special Rotation Operators I

A

eI E = e TE ) (] + €T ) (-]

. A

CcOS §(|—|—><—|—\ + |=){—]) —isin 5("|'><‘|‘| — [=){=1)

A A cos & —isin%
cos —I —i18ln —0, <

2 2 —isin% COS%
eE = e E ) (] + T

.. A

cos §(|+'><+’| +|="){~]) —isin §(|+'><+'

A A COS% —sin%
cos —I —isin —o, <=

2 2 sin% COS%

—[="{="1)

~




L1

- A

e "2 = ¢TI |0)(0] 4 €2 [1)(1]

A A

cos —I —1s8ln —o, <—
2 2 7

o —iA/2

0

0
p1A /2
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Generic Rotation Operators. \

e 0 =(0;,04,0;) : the vector of Pauli operators

— Anti-commutation relations of Pauli operators

{0,004} =040, +0y0, =0
{oy,0,} =040, +0,0,=0
{O-zao-x} = 0,0z + 040, = 0
e 1 = (ny,ny,n;): areal unit vector in three dimensions
® 1\-0 =ny,0, +nyo, +n,0,: a Hermitian and unitary operator
on the state space of a qubit such that

(h-6)* = nio;+mnjoy +nio?
+ngny{ogoy} + nyn.{oyo.} +nng{o,0:}

= I

/
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We define

Ry(A) =

o 1.7 = [1)(Y1] — |P2) (2] :

AN
el N0

e |y ) (1] + €12 o) (1o

A

COS 5(W1><¢1| + |1p2) (2])
AI LA
cos 5 —isin—n -7

spectral decomposition of n - &

~

—isin 2 (1) | — iz} (vl

/
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isualizing a Generic Rotation Operator on Bloch Sphere

|4y = cos £]0) + €** sin £|1)
| Ra(A)

[9°)
= cos 5 (cos &]0) + e sin 2|1)) —isin £ (n, (e*? sin £]0) + cos |1

+n,, (—ie™® sin 2]0) + i cos /1)) + n, (cos Q\O) — e sin £|1)))
= (cos 5 cos g —isin g (nye'?sin§ —inyesin g +n,cosd)) |0)

+ (cos %ew smg — 4 sIn % (nx COS 5 o + 17 COS g —n,e¥sin & )) 1
= (Cos % COS Q + sin % (nx Sin ¢ SN 3 9 _ ny COS (p sin Q)

+isin 5 ('n,x Cosgpsm % +nysinpsin g +n, cos 2)) |0)

+ (cos % COS (p Sin 5 + sin % (ny COS g — N, SIn Y sin g)

+1 (COS % sin  sin g — sin % (nx cos &

\_

 —n.cospsing))) (1) /

~~—
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(z,y,2)" = (cos psin b, sin psin #, cos #)*
L[A -]
(', )
(((1 — cos A)n2 + cos A)x + ((1 — cos A)ngn, — sin An, )y
+((1 — cos A)nyny, + sin Any )z, ((1 — cos A)ngn, + sin An, )z

((1 —cosA)n,n, —sin Any )z + ((1 — cos A)nyn, + sin Ang)y

(
(
+((1 = cos A)nz + cos A)y + ((1 — cos A)nyn, — sin Ang)z,
1
+((1 — cos A)n? + cos A)z)*

A—n]| y
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A° Rotation along z Axis.

e n=2=(1,0,0)

1) = cos £]0) + ¢ sin £|1)

| Rz(A)
[9')
= (cos 5 cos & + sin 5 sin psin & +isin £ cos psin &) |0)
+ (cos £ cospsin & +i (cos £ sinpsin & —sin £ cos §)) |1)

\_ /
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(x,y,2)" = (cos psiné,sin psinf, cos f)*

(x/, y/’ Z/)t

LA = 1]

(z,ycos A — zsin A, ysin A + zcos A)?

