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Unit Two – Principles of Quantum Mechanics1
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Postulates of Quantum Mechanics2



'&

$%

Postulate 1 – States

Associated to an isolated physical system is a Hilbert space H (eg,

a finite-dimensional complex inner product space). The system is

completely described by its state, which is represented by a

one-dimensional subspace of the Hilbert space H.

• A one-dimensional subspace of H can be represented by a unit

vector |ψ〉 in it.

• A state of the system can be represented by a unit vector |ψ〉
in the Hilbert space H, where |ψ〉 is called a state vector.

– This unit vector representation of a state is not unique since

each of |ψ〉 and ejθ|ψ〉 spans the same one-dimensional

subspace of H.
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A Quantum Bit (Qubit)

A quantum bit (qubit) is the state represented by unit vectors of a

two-dimensional Hilbert space H associated with a physical system.

• {|0〉, |1〉} : an orthonormal basis of H.

• |ψ〉 = a|0〉+ b|1〉 : a unit vector in H where

|a|2 + |b|2 = 1.

– The unit vector |ψ〉 and each of ejθ|ψ〉 represent the same

state of a qubit.
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Postulate 2 - Time Evolution

The evolution of a closed quantum system is described by a unitary

operator. That is, the state |ψ〉 of the system at time t1 is related

to the state |ψ′〉 of the system at time t2 by a unitary operator U

which depends only on the times t1 and t2 ,

|ψ′〉 = U |ψ〉.
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Postulate 2′ – Time Evolution Revisited

The time evolution of the state of a closed quantum system is

described by the Schrödinger equation,

ih̄
d|ψ〉
dt

= H|ψ〉.

where

• h̄ : the Planck’s constant

• H : a Hermitian operator known as the Hamiltonian of the

closed system
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Solution of Schrödinger Equation

|ψ(t)〉 = e−i
H

h̄
(t−t0)|ψ(t0)〉 = U(t; t0)|ψ(t0)〉

• H : a Hermitian operator

• U(t; t0) = e−i
H

h̄
(t−t0) : a unitary operator for given t and t0.
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Postulate 3 – Quantum Measurements

A quantum measurement is described by a collection {Mm} of

measurement operators, acting on the Hilbert space associated to a

quantum system being measured and satisfying the completeness

equation
∑

m

M†
mMm = I.

• m : the index which represents possible measurement outcomes.

8



'&

$%

If the pre-measurement state of the quantum system is |ψ〉, then
the probability that a measurement result m occurs is given by

P(m) = 〈ψ|M †
mMm|ψ〉,

and the post-measurement state of the system is

Mm|ψ〉
√

〈ψ|M †
mMm|ψ〉

.

The completeness equation expresses the fact that probabilities

sum to one

∑

m

P(m) =
∑

m

〈ψ|M †
mMm|ψ〉 = 〈ψ|

(

∑

m

M†
mMm

)

|ψ〉 = 〈ψ|ψ〉 = 1.
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Measurement of a Qubit

• H : a two-dimensional Hilbert space associated to a quantum

system.

• {|0〉, |1〉} : an orthonormal basis of H.

• M0 = |0〉〈0|, M1 = |1〉〈1| : measurement operators.

– Hermitian operators.

– M2
0 =M0 and M2

1 =M1.

– Completeness equation is satisfied

M†
0M0 +M †

1M1 =M2
0 +M2

1 =M0 +M1 = I.

1
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• |ψ〉 = a|0〉+ b|1〉 : a qubit being measured.

– P(0) = 〈ψ|M †
0M0|ψ〉 = 〈ψ|M0|ψ〉 = 〈ψ|0〉〈0|ψ〉 = |a|2.

– P(1) = 〈ψ|M †
1M1|ψ〉 = 〈ψ|M1|ψ〉 = 〈ψ|1〉〈1|ψ〉 = |b|2.

– State after measurement

M0|ψ〉
|a| =

a

|a| |0〉,

M1|ψ〉
|b| =

b

|b| |1〉.

1
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Projective (von Neumann) Measurements

• M : a Hermitian operator on the Hilbert space, called an

observable, with the spectral decomposition

M =
∑

m

mPm

where Pm is the projector onto the eigenspace of M associated

with eigenvalue m.

– The projectors {Pm} are measurement operators.

∗ P †m = Pm and P 2
m = Pm.

– Completeness equation :
∑

m P †mPm =
∑

m P 2
m =

∑

m Pm = I.

• m : possible outcomes of the measurement.

1
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If the pre-measurement state of the quantum system is |ψ〉, then
the probability that an outcome m occurs is given by

P(m) = 〈ψ|P †mPm|ψ〉 = 〈ψ|Pm|ψ〉,

and the post-measurement state of the system is

Pm|ψ〉
√

〈ψ|Pm|ψ〉
.

The completeness relation expresses the fact that probabilities sum

to one

∑

m

P(m) =
∑

m

〈ψ|Pm|ψ〉 = 〈ψ|
(

∑

m

Pm

)

|ψ〉 = 〈ψ|ψ〉 = 1.

1
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Repeatability of a Projective Measurement M

• |ψ〉 : pre-measurement state.

• |ψm〉 = Pm|ψ〉/
√

〈ψ|Pm|ψ〉 : post-measurement state once the

outcome m is measured, which occurs with probability

〈ψ|Pm|ψ〉.

