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Unit One — A Primer of Linear Algebra.

A mathematical language for beginners in quantum computing and

quantum information processing.
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‘ Complex Inner Product Spaces.

e H : a complex vector space.

e (, ): an inner product as a mapping from H x H to C' such
that
— Non-negativity : (|v),|v)) > 0 for all |v) € ‘H and
(|v),|v)) = 0 if and only if |v) = 0,

— Hermitian symmetry : (|v'), [v)) = (|v), [v)),
— Linearity : ([v), alv1) 4 Blvz)) = a(|v'), [v1)) + B(|v)'; |v2)).

e Dirac notation : (|v'), |v)) = (V'|v).
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‘Matrix Representation of Linear Transformations I

e Hi,Hy : finite-dimensional complex inner product spaces.

e 7' : a linear transformation from H; to Ho.

e B=/{|j7)}, C={]i)} : orthonormal bases of H; and Hs,
respectively.

o |a;j] = A= [T]|pc : matrix representation of 7" relative to the
bases B and C

aj = (t|T'5), V1, .
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The Vector Space L(H1,Hs)

e Hi,Hs : finite-dimensional complex inner product spaces.

e [(Hy,Hs) : the complex vector space of all linear
transformations from Hi to Ho.

e |v),|w) : vectors in ‘H; and Hs, respectively.

o |w)(v| : outer product of |w) and (v|, which is defined as a
linear transformations from H; to Hso

(lw) (W) ([0')= [w)(vfo’), ¥ [v') € Hi.

e B={|j)},C={]i)} : orthonormal bases of H; and Ho,
respectively.

\o {|2)(7|} : a basis of L(H1,Hz2).




For each T' € L(H;, Hy), we have

T =2 CT]3)1) (1.




The Dual Space H* I

e H : a finite-dimensional complex inner product space.

e H* = L(H,C) : the complex vector space of all linear
functional on ‘H, called the dual space of H.

e |v) : a vector in H.

e (v| : a linear functional on H defined as

A

(| ([v)= (v]v").

o W ={(v]||v) € H}: a vector subspace of H*.

Since dim W = dim’H = dim ’H*, we have H* = W, i.e., every linear

functional on H is of the form (v| for some |v) € H.
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/ ‘ The Adjoint of a Linear Transformation. \

e Hi,Hy : finite-dimensional complex inner product spaces.
e 7' : a linear transformation from H; to Ho.

e |w) : a given vector in Hos.

o F(|v)) £ (Jw),T|v)) : a linear functional on H;.

e |v*) : the unique vector in H; such that
f(lv)) = (lw), T'lv)) = ([v7),[v)) ¥ |v) € Hi.
For each |w) € Ho, we define

T'w) = [v7).

\o TT : a mapping from Hs to H;, called the adjoint of T. /
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‘TT is a Linear Transformation from Ho to H; I

e |w),|z) : vectors in Ho.

e o, 3 : complex numbers,

(T (alw) + Bl2)), [v))

(alw) + B]z), T|v))

a(lw), Tlv)) + B(1z), T|v))
a(TT(lw)), [v) + B(T7(|2)), [v))
(o (Jw)) + BTT(|2)), |v)).

~
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e H : a finite-dimensional complex inner product space.

e |v) : a vector in H which can be regarded as a linear

transformation from C' to H as |v>(a)éa\v>.

Since

(Jo)T[w), @) = (Jw), [v)(@) = ajw), [v) = ((Jv), [w)), @) = ({v]w), a),

we have |[v)T = (v].
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‘ Properties of Adjoint I \

e Hy,’Hs, Hs : finite-dimensional complex inner product spaces.

e TS : linear transformations from H; to Hy and from Hs to
'Hs, respectively.

o (ST)T =TT18T:

((ST) |u), [v)) = (Ju), ST|v)) = (ST|u), T|v)) = (T ST[u), v)).

° (TT)]L =T :

(lw), T|v))

(T \ > | )) = ([0}, TTw)) = (TT) o), [w))
T |v)).

o (T]o))t = (u|T" -

(T1v)) (|w)) = (T|v), lw)) = (Jv), TT|w)) = (v|T|w).
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‘ Special Operators I




4!

