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Unit Three – Quantum Circuits1



'&

$%

Visualization of Unitary Operations on a Qubit2
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Visualizing State of a Single Qubit on Bloch Sphere

• |ψ〉 = α|0〉+ β|1〉 : the state of a qubit

α = aejγ , β = bej(γ+ϕ)

with a, b ≥ 0 and 0 ≤ γ, ϕ < 2π

Since a2 + b2 = 1, there is a unique θ, 0 ≤ θ ≤ π such that

a = cos
θ

2
, b = sin

θ

2

Thus

|ψ〉 = ejγ
(

cos
θ

2
|0〉+ ejϕ sin

θ

2
|1〉
)

and by ignoring the global factor ejγ , we have

|ψ〉 = cos θ2 |0〉+ ejϕ sin θ
2 |1〉, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π
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Visualizing State of a Single Qubit on Bloch Sphere

• (cosϕ sin θ, sinϕ sin θ, cos θ) : the Bloch vector

0

1

ψ

ϕ

θ

x

y

z
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Complex Coordinate Vector Versus Real Bloch Vector

• |ψ〉 = α|0〉+ β|1〉 = ejγ
(

cos θ2 |0〉+ ejϕ sin θ
2 |1〉

)

, 0 ≤ θ ≤
π, 0 ≤ γ, ϕ < 2π : a qubit state where |α|2 + |β|2 = 1

– cos θ2 = |α| and then cos θ = 2αᾱ− 1

– ejϕ sin θ = 2 cos θ2e
jϕ sin θ

2 = 2ᾱβ

• (x, y, z) = (cosϕ sin θ, sinϕ sin θ, cos θ) : the Bloch vector of |ψ〉

– |α| =
√

1+cos θ
2 =

√

1+z
2

– 2ᾱβ = ejϕ sin θ = x+ iy

x+ iy = eiϕ sin θ = 2ᾱβ

z = cos θ = 2αᾱ− 1

5
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Elementary Unitary Operators on a Single Qubit

• B = {|0〉, |1〉} : an orthonormal basis of state space of the qubit

• σx, σy, σz : Pauli operators with matrix representations

X = [σx]B, Y = [σy]B, Z = [σz]B respectively

X =





0 1

1 0



 , Y =





0 −i
i 0



 , Z =





1 0

0 −1





• Spectral decompositions of Pauli operators

σx = |+〉〈+| − |−〉〈−|, σy = |+′〉〈+′| − |−′〉〈−′|, σz = |0〉〈0| − |1〉〈1|

– |+〉 = (|0〉+ |1〉)/
√
2, |−〉 = (|0〉 − |1〉)/

√
2

– |+′〉 = (|0〉+ i|1〉)/
√
2, |−′〉 = (|0〉 − i|1〉)/

√
2
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Elementary Unitary Operators on a Single Qubit (Cont’)

• σh, σs, σt : Hadamard, phase, π/8 operators with matrix

representations H = [σh]B, S = [σs]B, T = [σt]B respectively

H =
1√
2





1 1

1 −1



 , S =





1 0

0 i



 , T =





1 0

0 ei
π
4





• σh, σx, σy, σz : Hermitian operators
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Visualizing Pauli Operators on Bloch Sphere
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∆◦ Rotation about n̂ Axis of the Sphere

• A coordinate transformation on the sphere

• n̂ = (nx, ny, nz) = (sin θ cosϕ, sin θ sinϕ, cos θ) : the rotation

axis

• x̂ = (1, 0, 0), ŷ = (0, 1, 0), ẑ = (0, 0, 1) : standard right-hand

orthogonal coordinate system S in R3

• x̂′ = (− cos θ cosϕ,− cos θ sinϕ, sin θ), ŷ′ = (sinϕ,− cosϕ, 0),

ẑ′ = n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) : another right-hand

orthogonal coordinate system {n̂} in R3

9
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• [{n̂} → S], [S → {n̂}] : Coordinate transformations

[{n̂} → S] =









− cos θ cosϕ sinϕ sin θ cosϕ

− cos θ sinϕ − cosϕ sin θ sinϕ

sin θ 0 cos θ









[S → {n̂}] =









− cos θ cosϕ − cos θ sinϕ sin θ

sinϕ − cosϕ 0

sin θ cosϕ sin θ sinϕ cos θ









• [∆◦]{n̂} : ∆◦ Rotation about n̂ axis in the {n̂} right-hand

orthogonal coordinate system

[∆◦]{n̂} =









cos∆ − sin∆ 0

sin∆ cos∆ 0

0 0 1









1
0
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• [∆◦ − n̂] : ∆◦ Rotation about n̂ axis in the standard right-hand

orthogonal coordinate system

[∆◦ − n̂]
= [{n̂} → S][∆◦]{n̂}[S → {n̂}]