• Pm|ψm〉 = Pm|ψ〉/
√

〈ψ|Pm|ψ〉 : post-measurement state after

repeating the same projective measurement M , which occurs

with probability

〈ψm|Pm|ψm〉 =
〈ψ|P †mPm|ψ〉
〈ψ|Pm|ψ〉

=
〈ψ|Pm|ψ〉
〈ψ|Pm|ψ〉

= 1.

1
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Not every measurement is a projective measurement!

1
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Average Value of an Observable M

E(M) =
∑

m

mP(m) =
∑

m

m〈ψ|Pm|ψ〉

= 〈ψ|
(

∑

m

mPm

)

|ψ〉 = 〈ψ|M |ψ〉.

• 〈M〉 ≡ 〈ψ|M |ψ〉.

• Variance of observable M

σ2(M) = 〈(M − 〈M〉)2〉 = 〈M2〉 − 〈M〉2.

1
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Two Descriptions of Projective Measurements

• A complete set of orthogonal projectors {Pm}
∑

m

Pm = I and PmPm′ = δmm′Pm

– Observable : M =
∑

mmPm

– m : real numbers

• An orthonormal basis {|m〉}

Pm = |m〉〈m|

– Observable : M =
∑

mm |m〉〈m|
– m : real numbers

1
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Observable Z on a Qubit

• The observable Z =





1 0

0 −1



 has eigenvalues +1 and -1

with eigenvectors |0〉 and |1〉 respectively

• Z = |0〉〈0| − |1〉〈1| : spectral decomposition

• |ψ〉 = (|0〉+ |1〉)/
√
2 : a qubit.

P(+1) = 〈ψ|0〉〈0|ψ〉 = 1/2

P(−1) = 〈ψ|1〉〈1|ψ〉 = 1/2

• 〈Z〉 = 0

1
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Heisenberg Uncertainty Principle1
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Commutator and Anti-commutator

• A and B : two operators.

• Commutator : [A,B] ≡ AB −BA
– [A,B] = 0 : A commutes with B.

• Anti-commutator : {A,B} ≡ AB +BA.

– {A,B} = 0 : A anti-commutes with B.

2
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Pauli Matrices (Pauli Operators)

X =





0 1

1 0



 , Y =





0 −i
i 0



 , Z =





1 0

0 −1



 .

• Hermitian and unitary.

• [X,Y ] = 2iZ, [Y, Z] = 2iX and [Z,X] = 2iY .

2
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Simultaneous Diagonalization of Two Normal Operators

Let A and B be two normal operators. Then [A,B] = 0 if and only

if there exists an orthonormal basis {|ψi〉} such that A and B are

diagonalizable with respective to that basis, i.e.,

A =
∑

i

λi|ψi〉〈ψi|,

B =
∑

i

µi|ψi〉〈ψi|.

2
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|〈ψ|[A,B]|ψ〉|2 ≤ 4〈ψ|A2|ψ〉〈ψ|B2|ψ〉

• A and B : two Hermitian operators.

• With 〈ψ|AB|ψ〉 = x+ iy where x, y real numbers, we have

〈ψ|BA|ψ〉 = (〈ψ|AB|ψ〉)† = x− iy and then

〈ψ|[A,B]|ψ〉 = 2iy and 〈ψ|{A,B}|ψ〉 = 2x.

• |〈ψ|[A,B]|ψ〉|2 + |〈ψ|{A,B}|ψ〉|2 = 4|〈ψ|AB|ψ〉|2.

• Schwarz inequality :

|〈ψ|AB|ψ〉|2 ≤ 〈ψ|A2|ψ〉〈ψ|B2|ψ〉.

Thus we have

|〈ψ|[A,B]|ψ〉|2 ≤ 4|〈ψ|AB|ψ〉|2 ≤ 4〈ψ|A2|ψ〉〈ψ|B2|ψ〉.

2
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Heisenberg Uncertainty Principle

δ(C)δ(D) ≥ |〈ψ|[C,D]|ψ〉|
2

.

• C and D : two observables.

• With A = C − 〈C〉 and B = D − 〈D〉, we have

[A,B] = [C,D].

• δ2(C) = 〈(C − 〈C〉)2〉 = 〈A2〉 = 〈ψ|A2|ψ〉.

• δ2(D) = 〈(D − 〈D〉)2〉 = 〈B2〉 = 〈ψ|B2|ψ〉.

Now we have

δ2(C)δ2(D) = 〈ψ|A2|ψ〉〈ψ|B2|ψ〉 ≥ |〈ψ|[A,B]|ψ〉|2
4

=
|〈ψ|[C,D]|ψ〉|2

4
.

2
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Heisenberg Uncertainty Principle

If we prepare a large number of quantum systems in identical

states, |ψ〉, and then perform measurements of C on some of those

systems, and of D on others, then the standard deviation δ(C) of

all measurement results of C times the standard deviation δ(D) of

all measurement results of D will satisfy the inequality

δ(C)δ(D) ≥ |〈ψ|[C,D]|ψ〉|
2

.

2
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An Example

• X and Y : Pauli observables.

• [X,Y ] = 2iZ.

• |ψ〉 = |0〉 : quantum system state.

• δ(X)δ(Y ) ≥ 〈0|Z|0〉 = 1.

2
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Positive Operator-Valued Measure (POVM) Measurements

• {Mm} : a collection of measurement operators with

∑

m

M†
mMm = I.

• P(m) = 〈ψ|M †
mMm|ψ〉.

