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Unit One – A Primer of Linear Algebra

A mathematical language for beginners in quantum computing and

quantum information processing.
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Complex Inner Product Spaces

• H : a complex vector space.

• ( , ) : an inner product as a mapping from H×H to C such
that

– Non-negativity : (|v〉, |v〉) ≥ 0 for all |v〉 ∈ H and
(|v〉, |v〉) = 0 if and only if |v〉 = 0,

– Hermitian symmetry : (|v′〉, |v〉) = (|v〉, |v′〉),
– Linearity : (|v′〉, α|v1〉+ β|v2〉) = α(|v′〉, |v1〉) + β(|v〉′, |v2〉).

• Dirac notation : (|v′〉, |v〉) ≡ 〈v′|v〉.
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Matrix Representation of Linear Transformations

• H1,H2 : finite-dimensional complex inner product spaces.

• T : a linear transformation from H1 to H2.

• B = {|j〉}, C = {|i〉} : orthonormal bases of H1 and H2,

respectively.

• [aij ] = A = [T ]B,C : matrix representation of T relative to the

bases B and C
aij = 〈i|T |j〉, ∀ i, j.
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The Vector Space L(H1,H2)

• H1,H2 : finite-dimensional complex inner product spaces.

• L(H1,H2) : the complex vector space of all linear

transformations from H1 to H2.

• |v〉, |w〉 : vectors in H1 and H2, respectively.

• |w〉〈v| : outer product of |w〉 and 〈v|, which is defined as a
linear transformations from H1 to H2

(|w〉〈v|)(|v′〉)4= |w〉〈v|v′〉, ∀ |v′〉 ∈ H1.

• B = {|j〉}, C = {|i〉} : orthonormal bases of H1 and H2,

respectively.

• {|i〉〈j|} : a basis of L(H1,H2).
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For each T ∈ L(H1, H2), we have

T =
∑

ij〈i|T |j〉|i〉〈j|.
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The Dual Space H∗

• H : a finite-dimensional complex inner product space.

• H∗ = L(H, C) : the complex vector space of all linear
functional on H, called the dual space of H.

• |v〉 : a vector in H.

• 〈v| : a linear functional on H defined as

〈v|(|v′〉)4= 〈v|v′〉.

• W = {〈v| | |v〉 ∈ H} : a vector subspace of H∗.

Since dimW = dimH = dimH∗, we have H∗ =W , i.e., every linear

functional on H is of the form 〈v| for some |v〉 ∈ H.
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The Adjoint of a Linear Transformation

• H1,H2 : finite-dimensional complex inner product spaces.

• T : a linear transformation from H1 to H2.

• |w〉 : a given vector in H2.

• f(|v〉) 4= (|w〉, T |v〉) : a linear functional on H1.

• |v∗〉 : the unique vector in H1 such that

f(|v〉) = (|w〉, T |v〉) = (|v∗〉, |v〉) ∀ |v〉 ∈ H1.

For each |w〉 ∈ H2, we define

T †|w〉 = |v∗〉.

• T † : a mapping from H2 to H1, called the adjoint of T .
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T † is a Linear Transformation from H2 to H1

• |w〉, |z〉 : vectors in H2.

• α, β : complex numbers,

(T †(α|w〉+ β|z〉), |v〉) = (α|w〉+ β|z〉, T |v〉)
= α(|w〉, T |v〉) + β(|z〉, T |v〉)
= α(T †(|w〉), |v〉) + β(T †(|z〉), |v〉)
= (αT †(|w〉) + βT †(|z〉), |v〉).
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|v〉† = 〈v|

• H : a finite-dimensional complex inner product space.

• |v〉 : a vector in H which can be regarded as a linear
transformation from C to H as |v〉(α)4=α|v〉.

Since

(|v〉†|w〉, α) = (|w〉, |v〉(α)) = α(|w〉, |v〉) = ((|v〉, |w〉), α) = (〈v|w〉, α),

we have |v〉† = 〈v|.
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Properties of Adjoint

• H1,H2,H3 : finite-dimensional complex inner product spaces.

• T, S : linear transformations from H1 to H2 and from H2 to

H3, respectively.

• (ST )† = T †S† :

((ST )†|u〉, |v〉) = (|u〉, ST |v〉) = (S†|u〉, T |v〉) = (T †S†|u〉, |v〉).