Normal Operators I

TT =TT

e ' : a linear operator on a finite-dimensional complex inner

product space.
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Spectral Decomposition of Normal Operators I

T = Nili)(@il.
i
e 7' : a normal operator on a finite-dimensional complex inner
product space H.
e {|Y;)} : an orthonormal eigenbasis of H associated with T.

e )\, : eigenvalue of T' corresponding to eigenvector [1;).
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‘ Hermitian Operators I

T=T~.
A linear operator 1" is Hermitian if and only if

e ' is a normal operator,

e ' has real eigenvalues only.
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‘ Projection Operator I

‘H : a finite-dimensional complex inner product space space.

W . a subspace of H.
W+ : the othogonal complement of W in H.

Othogonal decomposition : for each |v) € H, there exist unique
lw) € W and |wt) € W such that

[v) = |w) + [w).
P : the projection of H onto W, i.e.

P(jv)) = |w), Vv € V.
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‘A Necessary and Sufficient Condition.

is a projector on ‘H if and only if
o P=PT,
o P°=P.
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Unitary Operators I

UlU=U0UUT=1.

e Eigenvalues of a unitary operator have unit modulus.
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/ ‘A Representation of Unitary Operators I

If

e {|¢)} : an orthonormal basis of H,

e U : a unitary operator on H,

o ;) 1 |¢y) = Uli),

then we have

e {|1;)} : another orthonormal basis of H,

o U =), v

~

Also given any two orthonormal bases {|v;)} and {|p;)} of H, the

operator

Q unitary.

U = ZWQ(@J

/
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‘ Positive Operator I

(lv), Tlv)) =0, ¥ |v).
Necessary and sufficient conditions are

e Normal,

e Having non-negative eigenvalues.

\_
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Positive Operators 77T and TT" I

e Hq,Hs : finite-dimensional complex inner product spaces.

e 7T : a linear transformation from H; to Ho.

Proof

(|0), T'Tlv)) = (T|v),Tlv)) =0,
(Jw), TT lw)) = (TT|w), TTw)) = 0.
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o |w) :

Proof

Positive Operators |w)(w|

any vector in H.

([v), lw){wlv)) = (v|w){w|v) = [(v|w)|* > 0.
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‘ Positive-Definite Operator I

(lv), Tlv)) >0, ¥ |v) # 0.
e Normal.

e Having positive eigenvalues.
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‘Functions of Normal Operators I

e f(z): complex-values function on complex numbers.

e I : a normal operator with spectral decomposition

T = ZAi i) (Wil

o f(T) is defined as

Zf ) i) (il

e The above definition is well-defined, i.e., independent of the
choice of orthonormal basis {|;)}.

~
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where

An Example I
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‘ A Property I

If T"and S are two commuting normal operator on H, then
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‘ Tensor Product '
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/ Tensor Product of Vector Spaces. \

e V and W : two complex vector spaces.
e v and w : vectors in V and W respectively.
e v ®w : the direct product of v and w.

e V®W : the tensor product of V and W, which is the set of all
linear combinations of (finitely many) v ® w with v € V and

w € W satistying

. (v+v)w=vw+v ®w,
2. v (w+w)=vw+vRw,
3. a(v@w) =(av) dw = v R (aw).

e > .o;(v; ®w;) : atypical element in V @ W, where ) . is a

\ finite sum. /
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Tensor Product V ® W as a Vector Space.

e zerovector 0: 0®0=v®0=0Q w.

— By the third property, we have

0R0=vR0=0QR w.

— For any v ® w, we have

o — VXYW :

vIW+rvR0=v8 (w+0) =vRw.
additive inverse of v ® w

VRIW—-—vWw=vR (w—-—w)=vx0=0.

~
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Tensor Product V ® W in a Reduced Representation I

e {j} : a basis of W.

o > (v ®@w;) =) (v @ (D, BijJ)) =
Zj Zz az‘ﬁij(’“z‘ ®j) j(zz @iﬁij’vi) ®J = Zj ’U;’ ® 7.