• Em ≡M †
mMm : positive operators, called POVM elements

∑

m

Em = I and P(m) = 〈ψ|Em|ψ〉.

• {Em} : a POVM.

• Useful when only the measurement statistics matter.

2
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For a projective measurement {Pm}, all the POVM elements are

the same as the measurement operators since

Em = P †mPm = P 2
m = Pm.

2
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What Are POVMs ?

• A collection of positive operators {Em}.

• Satisfying the completeness relation
∑

m

Em = I.

The corresponding measurement operators can be chosen as

{
√
Em}.

2
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Postulate 4 – Composite Systems

• Qi : ith quantum system.

• Hi : the Hilbert space associated to the quantum system Qi.

• H = ⊗iHi : the Hilbert space associated to the composite

system of Qi’s.

• |ψi〉 : a state of quantum system Qi.

• |ψ〉 = ⊗i|ψi〉 : the joint state of the composite system.

3
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Entangled States

• States in a composite quantum system.

• Not a direct product of states of component systems.

• (|00〉+ |01〉)/
√
2 is not an entangled state since

|00〉+ |01〉√
2

= |0〉
( |0〉+ |1〉√

2

)

.

• Bell states in a two-qubit system are entangled states

|00〉+ |11〉√
2

,
|00〉 − |11〉√

2
,
|01〉+ |10〉√

2
,
|01〉 − |10〉√

2
.

3
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A Proof

Suppose that

|00〉+ |11〉√
2

= (a|0〉+ b|1〉)⊗ (c|0〉+ d|1〉)

= ac|00〉+ ad|01〉+ bc|10〉+ bd|11〉,

where |a|2 + |b|2 = |c|2 + |d|2 = 1. Then we have

ad = bc = 0.

• a = c = 0 ⇒ |00〉+|11〉√
2

= ejθ|11〉, a contradiction.

• b = d = 0 ⇒ |00〉+|11〉√
2

= ejθ
′ |00〉, a contradiction.

3
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The Density Operator Formulation of Quantum Mechanics

• A convenient means for describing quantum systems whose

states is not completely known.

• A convenient tool for the description of individual subsystems

of a composite quantum system.

3
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An Ensemble of Quantum Pure States {pi, |ψi〉}

• |ψi〉 : states of a quantum system, called pure states.

• pi : the probability that the quantum system is in pure state

|ψi〉,
∑

i

pi = 1.

• The density operator or density matrix which represents this

ensemble is

ρ =
∑

i

pi|ψi〉〈ψi|.

– Not necessary a spectral decomposition of ρ since {|ψi〉}
may not be an orthonormal set.

3
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Evolution of a Density Operator

• U : a unitary operator, describing the evolution of a closed

quantum system during a time interval.

• ρ : a density operator, representing an ensemble {pi, |ψi〉} of

pure states, which describes the initial state of the system.

• UρU † : density operator, describing the final state of the

system.

|ψi〉 U−→ U |ψi〉
ρ =

∑

i

pi|ψi〉〈ψi| U−→ ρ′ =
∑

i

piU |ψi〉〈ψi|U † = UρU †.

3
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Measurement Effect on a Density Operator

• {Mm} : a collection of measurement operators, acting on the

Hilbert space associated to the system being measured and

satisfying the completeness equation

∑

m

M†
mMm = I.

• m : index which represents possible measurement outcomes.

• ρ : a density operator, representing an ensemble {pi, |ψi〉} of

pure states.

3
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If the pre-measurement state of the quantum system is |ψi〉, then
the probability of getting result m is

P(m|i) = 〈ψi|M†
mMm|ψi〉 = tr(M †

mMm|ψi〉〈ψi|),

and the post-measurement state of the system is

|ψ(m)
i 〉 = Mm|ψi〉

√

〈ψi|M†
mMm|ψi〉

.

The total probability of getting result m is

P(m) =
∑

i

piP(m|i) =
∑

i

pi tr(M
†
mMm|ψi〉〈ψi|)

= tr

(

M†
mMm

(

∑

i

pi|ψi〉〈ψi|
))

= tr(M †
mMmρ) = tr(MmρM

†
m).

3
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After a measurement which yields the result m, we have

• {P(i|m), |ψ(m)
i 〉} : an ensemble of pure states

• P(i|m) : the probability that the quantum system is in pure

state |ψ(m)
i 〉 given that outcome m is measured

P(i|m) =
piP(m|i)
P(m)

• ρ(m) : density operator, describing the state of the quantum

system after the outcome m is measured

ρ(m) =
∑

i

P(i|m)|ψ(m)
i 〉〈ψ(m)

i | =
∑

i

P(i|m)
Mm|ψi〉〈ψi|M†

m

〈ψi|M†
mMm|ψi〉

=

∑

i piMm|ψi〉〈ψi|M†
m

P(m)
=

MmρM
†
m

tr(M †
mMmρ)

=
MmρM

†
m

tr(MmρM
†
m)
.

3
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Pure States vs Mixed States

• Pure state |ψ〉 : a quantum system whose state is exactly

known as |ψ〉 and can be described by the density operator

ρ = |ψ〉〈ψ|.

• Mixed state ρ : a quantum system whose state is not

completely known and is described by the density operator

ρ =
∑

i

pi|ψi〉〈ψi|.

• A pure state can be regarded as a very special mixed state.

3
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Characterization of Density Operators

ρ is a density operator associated with an ensemble {pi, |ψi〉} if and

only if

• Unit trace condition : tr(ρ) = 1.