=









(1− cos∆)n2x + cos∆ (1− cos∆)nxny − sin∆nz

(1− cos∆)nxny + sin∆nz (1− cos∆)n2y + cos∆

(1− cos∆)nznx − sin∆ny (1− cos∆)nynz + sin∆nx

(1− cos∆)nznx + sin∆ny

(1− cos∆)nynz − sin∆nx

(1− cos∆)n2z + cos∆









1
1
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Special Examples

[∆◦ − x̂] =









1 0 0

0 cos∆ − sin∆

0 sin∆ cos∆









[∆◦ − ŷ] =









cos∆ 0 sin∆

0 1 0

− sin∆ 0 cos∆









[∆◦ − ẑ] =









cos∆ − sin∆ 0

sin∆ cos∆ 0

0 0 1









1
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Visualizing Pauli-X Operator on Bloch Sphere

cos
θ

2
|0〉+ ejϕ sin

θ

2
|1〉 X−→ cos

π − θ
2
|0〉+ e−jϕ sin

π − θ
2
|1〉

↑↓ ↑↓

(cosϕ sin θ, sinϕ sin θ, cos θ)t
[π−x̂]−→ (cosϕ sin θ,− sinϕ sin θ,− cos θ)t

||








1 0 0

0 cosπ − sinπ

0 sinπ cosπ

















cosϕ sin θ

sinϕ sin θ

cos θ









• Pauli-X operator corresponds to a 180◦ rotation along the

x̂-axis on the Bloch sphere, i.e., [180◦ − x̂]

1
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Visualizing Pauli-Y Operator on Bloch Sphere

cos
θ

2
|0〉+ ejϕ sin

θ

2
|1〉 Y−→ cos

π − θ
2
|0〉+ ej(π−ϕ) sin

π − θ
2
|1〉

↑↓ ↑↓

(cosϕ sin θ, sinϕ sin θ, cos θ)t
[π−ŷ]−→ (− cosϕ sin θ, sinϕ sin θ,− cos θ)t

||








cosπ 0 sinπ

0 1 0

− sinπ 0 cosπ

















cosϕ sin θ

sinϕ sin θ

cos θ









• Pauli-Y operator corresponds to a 180◦ rotation along the

ŷ-axis on the Bloch sphere, i.e., [180◦ − ŷ]

1
4
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Visualizing Pauli-Z Operator on Bloch Sphere

cos
θ

2
|0〉+ ejϕ sin

θ

2
|1〉 Z−→ cos

θ

2
|0〉+ ej(π+ϕ) sin

θ

2
|1〉

↑↓ ↑↓

(cosϕ sin θ, sinϕ sin θ, cos θ)t
[π−ẑ]−→ (− cosϕ sin θ,− sinϕ sin θ, cos θ)t

||








cosπ − sinπ 0

sinπ cosπ 0

0 0 1

















cosϕ sin θ

sinϕ sin θ

cos θ









• Pauli-Z operator corresponds to a 180◦ rotation along the

ẑ-axis on the Bloch sphere, i.e., [180◦ − ẑ]

1
5
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Special Rotation Operators

Rx(∆) = e−i
∆

2
σx = e−i

∆

2 |+〉〈+|+ ei
∆

2 |−〉〈−|

= cos
∆

2
(|+〉〈+|+ |−〉〈−|)− i sin ∆

2
(|+〉〈+| − |−〉〈−|)

= cos
∆

2
I − i sin ∆

2
σx ⇐⇒





cos ∆
2 −i sin ∆

2

−i sin ∆
2 cos ∆

2





Ry(∆) = e−i
∆

2
σy = e−i

∆

2 |+′〉〈+′|+ ei
∆

2 |−′〉〈−′|

= cos
∆

2
(|+′〉〈+′|+ |−′〉〈−′|)− i sin ∆

2
(|+′〉〈+′| − |−′〉〈−′|)

= cos
∆

2
I − i sin ∆

2
σy ⇐⇒





cos ∆
2 − sin ∆

2

sin ∆
2 cos ∆

2





1
6
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Rz(∆) = e−i
∆

2
σz = e−i

∆

2 |0〉〈0|+ ei
∆

2 |1〉〈1|

= cos
∆

2
I − i sin ∆

2
σz ⇐⇒





e−i∆/2 0

0 ei∆/2





1
7
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Generic Rotation Operators

• ~σ = (σx, σy, σz) : the vector of Pauli operators

– Anti-commutation relations of Pauli operators

{σx, σy} = σxσy + σyσx = 0

{σy, σz} = σyσz + σzσy = 0

{σz, σx} = σzσx + σxσz = 0

• n̂ = (nx, ny, nz) : a real unit vector in three dimensions

• n̂ · ~σ ≡ nxσx + nyσy + nzσz : a Hermitian and unitary operator

on the state space of a qubit such that

(n̂ · ~σ)2 = n2xσ
2
x + n2yσ

2
y + n2zσ

2
z

+nxny{σxσy}+ nynz{σyσz}+ nznx{σzσx}
= I

1
8
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• n̂ · ~σ = |ψ1〉〈ψ1| − |ψ2〉〈ψ2| : spectral decomposition of n̂ · ~σ

We define

Rn̂(∆)
4
= e−i

∆

2
n̂·~σ

= e−i
∆

2 |ψ1〉〈ψ1|+ ei
∆

2 |ψ2〉〈ψ2|

= cos
∆

2
(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|)− i sin

∆

2
(|ψ1〉〈ψ1| − |ψ2〉〈ψ2|)