Then we have

V®W={Z’Uj®j\ v; €V},

J

where all but finitely many v; = 0.

\_ /




0¢

-~

A Unique Representation Theorem.

e VV and W : complex vector spaces.

e {7} : a basis of W.

o Zj u; ® j and Zj v; ®J : two vectors in V ®@ W.
Then

Z’LLj@j:ZUj@j
J J

if and only if

u; = vy, \V/]

\_
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‘ Proof'

o VXV x---xV : the direct sum of as many V’s as 3’s

VxVx...xV
{(-..,vj,...) | v; € V,all but finitely many v; = 0}.

|| D>

o V' XV x---xV : acomplex vector space,

— (v ) vl ) = (v ),

— Oé(...,’Uj,...)Z(...,Oé'l)j,...),

— zero element must be (...,0,...).

\_
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e VW =ZV XV x---xV : alinear isomorphism f from
VeWontoV XV x-..xV,

f(Z v; ® j)

VS

..,’Uj,...),
Z’Uj ® 7.
J

Thus,
Z’U,j @] :Z’Uj ®]
J J

if and only if

\_
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The Zero Element 0 of the Tensor Product V & W'

A direct product v ® w in V ® W is equal to the zero element 0 of
V ® W if and only if

v=0orw=0.
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‘ Proof'

Suppose v @ w = 0 and w # 0. Let
w=) Bj
J

where at least one 3, is non-zero. Thus

0:v®w:Zﬁj(v®j):Z(ﬁjv)®j

J
which implies that
ijv =0

for all § by the unique representation theorem. Since at least one of

B3; is non-zero, we have v = 0.

\_
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Bases of Tensor Product V@ W '

e VV and W : complex vector spaces.
e B={i} and C = {3} : bases of V and W respectively.
e BRC={i®j}:abasisof Ve W.
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Proof of Linear Independence I

ZO"U 1®3)=0
@ ZZ%

~ Oé@'j:OV’L',j.
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‘Tensor Product 'H; ® 'H, as an Inner Product Space I

e H; and Hs : inner product spaces.

o > . o(lv;) ® |w;)) and Zj a}(\v}) ® |w;>) : two vectors in
H1 ® Hs.

~

(

A

2. illvi) @ wi)), 35 o (Jvg) @ |wy))) = 35 g o {wi|vg) (wilwy).

\_

o ([v) @fw), [v') @ |w')) = (vo)(w|w’).

/




8¢

-~

‘ Well-defined '

o > ailv) ®[w)) = (00 aiBizlvi) @ 7).
o > par(jvg) ®fwy)) =30 Oy By lvr)) @157

1>

>

(Z ai|vi) @ [wi)), Z%(W@ ® |w§<>)>
Zoz ag (vilvy,) (wilwy,) ZO‘ a,{vivg,) Zﬁzgﬂkj jli’)

1k

> (S: O‘iﬁijvi>72@%5/’gyvz§>> (7177)
TRNE K

(S: (S: Oéiﬁz’j|%'>> R 7).y (S: Oékﬁzéj/’t@) ® j/>) :
i\ 7 \&

/
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A Useful Formula'

e H; and Hs : complex inner product spaces.

e {|j)} : an orthonormal basis of Hs.

e > iluj) ®lj) and ), [v;) ®[j) : two vectors in Hy ® Ho.

(32 ) @ 1) 55 o) @ 1)) = 2, dug o),
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| Orthonormal Bases of Tensor Product H; ® Ho I

e H; and Hy : complex inner product spaces.

e B=/{|i)} and C ={]|j)} : orthonormal bases of H; and Ha,
respectively.

e BRC=A{|i)®|j)}: an orthonormal basis of H; ® Hos.
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/ ‘Direct Product of Linear Transformations' \

o V.V W, W' : complex vector spaces.

o L(V,V') and L(W,W’) : the vector space of all linear
transformations from V to V'’ and from W to W', respectively.

e T and S : linear transformations in L(V,V’) and in L(W, W'),

respectively.
o > oy(v; ®w;) : avectorin VR W.

e "X S: the direct product of T" and S, which is a linear
transformation from V@ W to V/ @ W/,

(T ® S>(Z ai(v; @ w;)) 2 Z ai(Tv; ® Sw;).