• Positivity condition : ρ is a positive operator.

4
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Proof =⇒

• ρ =
∑

i pi|ψi〉〈ψi|.

• tr(ρ) =
∑

i pitr(|ψi〉〈ψi|) =
∑

i pi〈ψi|ψi〉 =
∑

i pi = 1.

• 〈ϕ|ρ|ϕ〉 =∑i pi〈ϕ|ψi〉〈ψi|ϕ〉 =
∑

i pi|〈ϕ|ψi〉|2 ≥ 0.

4
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Proof ⇐=

• ρ is positive with a spectral decomposition

ρ =
∑

j

λj |ψj〉〈ψj |.

• λj : non-negative eigenvalues.

• |ψj〉 : eigenvectors.

• 1 = tr(ρ) =
∑

j λj .

• {λj , |ψj〉} : an ensemble of pure states giving rise to the

density operator ρ.

4
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A Criterion of Pure States

A density operator ρ is in a pure state if and only if

tr(ρ2) = 1.

• For a mixed (not a pure) state ρ, we have tr(ρ2) < 1.

4
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Proof

Let ρ be a density operator with spectral decomposition

ρ =
∑

i

λi|ψi〉〈ψi|,

where λi ≥ 0 and tr(ρ) =
∑

i λi = 1. Since

ρ2 =
∑

i

λ2
i |ψi〉〈ψi|,

we have

tr(ρ2) =
∑

i

λ2
i ≤

∑

i

λ2
i + 2

∑

i<j

λiλj = (
∑

i

λi)
2 = 1,

where equality holds if and only if only one λi is non-zero and is

equal to one, i.e., ρ = |ψi〉〈ψi|, a pure state.

4
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Mixture of Mixed States

ρ =
∑

i

piρi.

• ρi : density operator corresponding to an ensemble {pij , |ψij〉}

ρi =
∑

j

pij |ψij〉〈ψij |.

• pi : probability that the state of the quantum system is

prepared in ρi.

The probability of being in the pure state |ψij〉} is pipij and the

overall density operator to describe the state of the quantum

system is

ρ =
∑

ij

pipij |ψij〉〈ψij | =
∑

i

pi
∑

j

pij |ψij〉〈ψij | =
∑

i

piρi.

4
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Density Operator After Unspecified Measurement {Mm}

ρ′ =
∑

m

P(m)ρ(m) =
∑

m

tr(MmρM
†
m)

MmρM
†
m

tr(MmρM
†
m)

=
∑

m

MmρM
†
m.

4
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Average for Projective Measurement

• ρ : density operator for a quantum system

• M : an observable for the quantum system with spectral

decomposition

M =
∑

m

mPm

• P(m) = tr(PmρPm) = tr(P 2
mρ) = tr(Pmρ) : the probability

that outcome m occurs

• 〈M〉 : the average measurement value

〈M〉 =
∑

mmP(m) =
∑

mm tr(Pmρ) = tr(Mρ).

4
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What Class of Ensembles Gives Rise to a Particular ρ ?

• ρ = 3
4 |0〉〈0|+ 1

4 |1〉〈1| (spectral decomposition).

• |a〉 =
√

3
4 |0〉+

√

1
4 |1〉, |b〉 =

√

3
4 |0〉 −

√

1
4 |1〉.

1

2
|a〉〈a|+ 1

2
|b〉〈b| = 3

4
|0〉〈0|+ 1

4
|1〉〈1| = ρ.

• A lesson : the collection of eigenstates of a density operator is

not an especially privileged ensemble.

4
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Unitary Freedom in the Ensemble for Density Operators

Two ensembles {pi, |ψi〉} and {qi, |ϕj〉} give rise to the same

density operator ρ, i.e.,

ρ =
∑

i

pi|ψi〉〈ψi|, ρ =
∑

j

qj |ϕj〉〈ϕj |

if and only if
√
pi|ψi〉 =

∑

j

zij
√
qj |ϕj〉

where zij is a unitary matrix of complex numbers and pure states

with zero probability are padded to the smaller ensemble to have

the same size as the larger one.

4
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Proof ⇐=

• |vi〉 ≡
√
pi|ψi〉, |wj〉 ≡ √qj |ϕj〉.

Since

|vi〉 =
∑

j

zij |wj〉,

we have
∑

i

pi|ψi〉〈ψi| =
∑

i

|vi〉〈vi| =
∑

i

∑

jk

zijz
∗
ik|wj〉〈wk|

=
∑

jk

(

∑

i

zijz
∗
ik

)

|wj〉〈wk|

=
∑

j

|wj〉〈wj |

=
∑

j

qj |ϕj〉〈ϕj |.

5
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Proof =⇒

By spectral decomposition of ρ, we have

ρ =
∑

k

λk|k〉〈k| =
∑

k

|k′〉〈k′|,

where λk are positive, |k〉 are orthonormal and |k′〉 =
√
λk |k〉.

• |u〉 : a vector in the orthogonal complement Span{|k′〉}⊥ of

Span{|k′〉}.

Then

0 =
∑

k

〈u|k′〉〈k′|u〉 = 〈u|ρ|u〉 =
∑

i

〈u|vi〉〈vi|u〉 =
∑

i

|〈u|vi〉|2

which implies that

|u〉 ∈ Span{|vi〉}⊥.