• (T †)† = T :

(|w〉, T |v〉) = (T †|w〉, |v〉) = (|v〉, T †|w〉) = ((T †)†|v〉, |w〉)
= (|w〉, (T †)†|v〉).

• (T |v〉)† = 〈v|T † :

(T |v〉)†(|w〉) = (T |v〉, |w〉) = (|v〉, T †|w〉) = 〈v|T †|w〉.

1
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Special Operators1
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Normal Operators

TT † = T †T

• T : a linear operator on a finite-dimensional complex inner
product space.

1
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Spectral Decomposition of Normal Operators

T =
∑

i

λi|ψi〉〈ψi|.

• T : a normal operator on a finite-dimensional complex inner
product space H.

• {|ψi〉} : an orthonormal eigenbasis of H associated with T .

• λi : eigenvalue of T corresponding to eigenvector |ψi〉.

1
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Hermitian Operators

T = T †.

A linear operator T is Hermitian if and only if

• T is a normal operator,

• T has real eigenvalues only.

1
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Projection Operator

• H : a finite-dimensional complex inner product space space.

• W : a subspace of H.

• W⊥ : the othogonal complement of W in H.

• Othogonal decomposition : for each |v〉 ∈ H, there exist unique
|w〉 ∈W and |w⊥〉 ∈W⊥ such that

|v〉 = |w〉+ |w⊥〉.

• P : the projection of H onto W , i.e.

P (|v〉) = |w〉, ∀v ∈ V.

1
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A Necessary and Sufficient Condition

P is a projector on H if and only if

• P = P †,

• P 2 = P .

1
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Unitary Operators

U †U = UU † = I.

• Eigenvalues of a unitary operator have unit modulus.

1
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A Representation of Unitary Operators

If

• {|i〉} : an orthonormal basis of H,
• U : a unitary operator on H,
• |ψi〉 : |ψi〉 = U |i〉,
then we have

• {|ψi〉} : another orthonormal basis of H,
• U =

∑

i |ψi〉〈i|.
Also given any two orthonormal bases {|ψi〉} and {|ϕi〉} of H, the
operator

U =
∑

i

|ψi〉〈ϕi|

is unitary.

1
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Positive Operator

(|v〉, T |v〉) ≥ 0, ∀ |v〉.

Necessary and sufficient conditions are

• Normal,

• Having non-negative eigenvalues.

1
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Positive Operators T †T and TT †

• H1,H2 : finite-dimensional complex inner product spaces.

• T : a linear transformation from H1 to H2.

Proof

(|v〉, T †T |v〉) = (T |v〉, T |v〉) ≥ 0,
(|w〉, TT †|w〉) = (T †|w〉, T †|w〉) ≥ 0.

2
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Positive Operators |w〉〈w|

• |w〉 : any vector in H.

Proof

(|v〉, |w〉〈w|v〉) = 〈v|w〉〈w|v〉 = |〈v|w〉|2 ≥ 0.

2
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Positive-Definite Operator

(|v〉, T |v〉) > 0, ∀ |v〉 6= 0.

• Normal.

• Having positive eigenvalues.

2
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Functions of Normal Operators

• f(z) : complex-values function on complex numbers.

• T : a normal operator with spectral decomposition

T =
∑

i

λi |ψi〉〈ψi|.

• f(T ) is defined as

f(T ) =
∑

i

f(λi) |ψi〉〈ψi|.

• The above definition is well-defined, i.e., independent of the
choice of orthonormal basis {|ψi〉}.

2
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An Example

eθZ =





eθ 0

0 e−θ





where

Z =





1 0

0 −1



 .

2
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A Property

If T and S are two commuting normal operator on H, then

eT eS = eT+S .

2
5



'&

$%

Tensor Product2
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Tensor Product of Vector Spaces

• V and W : two complex vector spaces.

• v and w : vectors in V and W respectively.

• v ⊗w : the direct product of v and w.

• V ⊗W : the tensor product of V and W , which is the set of all

linear combinations of (finitely many) v ⊗w with v ∈ V and
w ∈W satisfying

1. (v + v′)⊗w = v ⊗w + v′ ⊗w,

2. v ⊗ (w +w′) = v ⊗w + v ⊗w′,

3. α(v ⊗w) = (αv)⊗w = v ⊗ (αw).

• ∑i αi(vi ⊗wi) : a typical element in V ⊗W , where
∑

i is a

finite sum.