= cos
∆

2
I − i sin ∆

2
n̂ · ~σ

1
9
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Visualizing a Generic Rotation Operator on Bloch Sphere

|ψ〉 = cos θ2 |0〉+ eiϕ sin θ
2 |1〉

↓ Rn̂(∆)

|ψ′〉
= cos ∆

2

(

cos θ2 |0〉+ eiϕ sin θ
2 |1〉

)

− i sin ∆
2

(

nx
(

eiϕ sin θ
2 |0〉+ cos θ2 |1〉

)

+ny
(

−ieiϕ sin θ
2 |0〉+ i cos θ2 |1〉

)

+ nz
(

cos θ2 |0〉 − eiϕ sin θ
2 |1〉

))

=
(

cos ∆
2 cos θ2 − i sin ∆

2

(

nxe
iϕ sin θ

2 − inyeiϕ sin θ
2 + nz cos

θ
2

))

|0〉
+
(

cos ∆
2 e

iϕ sin θ
2 − i sin ∆

2

(

nx cos
θ
2 + iny cos

θ
2 − nzeiϕ sin θ

2

))

|1〉
=

(

cos ∆
2 cos θ2 + sin ∆

2

(

nx sinϕ sin θ
2 − ny cosϕ sin θ

2

)

+i sin ∆
2

(

nx cosϕ sin θ
2 + ny sinϕ sin θ

2 + nz cos
θ
2

))

|0〉
+
(

cos ∆
2 cosϕ sin θ

2 + sin ∆
2

(

ny cos
θ
2 − nz sinϕ sin θ

2

)

+i
(

cos ∆
2 sinϕ sin θ

2 − sin ∆
2

(

nx cos
θ
2 − nz cosϕ sin θ

2

)))

|1〉

2
0
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(x, y, z)t = (cosϕ sin θ, sinϕ sin θ, cos θ)t

↓ [∆− n̂]
(x′, y′, z′)t

= (((1− cos∆)n2x + cos∆)x+ ((1− cos∆)nxny − sin∆nz)y

+((1− cos∆)nznx + sin∆ny)z, ((1− cos∆)nxny + sin∆nz)x

+((1− cos∆)n2y + cos∆)y + ((1− cos∆)nynz − sin∆nx)z,

((1− cos∆)nznx − sin∆ny)x+ ((1− cos∆)nynz + sin∆nx)y

+((1− cos∆)n2z + cos∆)z)t

= [∆− n̂]









x

y

z









2
1
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∆◦ Rotation along x̂ Axis

• n̂ = x̂ = (1, 0, 0)

|ψ〉 = cos θ2 |0〉+ eiϕ sin θ
2 |1〉

↓ Rx̂(∆)

|ψ′〉
=

(

cos ∆
2 cos θ2 + sin ∆

2 sinϕ sin θ
2 + i sin ∆

2 cosϕ sin θ
2

)

|0〉
+
(

cos ∆
2 cosϕ sin θ

2 + i
(

cos ∆
2 sinϕ sin θ

2 − sin ∆
2 cos θ2

))

|1〉

2
2
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(x, y, z)t = (cosϕ sin θ, sinϕ sin θ, cos θ)t

↓ [∆− x̂]
(x′, y′, z′)t

= (x, y cos∆− z sin∆, y sin∆ + z cos∆)t

=









1 0 0

0 cos∆ − sin∆

0 sin∆ cos∆

















x

y

z









2
3
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∆◦ Rotation along ŷ Axis

• n̂ = ŷ = (0, 1, 0)

|ψ〉 = cos θ2 |0〉+ eiϕ sin θ
2 |1〉

↓ Rŷ(∆)

|ψ′〉
=

(

cos ∆
2 cos θ2 − sin ∆

2 cosϕ sin θ
2 + i sin ∆

2 sinϕ sin θ
2

)

|0〉
+
(

cos ∆
2 cosϕ sin θ

2 + sin ∆
2 cos θ2 + i cos ∆

2 sinϕ sin θ
2

)

|1〉

2
4
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(x, y, z)t = (cosϕ sin θ, sinϕ sin θ, cos θ)t

↓ [∆− ŷ]
(x′, y′, z′)t

= (z sin∆ + x cos∆, y, z cos∆− x sin∆)t

=









cos∆ 0 sin∆

0 1 0

− sin∆ 0 cos∆

















x

y

z









2
5
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∆◦ Rotation along ẑ Axis

• n̂ = ẑ = (0, 0, 1)

|ψ〉 = cos θ2 |0〉+ eiϕ sin θ
2 |1〉

↓ Rẑ(∆)

|ψ′〉
=

(

cos ∆
2 cos θ2 + i sin ∆

2 cos θ2
)

|0〉
+
(

cos ∆
2 cosϕ sin θ

2 − sin ∆
2 sinϕ sin θ

2

+i
(

cos ∆
2 sinϕ sin θ

2 + sin ∆
2 cosϕ sin θ

2

))

|1〉

2
6
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(x, y, z)t = (cosϕ sin θ, sinϕ sin θ, cos θ)t