1 0
0 cosA
0 sinA

0 T
—sin A Y
cos A 1 [z ]
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A° Rotation along 3 Axis.

e n=1y=(0,1,0)

1) = cos £]0) + ¢ sin £|1)

L Ry(A)
9)
= (cos 5 cos & —sin 5 cospsin & +isin £ sin psin &) |0)
+ (cos £ cos psin & +sin £ cos £ + i cos £ sinpsin 2) |1)

\_ /
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(x,y,2)" = (cos psiné,sin psinf, cos f)*
LA =9
(z',y,2")"
(zsin A + xcos A, y,zcos A — xsin A)?
[ cosA 0 sinA | [ a
0 1 0 Y

—sinA 0 COSA_ z
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A° Rotation along Z Axis.

e n=2=(0,0,1)

[4) = cos £]0) + ¢ sin £|1)

L R:(A)
[9")
= (cos % COS g + i sin % COS g) 0)
+ (COS % COS ( SIn g — sin % sSin  sin g

A A

+i (cos £ sinpsin & +sin £ cospsin §)) |1)

2 2
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(x,y,2)" = (cos psiné,sin psinf, cos f)*
N
(«',y', )"
(xcos A —ysin A, zsin A + ycos A, 2)*
| cosA —sinA 0| [z
sinA  cosA 0 Y
0 0 1 2
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‘ Single Qubit Operations I
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Algebraic Relations on Elementary Unitary Operators.

(Jx + O'z)/\/i

¢ 0, =0% and o4 = 0

.O’h

o 0,%:0:%:05:03:1

® 0,0y = —0yOg, Ox0, = —0,04, Oy0, = —0,0y

® 0,040y = —Oy, 030,03 = —04, Oy0z0y = —Og, Oy0,0y = —0,
0,050, = —0g, 0,040, = —0y

® Op0y — O020ph, OROy — —OyOhp, OROz = OO0}

® Op0,0p = O0zy, OROyOp = —0y, ORO0p — Oy

\_ /
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/‘ Relation Between Elementary and Rotation Operators I\

o 0, =e™2R,(r

S
I
|
I
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0, Ry(0)oy = Ry(—0), 0,R.(0)o, = R.(—0),
oyR;(0)oy, = Ry(—0), oyR.(0)o, = R.(—0),
o,R;(0)o, = Ry, (—0), 0,R,(0)o, = R,(—0)
O'th(e)Jh — RZ(Q), UhRy((g)Uh — Ry(—é), O'hRZ(Q)O'h — Rx((g)

onoson = e o R, (m/2)on, = €™/ AR, (1/2)
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Every Unitary Operator on a Qubit Is a Rotation Operatorl

\_

U = GiaRﬁ(Q)

e The proof is an exercise




€e

4 N

Z —Y Decomposition of Unitary Operators on a Qubit I

e U : a unitary operator on a single qubit

There exist real numbers «, 3,7, d such that

U=e“R, (5)Ry (7)R-(9)
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e Every row and column of U is a unit vector : there exist real
numbers 61, 02, 03,0, and 0 < 6 < 7/2 such that

U —

‘ Proof'

et cos 0

e'¥s sin 0

e'%2 sin 0

et cos 0

~

e The two rows (columns) of U are orthogonal : for 0 < 6 < 7/2

gi(01=03) | ,i(62—61)

gi(01=02) | ,i(65—61)

Thus we have

01—03 = 05—0,4+7 (mod 27‘(’),1.6., 0, = —01+0,+0s3+7

Kand then

0
0

(mod 27)

/




ce

U =

et cos 6

e'¥s sin 0

91205—5/2—5/2
QQIQ—5/2+5/2—I—7T
93:(1+5/2—5/2

0=r~/2

o—i8/2

100

0

672(@—6/2—5/2) COS %

67:(044‘/3/2_5/2) Sin %

0
/2

e'2 sin 0

ei(—91 +05+03+7) cos O

_ei(a_B/Q‘f‘d/Q) sin %

6i(oz—|—6/2—|—5/2) COS %

cosL —sinZ e~ 10/2 0
2 2
sin % COS % 0 e10/2
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e R.(0) Ry ()R- (0)
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A Corollary I

e U : a unitary operator on a qubit

There exist unitary operators A, B, C' on the qubit such that
ABC =1 and

U=¢e“*Ao,Bo,.C

where « is some global phase factor.