2
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Tensor Product V ⊗W as a Vector Space

• zero vector 0 : 0⊗ 0 = v ⊗ 0 = 0⊗w.

– By the third property, we have

0⊗ 0 = v ⊗ 0 = 0⊗w.

– For any v ⊗w, we have

v ⊗w + v ⊗ 0 = v ⊗ (w + 0) = v ⊗w.

• −v ⊗w : additive inverse of v ⊗w

v ⊗w − v ⊗w = v ⊗ (w −w) = v ⊗ 0 = 0.

2
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Tensor Product V ⊗W in a Reduced Representation

• {j} : a basis of W .

•
∑

i αi(vi ⊗wi) =
∑

i αi(vi ⊗ (
∑

j βijj)) =
∑

j

∑

i αiβij(vi ⊗ j) =
∑

j(
∑

i αiβijvi)⊗ j =
∑

j v′j ⊗ j.

Then we have

V ⊗W = {
∑

j

vj ⊗ j | vj ∈ V },

where all but finitely many vj = 0.

2
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A Unique Representation Theorem

• V and W : complex vector spaces.

• {j} : a basis of W .

•
∑

j uj ⊗ j and
∑

j vj ⊗ j : two vectors in V ⊗W .

Then
∑

j

uj ⊗ j =
∑

j

vj ⊗ j

if and only if

uj = vj , ∀ j.

3
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Proof

• V × V × · · · × V : the direct sum of as many V ’s as j’s

V × V × · · · × V
4
= {(. . . ,vj , . . .) | vj ∈ V, all but finitely many vj = 0}.

• V × V × · · · × V : a complex vector space,
– (. . . ,vj , . . .) + (. . . ,v

′
j , . . .) = (. . . ,vj + v′j , . . .),

– α(. . . ,vj , . . .) = (. . . , αvj , . . .),

– zero element must be (. . . , 0, . . .).

3
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• V ⊗W ∼= V × V × · · · × V : a linear isomorphism f from

V ⊗W onto V × V × · · · × V ,

f(
∑

j

vj ⊗ j) = (. . . ,vj , . . .),

f−1((. . . ,vj , . . .)) =
∑

j

vj ⊗ j.

Thus,
∑

j

uj ⊗ j =
∑

j

vj ⊗ j

if and only if

(. . . ,uj , . . .) = (. . . ,vj , . . .).

3
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The Zero Element 0 of the Tensor Product V ⊗W

A direct product v ⊗w in V ⊗W is equal to the zero element 0 of

V ⊗W if and only if

v = 0 or w = 0.

3
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Proof

Suppose v ⊗w = 0 and w 6= 0. Let

w =
∑

j

βjj

where at least one βj is non-zero. Thus

0 = v ⊗w =
∑

j

βj(v ⊗ j) =
∑

j

(βjv)⊗ j

which implies that

βjv = 0

for all j by the unique representation theorem. Since at least one of

βj is non-zero, we have v = 0.

3
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Bases of Tensor Product V ⊗W

• V and W : complex vector spaces.

• B = {i} and C = {j} : bases of V and W respectively.

• B ⊗ C = {i⊗ j} : a basis of V ⊗W .

3
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Proof of Linear Independence

∑

ij

αij(i⊗ j) = 0

⇔
∑

j

(
∑

i

αiji)⊗ j = 0

⇔
∑

i

αiji = 0 ∀ j

⇔ αij = 0 ∀ i, j.

3
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Tensor Product H1 ⊗H2 as an Inner Product Space

• H1 and H2 : inner product spaces.

•
∑

i αi(|vi〉 ⊗ |wi〉) and
∑

j α
′
j(|v′j〉 ⊗ |w′j〉) : two vectors in

H1 ⊗H2.

(
∑

i αi(|vi〉 ⊗ |wi〉),
∑

j α
′
j(|v′j〉 ⊗ |w′j〉))

4
=
∑

ij α
∗
iα
′
j〈vi|v′j〉〈wi|w′j〉.

• (|v〉 ⊗ |w〉, |v′〉 ⊗ |w′〉) = 〈v|v′〉〈w|w′〉.

3
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Well-defined

•
∑

i αi(|vi〉 ⊗ |wi〉) =
∑

j(
∑

i αiβij |vi〉)⊗ |j〉.
•
∑

k α
′
k(|v′k〉 ⊗ |w′k〉) =

∑

j′(
∑

k α
′
kβ
′
kj′ |v′k〉)⊗ |j′〉.