↓ [∆− ẑ]
(x′, y′, z′)t

= (x cos∆− y sin∆, x sin∆ + y cos∆, z)t

=









cos∆ − sin∆ 0

sin∆ cos∆ 0

0 0 1

















x

y

z









2
7
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Single Qubit Operations2
8
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Algebraic Relations on Elementary Unitary Operators

• σh = (σx + σz)/
√
2

• σz = σ2s and σs = σ2t

• σ2h = σ2x = σ2y = σ2z = I

• σxσy = −σyσx, σxσz = −σzσx, σyσz = −σzσy
• σxσyσx = −σy, σxσzσx = −σz, σyσxσy = −σx, σyσzσy = −σz,
σzσxσz = −σx, σzσyσz = −σy

• σhσx = σzσh, σhσy = −σyσh, σhσz = σxσh

• σhσxσh = σz, σhσyσh = −σy, σhσzσh = σx

2
9
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Relation Between Elementary and Rotation Operators

• σx = eiπ/2Rx(π)

• σy = eiπ/2Ry(π)

• σz = eiπ/2Rz(π)

• σs = eiπ/4Rz(π/2)

• σt = eiπ/8Rz(π/4)

• σh = eiπ/2Ry(π/2)Rz(π)

H =
1√
2





1 1

1 −1



 =
1√
2





1 −1
1 1









1 0

0 −1





= eiπ/2[Ry(π/2)][Rz(π)]

3
0
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• σxRy(θ)σx = Ry(−θ), σxRz(θ)σx = Rz(−θ),
σyRx(θ)σy = Rx(−θ), σyRz(θ)σy = Rz(−θ),
σzRx(θ)σz = Rx(−θ), σzRy(θ)σz = Ry(−θ)

• σhRx(θ)σh = Rz(θ), σhRy(θ)σh = Ry(−θ), σhRz(θ)σh = Rx(θ)

• σhRn̂=(nx,ny,nz)(θ)σh = Rm̂=(nz,−ny,nx)(θ)

• σhσtσh = eiπ/8σhRz(π/4)σh = eiπ/8Rx(π/4)

• σhσsσh = eiπ/4σhRz(π/2)σh = eiπ/4Rx(π/2)

3
1
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Every Unitary Operator on a Qubit Is a Rotation Operator

U = eiαRn̂(θ)

• The proof is an exercise

3
2
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Z − Y Decomposition of Unitary Operators on a Qubit

• U : a unitary operator on a single qubit

There exist real numbers α, β, γ, δ such that

U = eiαRz(β)Ry(γ)Rz(δ)

3
3
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Proof

• Every row and column of U is a unit vector : there exist real

numbers θ1, θ2, θ3, θ4 and 0 ≤ θ ≤ π/2 such that

U =





eiθ1 cos θ eiθ2 sin θ

eiθ3 sin θ eiθ4 cos θ





• The two rows (columns) of U are orthogonal : for 0 < θ < π/2

ei(θ1−θ3) + ei(θ2−θ4) = 0

ei(θ1−θ2) + ei(θ3−θ4) = 0

Thus we have

θ1−θ3 ≡ θ2−θ4+π (mod 2π), i.e., θ4 ≡ −θ1+θ2+θ3+π (mod 2π)

and then

3
4
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U =





eiθ1 cos θ eiθ2 sin θ

eiθ3 sin θ ei(−θ1+θ2+θ3+π) cos θ





• θ1 = α− β/2− δ/2

• θ2 = α− β/2 + δ/2 + π

• θ3 = α+ β/2− δ/2

• θ = γ/2

U =





ei(α−β/2−δ/2) cos γ2 −ei(α−β/2+δ/2) sin γ
2

ei(α+β/2−δ/2) sin γ
2 ei(α+β/2+δ/2) cos γ2





= eiα





e−iβ/2 0

0 eiβ/2









cos γ2 − sin γ
2

sin γ
2 cos γ2









e−iδ/2 0

0 eiδ/2





3
5
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= eiαRz(β)Ry(γ)Rz(δ)3
6
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A Corollary

• U : a unitary operator on a qubit

There exist unitary operators A,B,C on the qubit such that

ABC = I and

U = eiαAσxBσxC

where α is some global phase factor.

3
7
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Proof

• U = eiαRz(β)Ry(γ)Rz(δ) : Z − Y decomposition of U

• A ≡ Rz(β)Ry(γ/2), B ≡ Ry(−γ/2)Rz(−(δ + β)/2),

C ≡ Rz((δ − β)/2) : three unitary operators on the qubit

ABC = I

Since σ2x = I, we have

σxBσx = σxRy(−γ/2)σxσxRz(−(δ+β)/2σx) = Ry(γ/2)Rz((δ+β)/2)

and then

eiαAσxBσxC

= eiαRz(β)Ry(γ/2)Ry(γ/2)Rz((δ + β)/2)Rz((δ − β)/2)
= eiαRz(β)Ry(γ)Rz(δ) = U

3
8
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An Example – σh

• σh = eiπ/2Ry(π/2)Rz(π) = eiπ/2Rz(0)Ry(π/2)Rz(π)

• A = Rz(β)Ry(γ/2) = Ry(π/4)