\_




8¢

- — N

e U=¢"“R,(B)R,(v)R.(0) : Z—Y decomposition of U

o A=R.(B)Ry(1/2), B= Ry(—1/2)R(~(5 + §)/2),
C=R,((0 —3)/2) : three unitary operators on the qubit

ABC =1
Since 02 = I, we have
03 Boy = 0uRy(—7/2)000,R.(—(0+08)/205) = Ry(v/2)R-((6+5)/2)
and then
e'* Ao, Bo,C
= “R.(B)Ry(v/2)Ry(7/2)R-((0 + B)/2)R-((6 — B)/2)

emRz (6)Ry (V)R.(6) =U

\_ /
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‘An Example — o, I

o o =c"2Ry(n/2)R.(7) = e/ R.(0)Ry(7/2) R: ()
o A= R.(B)Ry(7/2) = Ry(7/4)

e B=Ry(—/2)R.(—(0+0)/2) = Ry(—7/4)R-(—7/2)
o U'=R.((0-0)/2) = R(/2)
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‘ Controlled Operations I
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The CNOT Gate.

e Prototypical control operation

e [0)|]t) — |c)|t ®c) : a unitary operation on two-qubit system,
where ¢ for the control qubit and ¢ for the target qubit

e Matrix representation : realtive to a computational basis
{100), |01), [10), [11)}

o o O =
o O = O
_ o O O
o = O O
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Circuit Representation of CNOT Gate.

/4 A
YV

X_
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/ ‘ The Controlled-U Gate '

e U : a unitary operator on a qubit

e [0)]t) — |c)U°C|t) : if the controlled qubit is in state |1), then
the single qubit operation U will operate on the target qubit;

otherwise, no action

e Circuit representation

~
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e Controlled phase shift e*®

1 O
O eia’
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‘ Circuit Implementation of Controlled-U Operations I

~

o U =¢e"“Ao,Bo,C : decomposition of a single qubit operation

— A, B, C' : single qubit operations

— ABC =1
1 0
® ® O ela,i
— U — — C D A
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‘Implementation of two-qubit controlled-U operations I

e U : a single qubit operation

o C*(U)lerca)|t) = lerea)Ur|t) -

qubits are in |1), i.e., c; = co = 1, then U will operate on the

target qubit; otherwise, no action

e I/ : a unitary operator on a single qubit such that V2 =U

if the states of both control

~
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.V:

An Example — the Toffoli Gate.

(1—d)(I+iX)/2: V?

=X

|

&

- 1

iy
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The Toffoli Gate'

e Built by a universal set of gates : CNOT, Hadamard, phase

and 7/8 gates

e ° o I T —
e I I T* : T*L S —
—&B—  HH[ S T T e TTee T H

o XTX = X(e™8R, (n/4))X = e'™/8R,(—7/4)
o XTTX = X (e "/8R_(—7/4))X = e /3R, (1 /4)
® 0,010} = e”/Sath(ﬂ/Zl)ah = ei”/SRx(w/él)

® 0, = em/QRx(W)
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n-qubit controlled-U operations.

e U : a single qubit operation

o C"(U)lcreg -+ -cp)|t) = |c1eo -+ - cp)Ur2 |t if the states of

all n control qubits are in |1), i.e., ¢c; =cy =---=¢, =1, then

U will operate on the target qubit; otherwise no action

/




7=u
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/An Implementation of n-qubit controlled-U operations I\

e Need (n — 1) work qubits, 2(n — 1) Toffoli gates and one
single-qubit controlled-U gate
ool

ntrol qubits

work qubits

target qubit [/

\_
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/CNOT Gate Controlled by Setting Control Qubit to Zero\

N
N
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‘ Some Circuit Identities '

C : a CNOT with qubit 1 the control qubit and qubit 2 the
target qubit

Coz1C = 041042, Coy1C =0y 1042, Co,1C =0,
CoypoC =032, CoyoC =0,10y2, Co,20 =0,10,2
R,1(0)C =CR.1(0)
R;2(0)C = CR.2(0)










PAS|

Measurement in Quantum Circuits.
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General Measurements Through Projective Measurements.

e {M,,} : a collection of general measurement operators on the

state space H of a quantum system

— P(m) = (¢|M£1Mm|¢> . the probability that result m
occurs, given the pre-measurement state )

Mo |))

V(W[ M, Moy )
system

. the post-measurement state of the quantum

e {|m)} : an orthonormal basis of the state space G of an ancilla

quantum system

e |0) : any fixed state vector of G

e I = Span(|0)) : the subspace of G generated by |0)

\_ /
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e U : a linear transformation from H ® F into H ® G defined as

Ulh)|0) = >~ My |t)|m)

— U preserves inner product

(PlOITTT[)[0) = ) (| M, My [4p) (m|m”)

m,m/’

