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Overview of Quantum Information 
and Computation

Unit One



Quantum Bits



Quantum Bits (Qubits)

n A classical bit : A physical system with two 
definite states 0 (off) and 1 (on)

n A Qubit : A quantum system with two states
and  their superpositions

a |0> + b |1>
with  |a|^2+|b|^2 = 1
¨ A unit vector in a two-dimensional complex inner 

product space (i.e., a two-dimensional Hilbert space)
¨ |0 > and |1 >  form an orthonormal basis

>> 1|  and  0|



Measurement of a Qubit

n Measure a qubit |s> = a |0> + b |1> 
¨ Get state |0> with probability |a|^2
¨ Get state |1> with probability |b|^2
¨ |a|^2 + |b|^2=1

n An example
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Measurement in Other Orthonormal
Basis
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Representation of a State in a 
Qubit
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Other States
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Physical Realization of a Qubit

n Nuclear spin
n Electron spin
n Polarization of photon
n Optical cavity
n Quantum dot
n Ion trap
n Microwave cavity



Two Qubits

n Two classical bits : A physical system with four 
possible definite states

00         01         10           11
n Two qubits : A quantum system with an 

orthonormal basis 
{ |0>|0>, |0>|1>, |1>|0>, |1>|1>}

and their superpositions
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Bell States or EPR Pairs

n Einstein, Podolsky and Rosen

n Correlated measurement
¨ |00>  with probability 1/2
¨ |11>  with probability 1/2
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Quantum Circuits



Single Qubit Gates

n Classical NOT gate
¨The only non-trivial single classical 
¨0 à1   and 1 à 0

n Analogous quantum NOT gate
¨ |0>  à |1>   and   |1> à |0>
¨A linear operator on the qubit (a two-

dimensional Hilbert space)



Quantum NOT Gate

n A linear operator
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Single Bit and Single Qubit Gates
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A Generic Single Qubit Gate

n A unitary operator U on a qubit

n : the Hermitian of U
¨ Conjugate transpose of U 
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Multiple Bit and Qubit Gates
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Controlled-NOT Gate 

n A control qubit
n A target qubit
n The two output qubits are entangled
n A unitary operator on a four-dimensional 

Hilbert space
|00>à|00> ; |01>à|01> ;
|10>à|11> ; |11>à|10>
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An       Qubit Gates

nA Unitary operator on        qubits
nAny multiple qubit gate can be 

composed from CNOT gates and 
single qubit gates

n
n



A Simple Circuit : Swapping

n Circuit diagram is read from left to right
n A wire corresponds to the passage of time or a 

physical particle moving from one location to 
another through space
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The Swapping Circuit
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Single qubit controlled-U Operatior
n : single-qubit gates
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Two-Qubit Controlled-U Gate
n : single qubit operator
n : single qubit operator 

>>=>> tUcctccUC cc ||      ||)( 21
2121

2

U V
+V V

2VU =V
U



The Toffoli Gate

n A universal set of gates : CNOT, Hadamard
gate      , phase gate      and         gate8/πH TS
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Quantum Circuit Symbol for 
Measurement
n Converting a single qubit state

to a classical bit  M
¨ M=0  with probability 
¨ M=1  with probability 
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Creating Bell States or EPR Pairs
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Quantum Teleportation

n Alice and Bob met long ago but now live 
far apart

n When together, they prepared an EPR pair 
and each took one qubit when separated

n Now Alice wants to deliver a qubit to Bob
n Alice can only send classical information 

to Bob



Quantum Teleportation
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In Preparation
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Alice Sends Her Two QUbits
Through a CNOT Gate
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Alice Sends Her First Qubit
Through a Hadamard Gate
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Alice Measures Her Two Qubits
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Quantum Algorithms



Quantum Parallelism

n A function  f  from {0,1} to {0,1}
n How to evaluate f(x) for different x 

simultaneously ?
¨ A unitary operation           on two qubits
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A Quantum Parallelism Circuit

n The output state is
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Walsh-Hadamard Transform
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Deutsch’s Algorithm

n Determine a global property of 

by using one evaluation of f(x)
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After Walsh-Hadamard Transform
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Interference after Applying 
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After Applying 
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Applying Hadamard Gate on the 
First Qubit
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Quantum Fourier Transform
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A Concrete Example – Three-Qubit
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Complexity of     -Point FFT

n Classical FFT:                            Gates

n Quantum FT:                            Gates
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Obstacles in Using Quantum FT

n The complex amplitudes cannot be 
accessed directly by measurement

n No efficient ways to prepare the original 
states to be Fourier transformed



Applications of Quantum Fourier 
Transform

n Quantum phase estimation
¨ : an eigenvector and the 

associated eigenvalue of a unitary operator

n Shor’s algorithm for factoring
¨Break unbreakable codes such as RSA 

n Discrete logarithm
¨ : known ,ba
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Quantum Search Algorithm

n : size of data base

n Classical search: 

n Quantum search:
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Quantum Cryptography

n Quantum key distribution
¨Perfect secret key distribution over public 

channels



Quantum Error 
Correction



Decoherence

n Dynamics (evolution) of quantum systems
n Physical state of qubit decays over time
¨Environments
¨Other degrees of freedoms



Quantum Error-correcting 
Codes
n Code designs
¨Shor’s codes
¨Calderbank-Shor-Steane Codes

n Stabilizer codes
¨Group-theoretical basis
¨Analogous to linear block codes
¨An optimal 5-qubit single-error-correcting 

quantum code can be designed



Quantum Information Theory

n Classical information through quantum 
channels

n Quantum information through quantum 
channels

n Quantum distinguishability
n Creation and transformation of 

entanglement



Conclusion



Critical Issues

n What can quantum computation do beyond 
classical computation ?

n How powerful is the quantum computation ?
n How do we realized quantum computation ?
n What other possible quantum algorithms can we 

design ?
n What possible scenarios of quantum 

communications can we conceive ?
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