• B = Ry(−γ/2)Rz(−(δ + β)/2) = Ry(−π/4)Rz(−π/2)

• C = Rz((δ − β)/2) = Rz(π/2)

• α = π/2

3
9
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Controlled Operations4
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The CNOT Gate

• Prototypical control operation

• |c〉|t〉 → |c〉|t⊕ c〉 : a unitary operation on two-qubit system,

where c for the control qubit and t for the target qubit

• Matrix representation : realtive to a computational basis

{|00〉, |01〉, |10〉, |11〉}














1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0















4
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Circuit Representation of CNOT Gate

4
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The Controlled-U Gate

• U : a unitary operator on a qubit

• |c〉|t〉 → |c〉U c|t〉 : if the controlled qubit is in state |1〉, then
the single qubit operation U will operate on the target qubit;

otherwise, no action

• Circuit representation

4
3
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Some Circuit Identities of Gates

4
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• Controlled phase shift eiα

��
�

�

��
�

�

α

α

i

i

e

e

0

0

�	
�




�	
�




αie0

01

4
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Circuit Implementation of Controlled-U Operations

• U = eiαAσxBσxC : decomposition of a single qubit operation

– A,B,C : single qubit operations

– ABC = I

� � � �

�
�

�
�

�

0
1

�
�

�
�

	

αie
0

�

4
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Implementation of two-qubit controlled-U operations

• U : a single qubit operation

• C2(U)|c1c2〉|t〉 = |c1c2〉U c1c2 |t〉 : if the states of both control

qubits are in |1〉, i.e., c1 = c2 = 1, then U will operate on the

target qubit; otherwise, no action

• V : a unitary operator on a single qubit such that V 2 = U

U V
+V V

4
7
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An Example – the Toffoli Gate

• V = (1− i)(I + iX)/2 : V 2 = X

X VV +V

4
8
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The Toffoli Gate

• Built by a universal set of gates : CNOT, Hadamard, phase

and π/8 gates

H +T T +T T H

+T +T S

T

• XTX = X(eiπ/8Rz(π/4))X = eiπ/8Rz(−π/4)

• XT †X = X(e−iπ/8Rz(−π/4))X = e−iπ/8Rz(π/4)

• σhσtσh = eiπ/8σhRz(π/4)σh = eiπ/8Rx(π/4)

• σx = eiπ/2Rx(π)

4
9
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n-qubit controlled-U operations

• U : a single qubit operation

• Cn(U)|c1c2 · · · cn〉|t〉 = |c1c2 · · · cn〉U c1c2···cn |t〉 : if the states of

all n control qubits are in |1〉, i.e., c1 = c2 = · · · = cn = 1, then

U will operate on the target qubit; otherwise no action

5
0
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An Implementation of n-qubit controlled-U operations

• Need (n− 1) work qubits, 2(n− 1) Toffoli gates and one

single-qubit controlled-U gate

�

>
1

|c

>
2

|c

>
3

|c

>
4

|c

>5|c

>0|

>0|

>0|

>0|

���� � �� � �	 �


 �� �� � �	 �


�� �� � �� � �	 �
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CNOT Gate Controlled by Setting Control Qubit to Zero

X X

5
3
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Some Circuit Identities

• C : a CNOT with qubit 1 the control qubit and qubit 2 the

target qubit

• Cσx,1C = σx,1σx,2, Cσy,1C = σy,1σx,2, Cσz,1C = σz,1

• Cσx,2C = σx,2, Cσy,2C = σz,1σy,2, Cσz,2C = σz,1σz,2

• Rz,1(θ)C = CRz,1(θ)

• Rx,2(θ)C = CRx,2(θ)

5
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X X

X

X

X

X X

Y

X

X X

Z

Y

Z

5
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X XX X

X XY

X XZ

Y

Z

Z

Z

5
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Measurement in Quantum Circuits5
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General Measurements Through Projective Measurements

• {Mm} : a collection of general measurement operators on the

state space H of a quantum system

– P(m) = 〈ψ|M †
mMm|ψ〉 : the probability that result m

occurs, given the pre-measurement state |ψ〉
– Mm|ψ〉√

〈ψ|M†
mMm|ψ〉

: the post-measurement state of the quantum

system

• {|m〉} : an orthonormal basis of the state space G of an ancilla

quantum system

• |0〉 : any fixed state vector of G

• E ≡ Span(|0〉) : the subspace of G generated by |0〉

5
8
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• U : a linear transformation from H ⊗ E into H ⊗G defined as

U |ψ〉|0〉 ≡
∑

m

Mm|ψ〉|m〉

– U preserves inner product

〈ϕ|〈0|U †U |ψ〉|0〉 =
∑

m,m′

〈ϕ|M †
mMm′ |ψ〉〈m|m′〉

=
∑

m

〈ϕ|M †
mMm|ψ〉 = 〈ϕ|ψ〉 = 〈ϕ0|ψ0〉

– U can be extended to be a unitary operator on H ⊗G

5
9
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• {Pm = IH ⊗ |m〉〈m|} : projective measurements on the state

space H ⊗G of the composite system

– P ′(m) = 〈ψ|〈0|U †PmU |ψ〉|0〉 : the probability that result m

occurs, given the pre-measurement state U |ψ〉|0〉 of the
composite quantum system

P ′(m) =
∑

m′,′′

〈ψ|M †
m′〈m′|(IH ⊗ |m〉〈m|)Mm′′ |ψ〉|m′′〉

= 〈ψ|M †
mMm|ψ〉 = P(m)