\ — Well-defined. /
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‘ Matrix Version '

B={i},B ={i'},C={j5},C' ={j'} : bases of V, V' W, W',

respectively.

BRC,B ®C : basesof VW,V @ W', respectively.

A= |T|p—p and B = |S]¢c_ ¢/ : matrix representations of T

and S, respectively.

G = [T ® S|pgc—np ec’ : matrix representations of T'® S.

G2 AwB.

Girjrij = @it ibjr ;-




eV

and

TRSE®J)
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Tensor Product of L(V,V’) and L(W, W)

L(V,V")y® L(W,W"), called the tensor product of L(V, V') and
L(W,W"), is the set of all linear combinations of T'® S,
T e L(V,V')and S € L(W,W"), which satisfies

L. T+T)Y@S=TS+T'®S,

2. T®(S+5)=T®S+T®5,

3. a(T®S)=(aT)® 5 =T ® (al).
The tensor product L(V, V') @ L(W,W') is a vector space.

\_
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Bases of Tensor Product space L(H1,H2) ® L(Hs3, Hy)

o Hy,Hs, Hs, Hy : finite-dimensional complex inner product

spaces.

o {|O)}{li"} {4}, {|7")} : orthonormal bases of Hi, Ho, Hs, Ha,

respectively.
o {|i')(i|} : a basis of L(H1,Hs).
o {121} : a basis of L(Hs, Ha).
o {|i)(i|® |5 (4|} : a basis of L(H1,Hs) ® L(Hs, Ha).
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Bases of Vector Space L(H1 ® Hs, Ho @ Hy)

o Hy,Hs, Hs, Hy : finite-dimensional complex inner product

spaces.

o {|O)}{li"} {4}, {|7")} : orthonormal bases of Hi, Ho, Hs, Ha,

respectively.
e {|7) ®|j)} : an orthonormal basis of H; ® Hs.
e {|i')®|7')} : an orthonormal basis of Ho ® Hy.
o {(1i") @ 7)) @ )7} + a basis of L(H, & Hy, Hy @ Ha).

/
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An Identity I

(1) @ 15)(|8) @ [3)T = 1) i @ 157 (3l.
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‘ Proof'

(1) @ 15)(13) @ ) (jv) ® [w)) =
(1l @ 15" G (v) @ Jw)) - =

(i) (7 |w)(li") ©15"))
(1) (ilv)) © (15) (Glw))
(i) (7 lw)([i") @ 157)).
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A Theorem '

L(H1 ® Hz, Ha ® Hy) = L(H1, Ha) ® L(Hs, Hy).
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(|v) @ Jw))T v.s. )T ® |w)!

e (Jv) ®|w))T : alinear transformation from H; ® Hs into C.
o [v)T® |w)' : a linear transformation from H; ® Hs into C ® C.
e O ®(C =C(C : alinear isomorphism f from C' ® C onto C

fla®p)=ap, fH(y)=71L

Then
(Jv) @ [w)T = fo(lv)! @ Jw)").
Proof.
() @ [w)T(|z) @ |y)) = ([v) @w),|z) @ |y)) = (v]x)(w]y)

({v]z) © (wly)) = F(({v] @ (w])(|z) @ [9))
o ([v)" @ [w)")(lz) @ [y)). /

= f
f

k —
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‘Adjoint and Tensor Product I
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(T®S) =Tt St

e Hi,Hy : finite-dimensional complex inner product spaces.
e {|v)},{|v)} : vectors in Hj.
o {|lw)},{|w')} : vectors in Ho.

e 7' S : linear operators on H; and on Hs, respectively.