5
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Thus

Span{|k′〉}⊥ ⊆ Span{|vi〉}⊥ and then Span{|vi〉} ⊆ Span{|k′〉}.

For each |vi〉, we have

|vi〉 =
∑

k

cik|k′〉

Then

ρ =
∑

k

|k′〉〈k′| =
∑

i

|vi〉〈vi| =
∑

kl

(

∑

i

cikc
∗
il

)

|k′〉〈l′|

Since the operators |k′〉〈l′| are linearly independent, we have

∑

i

cikc
∗
il = δkl

By appending more columns to the matrix C = [cik], we obtain a

5
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unitary matrix T = [tik] such that

|vi〉 =
∑

k

tik|k′〉

where some zero vectors are padded into the list of |k′〉. Similarly,

there is a unitary matrix S = [jk] such that

|wj〉 =
∑

k

sjk|k′〉

Then with Z = TS† a unitary matrix and Z = [zij ], we have

|vi〉 =
∑

j

zij |wj〉

since

5
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∑

j

zij |wj〉 =
∑

j

∑

k

tiks
∗
jk

∑

l

sjl|l′〉

=
∑

kl

tik|l′〉
∑

j

s∗jksjl

=
∑

k

tik|k′〉

= |vi〉

5
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Postulates of Quantum Mechanics

– Density Operator Version

5
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Postulate 1 – States

Associated to an isolated physical system is a Hilbert space H (eg,

a finite-dimensional complex inner product space). The state of the

system is completely described by its density operator, which is a

positive operator with trace one acting on the Hilbert space H. If

the quantum system is in the state ρi with probability pi, then the

density operator for this system is

ρ =
∑

i

piρi.

5
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Postulate 2 - Time Evolution

The evolution of a closed quantum system is described by a unitary

operator. That is, the state ρ of the system at time t1 is related to

the state ρ′ of the system at time t2 by a unitary operator U which

depends only on the times t1 and t2 ,

ρ′ = UρU †.

5
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Postulate 3 – Quantum Measurements

• {Mm} : a collection of measurement operators, acting on the

Hilbert space associated to the system being measured and

satisfying the completeness equation

∑

m

M†
mMm = I.

• m : measurement outcomes that may occur in the experiment.

5
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If the pre-measurement state of the quantum system is ρ, then the

probability that result m occurs is given by

P(m) = tr(MmρM
†
m),

and the post-measurement state of the system is

MmρM
†
m

tr(MmρM
†
m)
.

The completeness euqation expresses the fact that probabilities

sum to one
∑

m

P(m) =
∑

m

tr(MmρM
†
m) =

∑

m

tr(M †
mMmρ)

= tr

((

∑

m

M†
mMm

)

ρ

)

= tr(ρ) = 1.

5
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Postulate 4 – Composite Systems

• Qi : ith quantum system.

• Hi : the Hilbert space associated to the quantum system Qi.

• H = ⊗iHi : the Hilbert space associated to the composite

system of Qi’s.

• ρi : the state in which the quantum system Qi is prepared.

• ρ = ⊗iρi : the joint state of the composite system.

6
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Reduced Density Operator6
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Definition

ρA
4
= trB(ρ

AB).

• ρAB : density operators for composite quantum system AB.

• ρA 4
= trB(ρ

AB) : reduced density operator for subsystem A.

– A description for the state of subsystem A : justification

needed.

6
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A Simple Justification

• ρAB = ρ⊗ σ : a direct product density operator for composite

quantum system AB.

• ρA = trB(ρ
AB) = ρ tr(σ) = ρ : correct description of system A.

• ρB = trA(ρ
AB) = tr(ρ)σ = σ : correct description of system B.

6
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A Further Justification6
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Local and Global Observables

• M : the observable on subsystem A for a measurement

carrying out on subsystem A, a Hermitian operator with

spectral decomposition

M =
∑

m

mPm.

• M ⊗ I : the corresponding observable on the composite system

AB for the same measurement carrying out on subsystem A, a

Hermitian operator with spectral decomposition

M ⊗ I =
∑

m

m(Pm ⊗ I).

• |m〉 is an eigenstate of the observable M and |ψ〉 is any state of

subsystem B ⇐⇒ |m〉 ⊗ |ψ〉 is an eigenstate of M ⊗ I.

6
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When System AB Is Prepared With State |m〉 ⊗ |ψ〉

• m : the outcome which occurs with probability one by the

observable M on subsystem A.

• m : the outcome which occurs with probability one by the

observable M ⊗ I on the composite system AB.

• Consistency.

6
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When System AB Is in a Mixed State ρAB

• f(ρAB) : a density operator on subsystem A as a function of

the density operator on system AB, serving as an appropriate

description of the state of subsystem A.

• Measurement statistics must be consistent between the local

observable M on subsystem A and the global observable M ⊗ I
on system AB

tr(Mf(ρAB)) = 〈M〉 = 〈M ⊗ I〉 = tr((M ⊗ I)ρAB).

6
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Existence : f(ρAB) = trB(ρ
AB)

• ρAB =
∑

i αiT
A
i ⊗ TB

i : a linear operator on the state space of

the composite system AB.

tr((M ⊗ I)ρAB)

= tr((M ⊗ I)(
∑

i

αiT
A
i ⊗ TB

i )) = tr(
∑

i

αi(MTA
i )⊗ TB

i )

= tr(trB(
∑

i

αi(MTA
i )⊗ TB

i )) = tr(
∑

i

αi(MTA
i ) tr(TB

i ))

= tr(M(
∑

i

αiT
A
i tr(TB

i ))) = tr(M trB(
∑

i

αiT
A
i ⊗ TB

i ))

= tr(M trB(ρ
AB)).