– PmU |ψ〉|0〉
〈ψ|〈0|U†PmU |ψ〉|0〉

= Mm|ψ〉|m〉√
〈ψ|M†

mMm|ψ〉
= Mm|ψ〉√

〈ψ|M†
mMm|ψ〉

⊗ |m〉 :
the post-measurement state of the composite system

• A general measurement on a quantum system can be

implemented by a projective measurement on a composite

quantum system of the original quantum system and an ancilla

quantum system after applying a unitary operator on the

composite system

6
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The Meter Symbol in Quantum Circuits

ψ
• {|m〉〈m|} : projective measurement in the computational basis

6
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Two Principles

• Principle of deferred measurement : measurements can always

be moved from an intermediate stage of a quantum circuit to

the end of the circuit and if the measurement results are used

at any stage of the circuit then the classically controlled

operations can be replaced by conditional quantum operations

• Principle of implicit measurement : without loss of generality,

any unterminated quantum wires (qubits which are not

measured) at the end of a quantum circuit may be assumed to

be measured

6
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An Illustration of the Principle of Deferred Measurement

• Quantum teleportation circuit

H

1MZ2MX

ψ

{00β

ψ

1ψ0ψ 2ψ 3ψ
4ψ

1M

2M

• Deferred measurement in quantum teleportation circuit

�

� � ϕ

ϕ

00β

6
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An Illustration of the Principle of Implicit Measurement

• ρ =
∑

i αiTi ⊗ Si : density operator describing a two-qubit

system

• {P0 = I ⊗ |0〉〈0|, P1 = I ⊗ |1〉〈1|} : projective measurement in

the computational basis of the 2nd qubit

• ρ′ : density operator after the measurement

ρ′ = P0ρP0 +P1ρP1 =
∑

i

αiTi ⊗ (|0〉〈0|Si|0〉〈0|+ |1〉〈1|Si|1〉〈1|)

• tr2(ρ) = tr2(ρ
′) : the reduced density operators for the first

qubit are the same no matter whether the second qubit is

measured or not

6
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tr2(ρ) =
∑

i

αiTitr(Si)

tr2(ρ
′) =

∑

i

αiTitr(|0〉〈0|Si|0〉〈0|+ |1〉〈1|Si|1〉〈1|)

=
∑

i

αiTi(〈0|Si|0〉+ 〈1|Si|1〉)

=
∑

i

αiTitr(Si)

6
5



'&

$%

Universal Quantum Gates6
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A Universal Set of Gates for Quantum Computation

• Any unitary operation on a quantum system can be

approximated to arbitrary accuracy by a quantum circuit

involving only gates from this set

6
7
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Construction of a Universal Set of Gates

• Step 1 : any unitary operator can be expressed as a product of

unitary operators which act non-trivially only on a subspace

spanned by two computational basis states, called two-level

unitary operators

• Step 2 : any unitary operator can be implemented exactly by

single-qubit and CNOT gates

– Any two-level unitary operator can be implemented exactly

by single-qubit and CNOT gates

• Step 3 : any unitary operator can be approximated to arbitrary

accuracy by using Hadamard, phase, π/8 and CNOT gates

– Any single-qubit gate can be approximated to arbitrary

accuracy by using Hadamard, phase and π/8 gates

6
8
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Two-Level Unitary Operators

• H : a finite-dimensional (≥ 2) complex inner product space

• U : a unitary operator on H

U is called a two-level unitary operator if there is a 2-dimensional

subspace G of H such that the restriction UG of U on G is a

unitary operator on G and the restriction UG⊥ of U on the

orthogonal complement G⊥ is the identity operator on G⊥.

6
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• {|ψi〉} : an ordered orthonormal basis of H with G =