= S (I ML M) = (i) = (0]40)

m

— U can be extended to be a unitary operator on H ® G

/
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/o {P,, = Iy ®|m)(m|} : projective measurements on the state \
space H ® G of the composite system
— P'(m) = (Y|{0|UTP,,Ul)|0) : the probability that result m
occurs, given the pre-measurement state Ul)|0) of the
composite quantum system

P'(m) = Y (@M ([T @ [m)(m|) My |9)[m”)

= (Y|M]} M, |v) = P(m)
L PaUW0) L Mal)lm) L Mwld) gy
WHOIUTPRUI)0) ™ /(| M, M) A/ (| M, Mo ) '

the post-measurement state of the composite system

e A general measurement on a quantum system can be
implemented by a projective measurement on a composite
quantum system of the original quantum system and an ancilla

quantum system after applying a unitary operator on the

k composite system /
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‘The Meter Symbol in Quantum Circuits'

Y

o {|m)(m|} : projective measurement in the computational basis

/
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Two Principles I

e Principle of deferred measurement : measurements can always
be moved from an intermediate stage of a quantum circuit to
the end of the circuit and if the measurement results are used
at any stage of the circuit then the classically controlled

operations can be replaced by conditional quantum operations

e Principle of implicit measurement : without loss of generality,
any unterminated quantum wires (qubits which are not
measured) at the end of a quantum circuit may be assumed to

be measured

/
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An Illustration of the Principle of Deferred Measurement I

e (Quantum teleportation circuit

\_

)

H

%

7y [

s

/F
1)

/F
)

[¢2)

e Deferred measurement in quantum teleportation circuit

#)

H

|

| Bro) {

U

H >
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An Illustration of the Principle of Implicit Measurement I

o p=> .o;T; ®S; : density operator describing a two-qubit

system

e {Py=1®|0){0], P, =1®|[1)(1]} : projective measurement in
the computational basis of the 2nd qubit

e o : density operator after the measurement

p' = PopPo+ PipP = Z@z’Ti ® (10){015:|0) {0 4 [1){1[S:[1) (1])

o tro(p) = tra(p’) : the reduced density operators for the first
qubit are the same no matter whether the second qubit is

measured or not

\_ /
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tra(p)

tra(p’)

Z OéiTitI‘(Si)

Z%Ttr 10)(0[5:10) (0[ + 1) (1] S5:[1) (1)
Zaz (015410 + (1][1))
Z&iTitI‘ 7;
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‘ Universal Quantum Gates I
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A Universal Set of Gates for Quantum Computation.

e Any unitary operation on a quantum system can be
approximated to arbitrary accuracy by a quantum circuit
involving only gates from this set

~
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‘ Construction of a Universal Set of Gates ' \

e Step 1 : any unitary operator can be expressed as a product of
unitary operators which act non-trivially only on a subspace
spanned by two computational basis states, called two-level

unitary operators

e Step 2 : any unitary operator can be implemented exactly by
single-qubit and CNOT gates
— Any two-level unitary operator can be implemented exactly
by single-qubit and CNOT gates
e Step 3 : any unitary operator can be approximated to arbitrary

accuracy by using Hadamard, phase, 7/8 and CNOT gates

— Any single-qubit gate can be approximated to arbitrary

accuracy by using Hadamard, phase and 7 /8 gates /
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‘ Two-Level Unitary Operators I

e H : a finite-dimensional (> 2) complex inner product space

e U : a unitary operator on H

U is called a two-level unitary operator if there is a 2-dimensional
subspace GG of H such that the restriction Ug of U on G is a
unitary operator on G and the restriction Us1 of U on the

orthogonal complement G- is the identity operator on G-=.

\_
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o {|v)}:

an ordered orthonormal basis of H with G =

Span(|v;, ), |4, )) for some i7 and i

o A =a;;] : the matrix representation of U relative to the
ordered basis {|¢;)}. Then we have

A=

Ajq4q

Aoy

Ay

Qg

: a 2 X 2 unitary matrix

— Q45 = 57;]' . either 2 # il,ig or ] # il,ig

— A is called a two-level unitary matrix




TL

Decomposition of 3 x 3 Unitary Matrices into Two-Level

Unitary Matrices

U=U,UU3

e U : 3 X 3 unitary matrix

Ui;p U2 U1s3
U = U21 U22 U23

u3zp U32 U33

o U;,Us,Us : 3 x 3 two-level unitary matrices

\_ /
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o If usy # 0, let A; be the following two-level unitary matrix