(T ®S) ') @ |w'), [v) @ Jw))

[0") @ [w'), (T @ S)|v) @ |w)) = (V'|T|v){w’|S|w)

THo'), ) (ST[w'), [w)) = (TT]") @ ST|w'), [v) @ |w))
|

(
(
(
(T @ ST)[") @ '), |v) @ [w)).

)
)
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Inherent Properties I

e H.,Hs : finite-dimensional complex inner product spaces.

e TS : operators on H; and on Hs, respectively.

1. 7,5 are normal = 7' ® S is normal.

TS (TS =TS T®S)=(T'T)®(S7S)
= (TTHRSSH =TS (TTe8") =T S(TcS)

2. T, S are Hermitian = T'® S is Hermitian.
3. T, S5 are unitary = T'® S is unitary.

4. T, S are projectors = T'® S is a projector.
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‘ Spectral Decomposition I

e Hq,Hs : finite-dimensional complex inner product spaces.

e TS : normal operators on H; and on Hs, respectively, with

spectral decomposition

T = ZM%}(W, S = Z@\%)(sﬁj\-

e T'® S : normal operators on ‘H; ® Ho such that
(T ® S)(|v:) @ lp;)) = Tli) ® Slpj) = Aikj([¥i) @ @)

we have spectral decomposition

T®S =) ki([i) @) (i) ® o)1

\_ /
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The Trace Function'
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‘Trace Function on Matrices '

e A: an n X n complex matrix

ailxz ai2

az1 a2
A =

ani An?2

e tr(A) : the trace of matrix A

tI‘(A) — ali —|—CL22 + -

+ Qppy -
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‘Properties of Trace Function.

A, B : n X n complex matrices.

a, O : complex numbers.

Linearity : tr(aA + 6B) = a tr(A) + 3 tr(B).
Cyclicity : tr(AB) = tr(BA).

Invariance under similarity transformation : if B = MAM 1,

where M is an invertible n X n complex matrix, then

tr(B) = tr(MAM ') = tr(M~*MA) = tr(A).

/
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Trace Function on Operators.

e [’ : an operator on an n-dimensional complex vector space V.

e A : a matrix representation of T relative to a basis B of V.

e tr(7) : the trace of operator T,
tr(T) = tr(A).

e Well-defined : if B is the matrix representation of T’ relative to
another basis B’ of V, then B = MAM~! with M = [B — B/],
i.e., B is similar to A and

tr(T) = tr(B) = tr(A) = tr(T).

\_ /
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Computation of tr(7)

tr(T) = Z<¢z‘|T|¢z‘>-

1

e 7' : an operator on a finite dimensional complex inner product

space H.

e {|v;)} : an orthonormal basis of H.

\_ /
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A Useful Formula'

tr(Tv)(w|) = (w[T'|v).

e |v),|w) : vectors in a finite-dimensional complex inner product

space H.

e ' : an operator on H.
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‘ Proof'

e {|¢;)} : an orthonormal basis of H.

Then we have

tr(Tlo)(w]) = Y (@il Tlv)(wigs) = > (wlhi) (il T|v) = (w|T|v)

1 1

since

ZWQWJ = 1.

\_
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Trace Function and Tensor Product '
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‘Trace ofT®S.

tr(T'® S) =tr(T) tr(S9).

e 7' and S : linear operators on finite-dimensional vector spaces

V and W respectively.
e I'® S : linear operator on V@ W.
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e A=[T|,B=15]:

‘ Proof'

matrix representations of T', S, respectively.

e G = A® B : matrix representation of T'® S.

tr(T ® S)

= tr(G) = Zgij,ij
ij
= > aibj; =Y iy bj;
ij T

= tr(A) tr(B)
= tr(7T) tr(9).
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Partial Trace Function'

e V and W : vector spaces V and W.

e TVW . 3 linear operator on the tensor product space V @ W,

where T and TV are linear operators on V and on W,

respectively.

The partial trace of TV" over W is defined as

trw (TV7) = 3 ai TV (1)),

which is an operator on V.

\_

~




99

-~

o 1Ljjy:

e Unique representation : with TV

try (T7Y)

‘ Well-defined '

a basis of L(W) (=L(W,W)).
= > ;s Bijjr Ejjr, we have

=) <S: Oéz'ﬁz'jj’Tz'V> ® L.