6
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Uniqueness

• H : the Hilbert space associated to the quantum system A.

• LH(H) : the real inner product space of all Hermitian

operators on H with trace inner product.

• {Mi} : an orthonormal basis of LH(H).

• f(ρAB) =
∑

iMi tr(Mif(ρ
AB)) : the expansion of f(ρAB) by

the orthonormal basis {Mi}.

Since

tr(Mif(ρ
AB)) = tr((Mi ⊗ I)ρAB) ∀ i,

we have

f(ρAB) =
∑

i

Mitr((Mi ⊗ I)ρAB)

which uniquely specifies the function f .

6
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An Example

• Suppose a two-qubit system is in a pure Bell state |00〉+|11〉√
2

with density operator

ρ12 =

( |00〉+ |11〉√
2

)( 〈00|+ 〈11|√
2

)

=
|00〉〈00|+ |11〉〈00|+ |00〉〈11|+ |11〉〈11|

2
.

7
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• ρ1 : the reduced density operator of the first qubit

ρ1 = tr2(ρ
12)

=
tr2(|00〉〈00|) + tr2(|11〉〈00|) + tr2(|00〉〈11|) + tr2(|11〉〈11|)

2

=
|0〉〈0|〈0|0〉+ |1〉〈0|〈0|1〉+ |0〉〈1|〈1|0〉+ |1〉〈1|〈1|1〉

2

=
|0〉〈0|+ |1〉〈1|

2
=
I

2
.

• Reduced density operator ρ1 for the first qubit is in a mixed

state while the two-qubit system is in a pure state.

7
1



'&

$%

Schmidt Decomposition and Purification7
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Schmidt Decomposition

For each pure state |ψ〉 in a composite quantum system AB, there

exist a set {|iA〉} of orthonormal states for subsystem A and a set

{|iB〉} of orthonormal states for subsystem B of the same size such

that

|ψ〉 =
∑

i

λi|iA〉|iB〉

where λi are non-negative real numbers with
∑

i

λ2
i = 1.

• λi : Schmidt coefficients.

• {|iA〉} and {|iB〉} : Schmidt “bases” for A and B respectively.

– Dependent on |ψ〉.
• # of non-zero values λi : Schmidt number for |ψ〉.

7
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Proof

• {|j〉}, {|k〉} : given orthonormal bases of the Hilbert spaces of

subsystems A and B respectively

|ψ〉 =
∑

jk

cjk|j〉|k〉.

• C = UDV : singular value decomposition

C = [cjk], U = [uji], D = diag(dii), V = [vik],

cjk =
∑

i

ujidiivik.

– U and V : unitary matrices.

– D : a diagonal matrix, not necessarily square.

7
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|ψ〉 =
∑

jk

∑

i

ujidiivik|j〉|k〉

=
∑

i

dii





∑

j

uji|j〉





(

∑

k

vik|k〉
)

=
∑

i

λi|iA〉|iB〉.

• |iA〉 =
∑

j uji|j〉 : orthonormal states of subsystem A

〈iA|i′A〉 =
∑

jj′

u∗jiuj′i′〈j|j′〉 =
∑

j

u∗jiuji′ = δii′ .

• |iB〉 =
∑

k vik|k〉 : orthonormal states of subsystem B

〈iB |i′B〉 =
∑

kk′

v∗ikvi′k′〈k|k′〉 =
∑

k

v∗ikvi′k = δii′ .

• λi = dii : non-negative real numbers

1 = 〈ψ|ψ〉 =
∑

ii′

λiλi′〈iA|i′A〉〈iB |i′B〉 =
∑

i

λ2
i .

7
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Schmidt Number for State |ψ〉 =
∑

i λi|iA〉|iB〉

• ”Amount” of entanglement between systems A and B when the

composite system AB is in state |ψ〉.

• Invariance under unitary transformations on subsystem A or

subsystem B alone.

– U : a unitary operator on subsystem A.

– U |iA〉 : orthonormal states of subsystem A.

(U ⊗ I)|ψ〉 =
∑

i

λi(U ⊗ I)(|iA〉 ⊗ |iB〉) =
∑

i

λiU |iA〉|iB〉.

7
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Purification

• ρA : a density operator for system A with ensemble {pi, |iA〉}

ρA =
∑

i

pi|iA〉〈iA|.

• R : a reference system.

• {|iR〉} : an orthonormal basis of the Hilbert space associated to

system R, having the same cardinality as that of {|iA〉}.

• |AR〉 : a pure state of the composite system AR with

|AR〉 4=
∑

i

√
pi|iA〉|iR〉.

7
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trR(|AR〉〈AR|) =
∑

ij

√
pipjtrR(|iA〉〈jA| ⊗ |iR〉〈jR|)

=
∑

ij

√
pipj |iA〉〈jA|tr(|iR〉〈jR|)

=
∑

i

pi|iA〉〈iA| = ρA.

• A mixed state of a local system is a local view of a pure state

in a global composite system.

7
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Applications7
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Non-orthogonal States Cannot Be Distinguished

• {Mj} : measurement operators

• |ψ1〉 and |ψ2〉 : two non-orthogonal states to be distinguished

and

|ψ2〉 = α|ψ1〉+ β|ψ〉,
where |ψ1〉 and |ψ〉 are orthonormal. Note that |α|2 + |β|2 = 1

and then |β| < 1.