(

∑

i

αi(|vi〉 ⊗ |wi〉),
∑

k

α′k(|v′k〉 ⊗ |w′k〉)
)

4
=

∑

ik

α∗iα
′
k〈vi|v′k〉〈wi|w′k〉 =

∑

ik

α∗iα
′
k〈vi|v′k〉

∑

jj′

β∗ijβ
′
kj′〈j|j′〉

=
∑

jj′

(

∑

i

αiβij |vi〉,
∑

k

α′kβ
′
kj′ |v′k〉

)

〈j|j′〉

4
=





∑

j

(

∑

i

αiβij |vi〉
)

⊗ |j〉,
∑

j′

(

∑

k

α′kβ
′
kj′ |v′k〉

)

⊗ |j′〉



 .

3
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A Useful Formula

• H1 and H2 : complex inner product spaces.

• {|j〉} : an orthonormal basis of H2.

•
∑

j |uj〉 ⊗ |j〉 and
∑

j |vj〉 ⊗ |j〉 : two vectors in H1 ⊗H2.

(

∑

j |uj〉 ⊗ |j〉,
∑

j |vj〉 ⊗ |j〉
)

=
∑

j〈uj |vj〉.

3
9



'&

$%

Orthonormal Bases of Tensor Product H1 ⊗H2

• H1 and H2 : complex inner product spaces.

• B = {|i〉} and C = {|j〉} : orthonormal bases of H1 and H2,

respectively.

• B ⊗ C = {|i〉 ⊗ |j〉} : an orthonormal basis of H1 ⊗H2.

4
0



'&

$%

Direct Product of Linear Transformations

• V, V ′,W,W ′ : complex vector spaces.

• L(V, V ′) and L(W,W ′) : the vector space of all linear

transformations from V to V ′ and from W to W ′, respectively.

• T and S : linear transformations in L(V, V ′) and in L(W,W ′),

respectively.

•
∑

i αi(vi ⊗wi) : a vector in V
⊗

W .

• T
⊗

S: the direct product of T and S, which is a linear

transformation from V ⊗W to V ′ ⊗W ′,

(T ⊗ S)(
∑

i

αi(vi ⊗wi))
4
=
∑

i

αi(Tvi ⊗ Swi).

– Well-defined.

4
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Matrix Version

• B = {i},B′ = {i′}, C = {j}, C′ = {j′} : bases of V, V ′,W,W ′,

respectively.

• B ⊗ C,B′ ⊗ C′ : bases of V ⊗W,V ′ ⊗W ′, respectively.

• A = [T ]B→B′ and B = [S]C→C′ : matrix representations of T

and S, respectively.

• G = [T ⊗ S]B⊗C→B′⊗C′ : matrix representations of T ⊗ S.

gi′j′,ij = ai′,ibj′,j .

• G 4
= A⊗B.

4
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Proof

T ⊗ S(i⊗ j) =
∑

i′j′

gi′j′,ij(i
′ ⊗ j′)

and

T ⊗ S(i⊗ j) = T (i)⊗ S(j)

=

(

∑

i′

ai′,ii
′

)

⊗





∑

j′

bj′,jj
′





=
∑

i′j′

ai′,ibj′,j(i
′ ⊗ j′).

4
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Tensor Product of L(V, V ′) and L(W,W ′)

L(V, V ′)⊗ L(W,W ′), called the tensor product of L(V, V ′) and

L(W,W ′), is the set of all linear combinations of T ⊗ S,
T ∈ L(V, V ′) and S ∈ L(W,W ′), which satisfies

1. (T + T ′)⊗ S = T ⊗ S + T ′ ⊗ S,

2. T ⊗ (S + S′) = T ⊗ S + T ⊗ S′,

3. α(T ⊗ S) = (αT )⊗ S = T ⊗ (αS).

The tensor product L(V, V ′)⊗ L(W,W ′) is a vector space.

4
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Bases of Tensor Product space L(H1,H2)⊗ L(H3,H4)

• H1,H2,H3,H4 : finite-dimensional complex inner product

spaces.

• {|i〉}, {|i′〉}, {|j〉}, {|j′〉} : orthonormal bases of H1,H2,H3,H4,

respectively.

• {|i′〉〈i|} : a basis of L(H1,H2).

• {|j′〉〈j|} : a basis of L(H3,H4).