)

JJ

TVW

1>

ZQZTV tr(T)V) =

Z%TV tr ZﬁZJJ’EJJ
= Y (Yazﬁzj]’TV> tr(Ejj')

37’




tryy (;j (;joziﬁm T, ) ® Ej; )
ITTERNE
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tr(TVW) = tr(try (TVW))

e VV and W : vector spaces V and W.

TVW . a linear operator on the tensor product space V@ W

VWV = a7V 0T,

where TV and T}V are linear operators on V and on W,

respectively.

We have

tr(TVY) = N o (T TV =Dy te(T)) (1Y)

= tr (Z o T tr(TZ-W)> = tr (try (TV")) .

~
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‘Trace as an Inner Product .
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/ Hilbert-Schmidt or Trace Inner Product ' \

e H : a finite-dimensional complex inner product space.

e L(H) : the vector space of all linear operators on H.

e (T,9) = tr(T7S) : the Hilbert-Schmidt or trace inner product
of T and S in L(H).
— (T,T) =tr(TTT) > 0 : T'T is a positive operator.
x (T,T) =tr(TTT) = 0 <= all sigular values of T' are zeros
<= rank(7T)=0 <= T = 0.
— (T, S) = tr(T18) = tr((STT)) = tr(STT) = (S, T) :
Hermitian symmetry.
— (T, 181 + a2S2) = tr(TT (a1 S1 + a2S3)) =
aq tr(T,S1) + ag tr(T,S2) = (T, S1) + az(T, S2) : linearity.

\o L(H) : a complex inner product space with trace inner product./
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LH(H) — the Set of all Hermitian Operators on H

‘H : a finite-dimensional complex inner product space.
LY (H) : a real vector space.

tr(T'S) : the trace inner product of T' and S in L (H).

LY (H) : a real inner product space.




G

‘ Example I

H : a two-dimensional complex inner product space.
B ={|0),|1)} : an orthonormal basis of H.

LY (H) : the real inner product space of all Hermitian
operators on H with trace inner product.

{00,04,04,0,} : the Pauli matrices, which form an
orthonormal basis of L (H).

1 0

I = [O-O]B — )
0 1
0 1

X = [Ux]B — )
1 0
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Singular Value Decomposition.
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Singular Values I

H,, Hy : finite-dimensional complex inner product spaces.

T : a linear transformation from H; to Hs.

TIT .

a positive operator on H;.

TTT = > Xi|wi) (W] : spectral decomposition

—>\7;Z

non-negative eigenvalues of T77.

— {|#;)} : an orthonormal eigenbasis of V.

oY

singular values of T




92

\_

‘The Action of T on the Eigenbasis {|¢;)} of TTTI

(Tls), Tls)) = (Gl TT|s) = Ny wbalds) = A
e {T|1;)} : orthogonal vectors in Hs.
o [ITl)l]* = A

e Number of non-zero \; = the rank of 7.
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Singular Value Decomposition of T’ I

e r : the rank of 7.
® \/Ai,...,v/ A : non-zero singular values of T

o {T|1)/v/A1,...,Tl.)/v/ A} : an orthonormal set in Hs.

e {|p;)} : an orthonormal basis of Hs with

oi) =Ty /\/A;,V 1< j<r.

T = Z VA1) (W]

~
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‘ Matrix Version '

B={|i)},B ={|j)} : orthonormal bases of H; and Hs.

A = [T|p_p : matrix representation of T' relative to the bases

B and B’.

D = [T]{p,)3—{|¢,)} - Matrix representation of T" relative to

the bases {|¢;)} and {|p;)}

D = diag(yv/\i).

M = [{|y;)} — B] : coordinate transformation, a unitary

matrix.

N = [{|¢;) — B'}] : coordinate transformation, a unitary

matrix.

/




6.

T5—5 = [{le;) = BTl 1wy — {10, 1B = {|¥i)}]

A=NDMT.