• f(·) : a rule to guess which state vector is observed based on

the outcome of the measurement, i.e., either f(j) = 1 or

f(j) = 2.

8
0



'&

$%

Suppose that |ψ1〉 and |ψ2〉 can be distinguished reliably, i.e.,

∑

j:f(j)=1

〈ψ1|M†
jMj |ψ1〉 = 〈ψ1|





∑

j:f(j)=1

M†
jMj



 |ψ1〉 = 〈ψ1|G1|ψ1〉 = 1

∑

j:f(j)=2

〈ψ2|M†
jMj |ψ2〉 = 〈ψ2|





∑

j:f(j)=2

M†
jMj



 |ψ2〉 = 〈ψ2|G2|ψ2〉 = 1

where Gi =
∑

j:f(j)=iM
†
jMj , for i = 1, 2.

Since G1 +G2 = I, we have 〈ψ1|(G1 +G2)|ψ1〉 = 1 and then

〈ψ1|G2|ψ1〉 = 0⇒
√

G2|ψ1〉 = 0⇒
√

G2|ψ2〉 = β
√

G2|ψ〉

Thus a contradiction is obtained as follows

〈ψ2|G2|ψ2〉 = |β|2〈ψ|G2|ψ〉 ≤ |β|2 < 1

since 〈ψ|G2|ψ〉 ≤ 〈ψ|(G1 +G2)|ψ〉 = 〈ψ|ψ〉 = 1.
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Superdense Coding

• Goal : Alice wants to send two classical bits of information to

Bob by transmitting only one qubit to Bob

• Initialization : preparing a pair of qubits in a Bell State

|ψ〉 = |00〉+ |11〉√
2

Alice held the first qubit and Bob held the second qubit before

apart (may send by a third party)

• Alice takes action on her qubit according the two bits of

information she wants to send

00 : |ψ〉 → (I ⊗ I)|ψ〉 = |00〉+ |11〉√
2

01 : |ψ〉 → (Z ⊗ I)|ψ〉 = |00〉 − |11〉√
2

8
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10 : |ψ〉 → (X ⊗ I)|ψ〉 = |10〉+ |01〉√
2

11 : |ψ〉 → (iY ⊗ I)|ψ〉 = |10〉 − |01〉√
2

• Alice sends her qubit to Bob

• The four Bell states form an orthonormal basis of the

two-qubit system and can form a projective measrement

• With two qubits together, Bob makes the projective

measurement

8
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Quantum Teleportation

H

1MZ2MX

ψ

{00β

ψ

1ψ0ψ 2ψ 3ψ
4ψ

1M

2M
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Quantum Teleportation

• |ψ2〉 : state of the three-qubit system before Alice makes her

measurement

|ψ2〉 =
1

2
(|00〉(α|0〉+ β|1〉) + |01〉(α|1〉+ β|0〉)

+|10〉(α|0〉 − β|1〉) + |11〉(α|1〉 − β|0〉))

• {|00〉〈00|, |01〉〈01|, |10〉〈10|, |11〉〈11|} : a POVM measurement

made by Alice on her two qubits

• ρ = |ψ2〉〈ψ2| : density operator for the three-qubit system

before the measurement

• ρ′ : density operator for the three-qubit system after the

unspecified (from Bob’s point of view) measurement

ρ′ =
∑

m

MmρM
†
m =

∑

m

Mm|ψ2〉〈ψ2|M†
m

8
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• |00〉〈00|ψ2〉 = (1/2)|00〉(α|0〉+ β|1〉)

• |01〉〈01|ψ2〉 = (1/2)|01〉(α|1〉+ β|0〉)

• |10〉〈10|ψ2〉 = (1/2)|10〉(α|0〉 − β|1〉)

• |11〉〈11|ψ2〉 = (1/2)|11〉(α|1〉 − β|0〉)

• ρB : the reduced density operator of Bob’s qubit

ρB = trA(ρ
′) =

∑

m

trA(Mm|ψ2〉〈ψ2|M†
m)

=
1

4
((α|0〉+ β|1〉)(α|0〉+ β|1〉)† + (α|1〉+ β|0〉)(α|1〉+ β|0〉)†

+(α|0〉 − β|1〉)(α|0〉 − β|1〉)† + (α|1〉 − β|0〉)(α|1〉 − β|0〉)†)

=
2(|α|2 + |β|2)|0〉〈0|+ 2(|α|2 + |β|2)|1〉〈1|

4

=
|0〉〈0|+ |1〉〈1|

2
=
I

2

8
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• Bob does not have any information about the state |ψ〉 if Alice

does not send him her measurement result, preventing Alice

from using teleportation to transmit information to Bob faster

than light

8
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Anti-correlations in the EPR Experiment

• V : the state space of a qubit

• B = {|0〉, |1〉} : an orthonormal basis of V

• M = ασx + βσy + γσz : an observable on V

|α|2 + |β|2 + |γ|2 = 1, X = [σx]B, Y = [σy]B, Z = [σz]B

• ±1 : eigenvalues of M

• B′ = {|a〉, |b〉} : unit eigenvectors of M

|0〉 = α|a〉+ β|b〉
|1〉 = γ|a〉+ δ|b〉

8
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with coordinate transformation matrix U , which is unitary