• {|i′〉〈i| ⊗ |j′〉〈j|} : a basis of L(H1,H2)⊗ L(H3,H4).

4
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Bases of Vector Space L(H1 ⊗H3,H2 ⊗H4)

• H1,H2,H3,H4 : finite-dimensional complex inner product

spaces.

• {|i〉}, {|i′〉}, {|j〉}, {|j′〉} : orthonormal bases of H1,H2,H3,H4,

respectively.

• {|i〉 ⊗ |j〉} : an orthonormal basis of H1 ⊗H3.

• {|i′〉 ⊗ |j′〉} : an orthonormal basis of H2 ⊗H4.

• {(|i′〉 ⊗ |j′〉)(|i〉 ⊗ |j〉)†} : a basis of L(H1 ⊗H3,H2 ⊗H4).

4
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An Identity

(|i′〉 ⊗ |j′〉)(|i〉 ⊗ |j〉)† = |i′〉〈i| ⊗ |j′〉〈j|.

4
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Proof

(|i′〉 ⊗ |j′〉)(|i〉 ⊗ |j〉)†(|v〉 ⊗ |w〉) = 〈i|v〉〈j|w〉(|i′〉 ⊗ |j′〉)
(|i′〉〈i| ⊗ |j′〉〈j|)(|v〉 ⊗ |w〉) = (|i′〉〈i|v〉)⊗ (|j′〉〈j|w〉)

= 〈i|v〉〈j|w〉(|i′〉 ⊗ |j′〉).

4
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A Theorem

L(H1 ⊗H3,H2 ⊗H4) = L(H1,H2)⊗ L(H3,H4).

4
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(|v〉 ⊗ |w〉)† v.s. |v〉† ⊗ |w〉†

• (|v〉 ⊗ |w〉)† : a linear transformation from H1 ⊗H2 into C.

• |v〉† ⊗ |w〉† : a linear transformation from H1 ⊗H2 into C ⊗ C.
• C ⊗ C ∼= C : a linear isomorphism f from C ⊗ C onto C

f(α⊗ β) = αβ, f−1(γ) = γ ⊗ 1.

Then

(|v〉 ⊗ |w〉)† = f ◦ (|v〉† ⊗ |w〉†).
Proof.

(|v〉 ⊗ |w〉)†(|x〉 ⊗ |y〉) = (|v〉 ⊗ |w〉, |x〉 ⊗ |y〉) = 〈v|x〉〈w|y〉
= f(〈v|x〉 ⊗ 〈w|y〉) = f((〈v| ⊗ 〈w|)(|x〉 ⊗ |y〉))
= f ◦ (|v〉† ⊗ |w〉†)(|x〉 ⊗ |y〉).

5
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Adjoint and Tensor Product5
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(T ⊗ S)† = T † ⊗ S†

• H1,H2 : finite-dimensional complex inner product spaces.

• {|v〉}, {|v′〉} : vectors in H1.

• {|w〉}, {|w′〉} : vectors in H2.

• T, S : linear operators on H1 and on H2, respectively.

((T ⊗ S)†|v′〉 ⊗ |w′〉, |v〉 ⊗ |w〉)
= (|v′〉 ⊗ |w′〉, (T ⊗ S)|v〉 ⊗ |w〉) = 〈v′|T |v〉〈w′|S|w〉
= (T †|v′〉, |v〉)(S†|w′〉, |w〉) = (T †|v′〉 ⊗ S†|w′〉, |v〉 ⊗ |w〉)
= ((T † ⊗ S†)|v′〉 ⊗ |w′〉, |v〉 ⊗ |w〉).

5
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Inherent Properties

• H1,H2 : finite-dimensional complex inner product spaces.

• T, S : operators on H1 and on H2, respectively.

1. T, S are normal ⇒ T ⊗ S is normal.

(T ⊗ S)†(T ⊗ S) = (T † ⊗ S†)(T ⊗ S) = (T †T )⊗ (S†S)
= (TT †)⊗ (SS†) = (T ⊗ S)(T † ⊗ S†) = (T ⊗ S)(T ⊗ S)†.

2. T, S are Hermitian ⇒ T ⊗ S is Hermitian.

3. T, S are unitary ⇒ T ⊗ S is unitary.

4. T, S are projectors ⇒ T ⊗ S is a projector.
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Spectral Decomposition

• H1,H2 : finite-dimensional complex inner product spaces.