Span(|ψi1〉, |ψi2〉) for some i1 and i2

• A = [aij ] : the matrix representation of U relative to the

ordered basis {|ψi〉}. Then we have

– A′ =





ai1i1 ai1i2

ai2i1 ai2i2



 : a 2× 2 unitary matrix

– aij = δij : either i 6= i1, i2 or j 6= i1, i2

– A is called a two-level unitary matrix

7
0



'&

$%

Decomposition of 3 × 3 Unitary Matrices into Two-Level

Unitary Matrices

U = U1U2U3

• U : 3× 3 unitary matrix

U =









u11 u12 u13

u21 u22 u23

u31 u32 u33









• U1, U2, U3 : 3× 3 two-level unitary matrices

7
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Step 1

• If u21 = 0, let A1 = I3×3, a two-level unitary matrix

• If u21 6= 0, let A1 be the following two-level unitary matrix

A1 =











ū11√
|u11|2+|u21|2

ū21√
|u11|2+|u21|2

0

u21√
|u11|2+|u21|2

−u11√
|u11|2+|u21|2

0

0 0 1











• Eliminating u21 of U by A1, we have a unitary matrix

A1U =









u′11 u′12 u′13

0 u′22 u′23

u′31 u′32 u′33









7
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Step 2

• If u31 = 0, let A2 = I3×3, a two-level unitary matrix

• If u31 6= 0, let A2 be the following two-level unitary matrix

A1 =











ū′11√
|u′
11
|2+|u′

31
|2

0 ū′31√
|u′
11
|2+|u′

31
|2

0 1 0
u′
31√

|u′
11
|2+|u′

31
|2

0
−u′

11√
|u′
11
|2+|u′

31
|2











• Eliminating u′31 of A1U by A2, we have a unitary matrix

A2A1U =









u′′11 u′′12 u′′13

0 u′′22 u′′23

0 u′′32 u′′33









– u′′11 = 1, u′′12 = u′′13 = 0

7
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Step 3

• Let A3 be the following two-level unitary matrix

A3 =









1 0 0

0 ū′′22 ū′′32

0 ū′′23 ū′′33









• A3A2A1U = I and then U = A†
1A

†
2A

†
3

• U1 = A†
1, U2 = A†

2, U3 = A†
3 : two-level unitary matrices

7
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A Theorem

Every n× n unitary matrix U can be decomposed as a product of

two-level n× n unitary matrices U1, U2, . . . , Uk,

U = U1U2 · · ·Uk

7
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Proof

• Step 1 : using (n− 1) n× n two-level unitary matrices

A1, A2, . . . , An−1, some of them are the identity matrix In×n,

to eliminate the entries of the first column of U except the

toppest one in a top-down manner

An−1 · · ·A2A1U =

















u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...

0 un2 · · · unn

















– u11 = 1 and u12 = · · · = u1n = 0

7
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• Step 2 : by induction on (n− 1)× (n− 1) unitary matrices, we

have

Ak · · ·A2A1U = I ⇒ U = A†
1A

†
2 · · ·A†

k

– k ≤ (n− 1) + (n− 2) + · · ·+ 1 = n(n− 1)/2

– A†
i are two-level unitary matrices

7
7
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An Application

Every unitary operator on an n-qubit system can be decomposed as

a product of at most 2n−1(2n − 1) two-level unitary operators,

which can be represented by two-level unitary matrices relative to

the same orthonormal basis

7
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Implementation of a Two-Level Unitary Operator

• U : two-level unitary matrix representation of a two-level

unitary operator relative to a computational basis

{|i1i2 · · · in〉}, ij = 0, 1

• Span(|s〉, |t〉) : the two-dimensional state subspace where U has

a non-trivial action, s = s1s2 · · · sn and t = t1t2 · · · tn
• Ũ : the 2× 2 submatrix of U which acts on Span(|s〉, |t〉),

regarded to represent a unitary operator on a qubit

• A Gray code : connecting s to t

s = 0 0 0 = g1

1 0 0 = g2

1 1 0 = g3

t = 1 1 1 = g4

7
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• A two-level unitary matrix

U23×23 =









a 0 c

0 I6×6 0

b 0 d









• A circuit implementation by (n− 1)-qubit CNOT gates and a

Cn−1(Ũ) gate
~

U

�
�

�

8
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Complexity of Implementing a Two-Level Unitary Operator

• Swapping : at most 2(n− 1) (n− 1)-qubit CNOT gates

– Each (n− 1)-qubit CNOT gate needs O(n) single-qubit and

CNOT gates

• Unitary action : one (n− 1)-qubit controlled-Ũ gates

– Each (n− 1)-qubit controlled-Ũ gate needs O(n)

single-qubit and CNOT gates

• Total complexity : O(n2) single-qubit and CNOT gates

8
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Complexity of Implementing an n-qubit Unitary Operator

• O(22n) two-level unitary operators : for the implementation of

a n-quibit unitary operator

• O(n2) single-qubit and CNOT gates : for the implementation

of a two-level unitary operator

• Total complexity : O(n24n) single-qubit and CNOT gates

8
3



'&

$%

Approximating Unitary Operators

• U : the target unitary operator to be approximated

• V : the unitary operator actually implemented

• Approximation error :

E(U, V )
4
= max

|ψ〉
‖(U − V )|ψ〉‖

– |ψ〉 : the state of the quantum system

– {Em} : a POVM measurement

– PU (m) (PV (m)) : the probability that the measurement

result is m after applying U (V ) on the state |ψ〉

8
4
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|PU (m)− PV (m)| ≤ 2E(U, V )

Proof :

|PU (m)− PV (m)|
= |〈ψ|U †EmU |ψ〉 − 〈ψ|V †EmV |ψ〉|
= |〈ψ|U †EmU |ψ〉 − 〈ψ|U †EmV |ψ〉

+〈ψ|U †EmV |ψ〉 − 〈ψ|V †EmV |ψ〉|
= |〈ψ|U †Em|∆〉+ 〈∆|EmV |ψ〉|
≤ |〈ψ|U †Em|∆〉|+ |〈∆|EmV |ψ〉|