U = [B′ → B] =





α β

γ δ



 , | det(U)| = |αδ − βγ| = 1

• |ψ〉 = (|01〉 − |10〉)/
√
2 : a Bell state prepared on a two-qubit

quantum system

|01〉 − |10〉√
2

= (αδ − βγ) |ab〉 − |ba〉√
2

• M ⊗M : observable on the two-qubit system

M ⊗M = (I ⊗M)(M ⊗ I)

with spectral decomposition

M ⊗ I = (|a〉〈a| ⊗ I)− (|b〉〈b| ⊗ I)
I ⊗M = (I ⊗ |a〉〈a|)− (I ⊗ |b〉〈b|)

8
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|ab〉 − |ba〉√
2

M⊗I−→
+1 : |ab〉 with prob. 1

2

I⊗M−→ −1 : |ab〉 with prob. 1

−1 : |ba〉 with prob. 1
2

I⊗M−→ +1 : |ba〉 with prob. 1

9
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The Argument of Einstein, Podolsky and Rosen

• Any ”element of reality” must be represented in any complete

physical theory

• It is sufficient to say a physical property to be an element of

reality if it is possible to predict with cartainty the value that

property will have, immediately before measurement

• As in the anti-correlation experiment on a Bell state, once

Alice gets her measurement result +1 (-1), she can predict with

certainly that Bob will measure -1 (+1) on his qubit

• The physical property revealed by various observables M on

Bob’s qubit is an element of reality of Bob’s qubit

9
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• Quantum mechanics only tell one how to calculate the

probability of the respective measurement outcomes if M is

measured, it does not include any fundamental element

intended to represent such a physical property

• Quantum mechanics is not a complete physical theory

9
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Bell’s Inequality

• A compelling example which illustrates an essential difference

between quantum and classical physics

9
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The Setup

• Charlie prepares two particles

– He is capable of repeating the experimental procedure

• Charlie sends one particle to Alice and another particle to Bob

9
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Derivation of Bell’s Inequality in Classical Scenario

• PQ, PR : two physical properties of Alice’s particle

• Q,R : values of PQ, PR respectively

– Assumed to exist independent of measurement, i.e., assumed

to be objective properties of Alice’s particle

– Merely revealed by measurement apparatuses

– Variables each taking +1 or -1

• PS , PT : two physical properties of Bob’s particle

• S, T : values of PS , PT respectively

– Assumed to exist independent of measurement, i.e., assumed

to be objective properties of Bob’s particle

– Merely revealed by measurement apparatuses

– Variables taking +1 or -1

9
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• Alice and Bob do their measurements at the same time, which

are assumed uncorrelatedly

– Alice performing her measurement does not disturb the

result of Bob’s measurement

– Bob performing his measurement does not disturb the result

of Alice’s measurement

• QS +RS +RT −QT : a derived quantity

QS +RS +RT −QT = (Q+R)S + (R−Q)T = ±2,

since Q,R = ±1 implies that either (Q+R)S = 0 or

(R−Q)T = 0

9
6



'&

$%

• P(q, r, s, t) : probability that, before the measurements are

performed, the system is in a state where Q = q,R = r,

S = s, T = t

– Dependent on how Charlie prepares the two particles

– Dependent on experimental noise

• Bell’s inequality :

E(QS) + E(RS) + E(RT )− E(QT )
= E(QS +RS +RT −QT )
=

∑

q,r,s,t,

P(q, r, s, t)(qs+ rs+ rt− qt)

≤
∑

q,r,s,t,

P(q, r, s, t) · 2

= 2

• It doesn’t matter how Charlie prepares the particles

9
7



'&

$%

A Quantum Mechnical Scenario

• Charlie prepares a quantum system of two qubits in the Bell

state

|ψ〉 = |01〉 − |10〉√
2

• Q,R : observables performed by Alice on her qubit

Q = Z1, R = X1

• S, T : observables performed by Bob on his qubit

S =
−Z2 −X2√

2
, R =

Z2 −X2√
2

9
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A Quantum Mechnical Scenario (Cont’)

• 〈QS〉, 〈RS〉, 〈RT 〉, 〈QT 〉 : average values of measurements

〈QS〉 = 〈ψ|(Z1 ⊗
−Z2 −X2√

2
)|ψ〉 = 1√

2

〈RS〉 = 〈ψ|(X1 ⊗
−Z2 −X2√

2
)|ψ〉 = 1√

2

〈RT 〉 = 〈ψ|(X1 ⊗
Z2 −X2√

2
)|ψ〉 = 1√

2

〈QT 〉 = 〈ψ|(Z1 ⊗
Z2 −X2√

2
)|ψ〉 = − 1√

2

〈QS〉+ 〈RS〉+ 〈RT 〉 − 〈QT 〉 = 2
√
2

• But the Bell’s inequality says that the above quantity cannot

exceed two

9
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Experimental results were in favor of the prediction of quantum

mechanics. The Bell’s inequality is not obeyed by Nature!

1
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Two Questionable Assumptions Made Classically

• Assumption of realism : the physical properties PQ, PR, PS , PT

have definite values Q,R, S, T which exist independent of

observation

• Assumption of locality : Alice performing her measurement

does not influence the result of Bob’s measurement

1
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The Lesson

Bell’s inequality together with substantial experimental evidence

convinces ourselves that either or both of realism and locality must

be dropped in order to develop a correct intuitive understanding of

quantum mechanics.
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