• T, S : normal operators on H1 and on H2, respectively, with

spectral decomposition

T =
∑

i

λi|ψi〉〈ψi|, S =
∑

j

κj |ϕj〉〈ϕj |.

• T ⊗ S : normal operators on H1 ⊗H2 such that

(T ⊗ S)(|ψi〉 ⊗ |ϕj〉) = T |ψi〉 ⊗ S|ϕj〉 = λiκj(|ψi〉 ⊗ |ϕj〉).

we have spectral decomposition

T ⊗ S =
∑

ij λiκj(|ψi〉 ⊗ |ϕj〉)(|ψi〉 ⊗ |ϕj〉)†.

5
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The Trace Function5
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Trace Function on Matrices

• A : an n× n complex matrix

A =

















a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

















.

• tr(A) : the trace of matrix A

tr(A) = a11 + a22 + · · ·+ ann.

5
6



'&

$%

Properties of Trace Function

• A, B : n× n complex matrices.

• α, β : complex numbers.

• Linearity : tr(αA+ βB) = α tr(A) + β tr(B).

• Cyclicity : tr(AB) = tr(BA).

• Invariance under similarity transformation : if B =MAM−1,

where M is an invertible n× n complex matrix, then

tr(B) = tr(MAM−1) = tr(M−1MA) = tr(A).

5
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Trace Function on Operators

• T : an operator on an n-dimensional complex vector space V .

• A : a matrix representation of T relative to a basis B of V .

• tr(T ) : the trace of operator T ,

tr(T ) ≡ tr(A).

• Well-defined : if B is the matrix representation of T relative to
another basis B′ of V , then B =MAM−1 with M = [B → B′],
i.e., B is similar to A and

tr(T ) ≡ tr(B) = tr(A) ≡ tr(T ).

5
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Computation of tr(T )

tr(T ) =
∑

i

〈ψi|T |ψi〉.

• T : an operator on a finite dimensional complex inner product
space H.

• {|ψi〉} : an orthonormal basis of H.

5
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A Useful Formula

tr(T |v〉〈w|) = 〈w|T |v〉.

• |v〉, |w〉 : vectors in a finite-dimensional complex inner product
space H.

• T : an operator on H.

6
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Proof

• {|ψi〉} : an orthonormal basis of H.

Then we have

tr(T |v〉〈w|) =
∑

i

〈ψi|T |v〉〈w|ψi〉 =
∑

i

〈w|ψi〉〈ψi|T |v〉 = 〈w|T |v〉

since
∑

i

|ψi〉〈ψi| = I.

6
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Trace Function and Tensor Product6
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Trace of T ⊗ S

tr(T ⊗ S) = tr(T ) tr(S).

• T and S : linear operators on finite-dimensional vector spaces
V and W respectively.

• T ⊗ S : linear operator on V ⊗W .

6
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Proof

• A = [T ], B = [S] : matrix representations of T, S, respectively.

• G = A⊗B : matrix representation of T ⊗ S.

tr(T ⊗ S) = tr(G) =
∑

ij

gij,ij

=
∑

ij

aiibjj =
∑

i

aii
∑

jj

bjj

= tr(A) tr(B)

= tr(T ) tr(S).
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Partial Trace Function

• V and W : vector spaces V and W .

• TVW : a linear operator on the tensor product space V ⊗W ,

TVW =
∑

i

αiT
V
i ⊗ TWi ,

where TVi and T
W
i are linear operators on V and on W ,

respectively.

The partial trace of T VW over W is defined as

trW (T
VW )

4
=
∑

i

αiT
V
i tr(T

W
i ),

which is an operator on V .

6
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Well-defined

• {Ejj′} : a basis of L(W ) (=L(W,W )).

• Unique representation : with TWi =
∑

jj′ βijj′Ejj′ , we have

TVW =
∑

jj′

(

∑

i

αiβijj′T
V
i

)

⊗ Ejj′ .

trW (T
VW )

4
=

∑

i

αiT
V
i tr(T

W
i ) =

∑

i

αiT
V
i tr





∑

jj′

βijj′Ejj′





=
∑

jj′

(

∑

i

αiβijj′T
V
i

)

tr(Ejj′)

6
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4
= trW





∑

jj′

(

∑

i

αiβijj′T
V
i

)

⊗ Ejj′



 .6
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tr(TVW ) = tr(trW (T
VW ))

• V and W : vector spaces V and W .