A =

‘Step 1'

o If usg; =0, let A1 = I343, a two-level unitary matrix

Uqiq

U21

\/|u11|2—|—|u21|2

\/|7«l»11|2—|-|11121|2

uU21 —Ui1
\/|u11|2—|—|u21|2 \/|U11|2—|-|U21|2
0 0

1

e Eliminating us; of U by A;, we have a unitary matrix

U
AU = 0

/
| Usq

/
U9
/
Ug9o

/
Uszo

/
U3
/
Ugs

/
Usz3
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o If uz; =0, let Ay = I343, a two-level unitary matrix

o If ug; # 0, let Ay be the following two-level unitary matrix

u’'11

A = 0

/
Ugzq

Vb 2 ug, |2

L Vg P ug, 2

u’31

VIug 12+ ug, |2

0

_ /
Uqq

VIug 12 +ug, 2

e Eliminating uj; of A;U by A, we have a unitary matrix

A A1U =

N __ o 1
k —up =1, upy =uy3 =0

u/1/1
0
0

/!
U9

/!
Ugo

!/
U39

!/ ]
U3

!/
Ugs

!/
U3
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‘Step 3.

e Let A3 be the following two-level unitary matrix

1 0 0
As =1 0 w9 '3
| 0 uz3 us3

o A3A;A U =T and then U = AT Al Al

o Uy =Al U, = A}, Us = A;ﬂ) : two-level unitary matrices
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A Theorem .

Every n x n unitary matrix U can be decomposed as a product of

two-level n X n unitary matrices Uy, U, ..., U,

U=UUs-- U,
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e Step 1 : using (n — 1) n X n two-level unitary matrices
A1, Ao, ..., A,_1, some of them are the identity matrix I,,«,,

to eliminate the entries of the first column of U except the

toppest one in a top-down manner

uip U2 - Uln
0 w2 -+ u2,
An—l cee AQAlU —
0 Up2 - Unpn
— ullzlandulgz---:uln:()

\_ /
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e Step 2 : by induction on (n — 1) x (n — 1) unitary matrices, we
have
Ap-- AU =T=U=AlAl... A
—k<(n—-1)4+n—-2)+---+1=n(n-1)/2

— Al are two-level unitary matrices
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An Application I

Every unitary operator on an n-qubit system can be decomposed as
a product of at most 2771(2" — 1) two-level unitary operators,
which can be represented by two-level unitary matrices relative to

the same orthonormal basis

\_ /
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/ Implementation of a Two-Level Unitary Operator. \

e U : two-level unitary matrix representation of a two-level

unitary operator relative to a computational basis
{liviz---in)}, 45 = 0,1

e Span(|s),|t)) : the two-dimensional state subspace where U has
a non-trivial action, s = s1s9---5, and t = t1ty-- - t,

~

e U : the 2 x 2 submatrix of U which acts on Span(|s), |t)),
regarded to represent a unitary operator on a qubit

e A Gray code : connecting s to t

S — — gl
g2

— g3

—_ = = O

0
0
1
1

_ O O O
|

= g4 /
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e A two-level unitary matrix

a 0
0 Isxe
b 0

O
O

)
\/

e A circuit implementation by (n — 1)-qubit CNOT gates and a
C"~1(U) gate

N
\V

N
%

N
\V

)
/

N
¢V
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| clO>+dIl>  clO> dil>  clo> dil>
O O O O
1 1 0 1 0 1
e N N e
% N N %
| 1 1] 0 1
D ® ® D
0 alo>+bl1>  alo> bl1> 20> pj1>
O O O O
0 ] 0 1 o 1
~ /M /N N
% N N %
0 1 1 1] 0 1
D ® ® D
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Complexity of Implementing a Two-Level Unitary Operator I

\_

e Swapping : at most 2(n — 1) (n — 1)-qubit CNOT gates
— Each (n — 1)-qubit CNOT gate needs O(n) single-qubit and
CNOT gates
e Unitary action : one (n — 1)-qubit controlled-U gates
— Bach (n — 1)-qubit controlled-U gate needs O(n)
single-qubit and CNOT gates

e Total complexity : O(n?) single-qubit and CNOT gates
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Complexity of Implementing an n-qubit Unitary Operator I

e O(2%") two-level unitary operators : for the implementation of

a n-quibit unitary operator

e O(n?) single-qubit and CNOT gates : for the implementation

of a two-level unitary operator

e Total complexity : O(n?4") single-qubit and CNOT gates
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‘ Approximating Unitary Operators I

e [U : the target unitary operator to be approximated
e VV : the unitary operator actually implemented

e Approximation error :