≤
√

〈ψ|U †U |ψ〉〈∆|Em|∆〉+
√

〈ψ|V †V |ψ〉〈∆|Em|∆〉
≤ ‖|∆〉‖+ ‖|∆〉‖
≤ 2E(U, V )

since 〈∆|Em|∆〉 ≤
∑

m〈∆|Em|∆〉 = 〈∆| (
∑

mEm) |∆〉 = 〈∆|∆〉

8
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• Ui, 1 ≤ i ≤ m : target unitary operators

• Vi, 1 ≤ i ≤ m : actual unitary operators implemented for Ui

• E(UmUm−1 · · ·U1, VmVm−1 · · ·V1) : overall accumulated

approximation error

E(UmUm−1 · · ·U1, VmVm−1 · · ·V1) ≤
∑m
j=1E(Uj , Vj)

– Proof for m = 2 :

E(U2U1, V2V1)

= max
|ψ〉

‖(U2U1 − V2V1)|ψ〉‖

= max
|ψ〉

‖(U2U1 − V2U1)|ψ〉+ (V2U1 − V2V1)|ψ〉‖

≤ max
|ψ〉

‖(U2 − V2)U1|ψ〉‖+max
|ψ〉

‖V2(U1 − V1)|ψ〉‖

≤ max
|ψ′〉

‖(U2 − V2)|ψ′〉‖+max
|ψ〉

‖(U1 − V1)|ψ〉‖

= E(U2, V2) + E(U1, V1)

8
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A Universal Approximation Theorem

Any single qubit gate can be approximated to arbitrary accuracy

by Haddamard and π/8 gates

• σt = eiπ/8Rz(π/4)

• σhσtσh = eiπ/8Rx(π/4)

• Compositions of σt and σhσtσh

– σt(σhσtσh)

– (σhσtσh)σt

σt(σhσtσh)

= eiπ/4Rz(π/4)Rx(π/4)

= eiπ/4
(

cos
π

8
I − i sin π

8
σz

)(

cos
π

8
I − i sin π

8
σx

)

8
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= eiπ/4
(

cos2
π

8
I − i sin π

8

(

cos
π

8
(σx + σz) + sin

π

8
(−iσzσx)

))

= eiπ/4
(

cos2
π

8
I − i sin π

8

(

cos
π

8
(σx + σz) + sin

π

8
σy

))

which is a rotation along the axis

n̂ =
1

√

1 + cos2 π8

(

cos
π

8
, sin

π

8
, cos

π

8

)

with an angle ∆ such that

cos
∆

2
= cos2

π

8
and sin

∆

2
= sin

π

8

√

1 + cos2
π

8

– ∆ is an irrational multiple of π, see P.O. Boykin, T. Mor,

M. Pulver, V. Roychowdhury, and F. Vatan, “On universal

and fault-tolerant quantum computing,” arXive e-print

quant-ph/9906054, 1999.

– σt(σhσtσh) = eiπ/4Rn̂(∆)

8
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– (σhσtσh)σt = eiπ/4Rm̂(∆)

∗ (σhσtσh)σt = σh(σt(σhσtσh))σh

∗ m̂ = 1√
1+cos2 π

8

(

cos π8 ,− sin π
8 , cos

π
8

)

8
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• Approximating Rn̂(α), 0 ≤ α < 2π, to arbitrary accuracy by

repeatedly using Rn̂(∆)

– ε : the desired accuracy

– N : a poitive integer such that 2π/N < ε

– ∆k
4
= k∆ (mod 2π) : k is a non-negative integer

∗ No two distinct k, j such that ∆k = ∆j since ∆ is not a

rational multiple of π

∗ Pigeonhole principle : there exist two distinct k, j,

0 ≤ j < k ≤ N , such that |∆k −∆j | ≤ 2π/N < ε and then

0 < ∆l < ε where l = k − j
– m : 0 ≤ α−m∆l < ∆l < ε

0 ≤ α−∆ml < ε

– E(Rn̂(α), Rn̂(α+ β)) = |1− eiβ/2| = 2 sin β
4 , 0 ≤ α, β < 2π

9
0



'&

$%

∗ Proof :
∥

∥

∥

(

e−iα(n̂·~σ)/2 − e−i(α+β)(n̂·~σ)/2
)

|ψ〉
∥

∥

∥

=
∥

∥

∥

(

I − e−iβ(n̂·~σ)/2
)

|ψ〉
∥

∥

∥

=

∥

∥

∥

∥

∥

∥

U †





1− e−iβ/2 0

0 1− eiβ/2



U |ψ〉

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥





1− e−iβ/2 0

0 1− eiβ/2



 |ψ′〉

∥

∥

∥

∥

∥

∥

= |1− eiβ/2|

∥

∥

∥

∥

∥

∥





1−e−iβ/2

|1−eiβ/2|
0

0 1−eiβ/2

|1−eiβ/2|



 |ψ′〉

∥

∥

∥

∥

∥

∥

= |1− eiβ/2| = 2 sin
β

4

since |1− eiβ/2| = |1− e−iβ/2| and the last matrix is unitary
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– sin θ ≤ 2θ for all θ ≥ 0

– E(Rn̂(α), Rn̂(∆)ml) = 2 sin α−∆ml

4 ≤ α−∆ml < ε
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