• TVW : a linear operator on the tensor product space V ⊗W

TVW =
∑

i

αiT
V
i ⊗ TWi ,

where TVi and T
W
i are linear operators on V and on W ,

respectively.

We have

tr(T VW ) =
∑

i

αi tr(T
V
i ⊗ TWi ) =

∑

i

αi tr(T
V
i ) tr(T

W
i )

= tr

(

∑

i

αiT
V
i tr(T

W
i )

)

= tr
(

trW (T
VW )

)

.

6
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Trace as an Inner Product6
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Hilbert-Schmidt or Trace Inner Product

• H : a finite-dimensional complex inner product space.
• L(H) : the vector space of all linear operators on H.

• (T, S) 4= tr(T †S) : the Hilbert-Schmidt or trace inner product

of T and S in L(H).
– (T, T ) = tr(T †T ) ≥ 0 : T †T is a positive operator.
∗ (T, T ) = tr(T †T ) = 0 ⇐⇒ all sigular values of T are zeros

⇐⇒ rank(T )=0 ⇐⇒ T = 0.

– (T, S) = tr(T †S) = tr((S†T )†) = tr(S†T ) = (S, T ) :

Hermitian symmetry.

– (T, α1S1 + α2S2) = tr(T
†(α1S1 + α2S2)) =

α1 tr(T, S1) + α2 tr(T, S2) = α(T, S1) + α2(T, S2) : linearity.

• L(H) : a complex inner product space with trace inner product.

7
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LH(H) – the Set of all Hermitian Operators on H

• H : a finite-dimensional complex inner product space.

• LH(H) : a real vector space.

• tr(TS) : the trace inner product of T and S in LH(H).

• LH(H) : a real inner product space.

7
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Example

• H : a two-dimensional complex inner product space.

• B = {|0〉, |1〉} : an orthonormal basis of H.

• LH(H) : the real inner product space of all Hermitian
operators on H with trace inner product.

• {σ0, σx, σy, σz} : the Pauli matrices, which form an
orthonormal basis of LH(H).

I = [σ0]B =





1 0

0 1



 ,

X = [σx]B =





0 1

1 0



 ,
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Y = [σy]B =





0 −i
i 0



 ,

Z = [σz]B =





1 0

0 −1



 .

7
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Singular Value Decomposition7
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Singular Values

• H1, H2 : finite-dimensional complex inner product spaces.

• T : a linear transformation from H1 to H2.

• T †T : a positive operator on H1.

• T †T =∑i λi|ψi〉〈ψi| : spectral decomposition
– λi : non-negative eigenvalues of T

†T .

– {|ψi〉} : an orthonormal eigenbasis of V .

•
√
λi : singular values of T .

7
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The Action of T on the Eigenbasis {|ψi〉} of T †T

(T |ψi〉, T |ψj〉) = 〈ψi|T †T |ψj〉 = λj〈ψi|ψj〉 = λjδij .

• {T |ψi〉} : orthogonal vectors in H2.

• ||T |ψi〉||2 = λi.

• Number of non-zero λi = the rank of T .

7
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Singular Value Decomposition of T

• r : the rank of T .

•
√
λ1, . . . ,

√
λr : non-zero singular values of T .

• {T |ψ1〉/
√
λ1, . . . , T |ψr〉/

√
λr} : an orthonormal set in H2.

• {|ϕj〉} : an orthonormal basis of H2 with

|ϕj〉 = T |ψj〉/
√

λj , ∀ 1 ≤ j ≤ r.

T =

r
∑

j=1

√

λj |ϕj〉〈ψj |.

7
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Matrix Version

• B = {|i〉},B′ = {|j〉} : orthonormal bases of H1 and H2.

• A = [T ]B→B′ : matrix representation of T relative to the bases

B and B′.

• D = [T ]{|ψi〉}→{|ϕj〉} : matrix representation of T relative to

the bases {|ψi〉} and {|ϕj〉}

D = diag(
√

λi).

• M = [{|ψi〉} → B] : coordinate transformation, a unitary
matrix.

• N = [{|ϕj〉 → B′}] : coordinate transformation, a unitary
matrix.

7
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[T ]B→B′ = [{|ϕj〉 → B′}][T ]{|ψi〉}→{|ϕj〉}[B → {|ψi〉}]

A = NDM †.

7
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