é max —
EU,V)= 1 1T =V)lP)]]

— |4) : the state of the quantum system
— {E,,} : a POVM measurement

— Py(m) (Py(m)) : the probability that the measurement
result is m after applying U (V') on the state [i)

~

/
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|Py(m) — Py(m)| <2E(U,V)

Proof :

Py(m) — Py (m)]

WU EnUp) — (VT En,V[)]

(WIUTE,U) — ($|UTE,, V)

+HPUTEL V) — @IVIE, V)]

(WU Ep|A) + (A|En V)

(WU Ep|A)] + [(A|E V)]

VWU AE|A) + /(@ [VIVIEHA| B A)
A+ [11A)Y]
2E(U,V)

)
)

VAN VAN VAN VAN |

e (A1) < 2 AIEal8) = (A1 (T B 18) = (A1)
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/o U;, 1 <1< m: target unitary operators

o V;, 1 <1< m: actual unitary operators implemented for U;

e F(UUp_1---Uy, Vi, Viu1 -+ V1) @ overall accumulated

approximation error

E(UnUp—1--- U1, Vi, Vip—1 -+ - V1) < Z:;nzl E(U;,V;)

— Proof for m = 2 :

E(UU, VoVy)

= max
|4)

max
|4)

max
|4)

max
|97)

VAN

IA

-

(U2U1 = Vo))

(U2U1 — VoUr) ) + (VaUr — VaVi) )|
(U2 = Vo)Ur )| + max [Va(Ur — V1))
(

U — V2)|Y') || + H|15>X | (U1 — V1)) |

~

/
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/ ‘A Universal Approximation Theorem.

Any single qubit gate can be approximated to arbitrary accuracy
by Haddamard and 7 /8 gates

e g, = ¢8R, (1/4)

o o010, = /8 R, (7/4)

e Compositions of o; and o 00
— ot(onroton)

— <0h0t0h>0t

Ut(UhUtUh)

e™AR, (1 /4) Ry (1 /4)

v v 7

i /4 (cos EI — ¢sin —az) (COS —1 —1sin —ax)
8 8 8 8

~

/
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_ im/4 (COS2 g _ ismg (cos g(ax + 0,) + sin g(iazmp))\>
— i/ ((;032 g — ising (COS g(aw +05) +sin gay))

which is a rotation along the axis

. 1 ( T . 0w 7r)
n = cos —, sin —, cos —
v/ 1+cos? % 8 8 8
with an angle A such that
A A
COS 5 = cos? g and sin 5 = sin g\/l + cos? g

— A is an irrational multiple of 7, see P.O. Boykin, T. Mor,
M. Pulver, V. Roychowdhury, and F. Vatan, “On universal
and fault-tolerant quantum computing,” arXive e-print
quant-ph/9906054, 1999.

— | o¢(oporop) = e”/‘lRﬁ(A) /
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(oporop)or = e /AR (A)

(onoion)oy = on(oe(onoon))on
7T

A 1 T _an E s

S
S

)
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/o Approximating R;(«), 0 < a < 27, to arbitrary accuracy by \
repeatedly using R;(A)
— € : the desired accuracy
— N : a poitive integer such that 27/N < €
— Aké kA (mod 2m) : k is a non-negative integer
* No two distinct k, j such that Ay = A, since A is not a

rational multiple of 7

«x Pigeonhole principle : there exist two distinct k&, 7,
0 <j<k<N,such that |Ap —A;| <27/N < € and then
0<A; <ewherel=k—

—m:0<a—mA; <A <e¢

OSO(—Aml<E

— | E(Ra(), Ra(a+ B)) = |1 — e/ = 2sin £,0 < o, B < 27

\_ _/
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* Proof :

1))

(e—uwﬁ6w2__e—ua+ﬁxﬁ6w@)‘¢>H

i 1 — e~ 16/2 0 ]
U’ Ulp)
0 1 — /2
_ s i}
1 — e~/ 0 W’>
0 1 — ef/2
i 1—6_i5/2 |
- | e
1—etB/2
R e

|1—éWﬂ:2$n§

~

since |1 — e"?/2| = |1 — e7%/2| and the last matrix is unitary/
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— sinf < 260 for all 8 > 0
— E(Ri(a), Ry(A)™) = 2sin O‘_TAW <a—Ap <e




