

EE 64100 Homework Assignment #2

Spring Semester, 2006
Due Date: March 28, 2006

We let $\mathcal{H}, \mathcal{H}_1, \mathcal{H}_2$ be finite-dimensional complex inner product spaces.

1. (a) Exercise 2.27 on Page 74 of the textbook.
(b) Exercise 2.33 on Page 74 of the textbook.
2. Let \mathcal{H} be a Hilbert space of dimension n and $L(\mathcal{H})$ the space of all linear operators on \mathcal{H} . Define a complex-valued function (\cdot, \cdot) on $L(\mathcal{H}) \times L(\mathcal{H})$

$$(T, S) \triangleq \text{tr}(A^\dagger S).$$

Please show that

- (a) (\cdot, \cdot) is an inner product on $L(\mathcal{H})$. Thus $L(\mathcal{H})$ is an Hilbert space with this trace inner product. What is the dimension of $L(\mathcal{H})$?
- (b) Find an orthonormal basis of Hermitian operators for the Hilbert space $L(\mathcal{H})$.
- (c) Let $L^H(\mathcal{H})$ be the set of all Hermitian operators on \mathcal{H} . Please show that $L^H(\mathcal{H})$ is a real inner product space with trace inner product $(T, S) = \text{tr}(TS)$ for any two Hermitian operators T, S in $L^H(\mathcal{H})$. What is the dimension of $L^H(\mathcal{H})$? Find an orthonormal basis of $L^H(\mathcal{H})$.
3. (Polar decomposition) Let T be a linear operator on a vector space V . Please show that there exist unitary operator U and positive operators J and K such that

$$T = UJ = KU.$$

Are the two positive operators J, K unique ? Why and if yes, what are they? Is the unitary operator unique ? Why and if not, when is it unique? (Please refer to page 78.)

4. Please show that if $\mathcal{B} = \{|i\rangle\}$ and $\mathcal{C} = \{|j\rangle\}$ are orthonormal bases of \mathcal{H}_1 and \mathcal{H}_2 , respectively, then $\mathcal{B} \otimes \mathcal{C} = \{|i\rangle \otimes |j\rangle\}$ is an orthonormal basis of the tensor product space $\mathcal{H}_1 \otimes \mathcal{H}_2$.
5. Please show that the trace function tr on $L(\mathcal{H})$ is
 - (a) Linear : $\text{tr}(\alpha T + \beta S) = \alpha \text{tr}(T) + \beta \text{tr}(S)$ for all complex numbers α, β and for all operators T, S in $L(\mathcal{H})$.
 - (b) Cyclic : $\text{tr}(TS) = \text{tr}(ST)$ for all operators T, S .

6. (a) Let $|\psi\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$ be a state in \mathcal{H} of two dimension. Please write out $|\psi\rangle \otimes |\psi\rangle$ and $|\psi\rangle \otimes |\psi\rangle \otimes |\psi\rangle$ explicitly in terms of a basis of $\mathcal{H} \otimes \mathcal{H}$ and a basis of $\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}$, respectively.

(b) Please determine if the state $|\varphi\rangle = (|000\rangle + |111\rangle)/\sqrt{2}$ is an entangled state or not.

(c) Please determine if the density operator ρ is a pure state or not

$$\rho = \begin{bmatrix} 1/2 & (-1-i)/4 \\ (-1+i)/4 & 1/2 \end{bmatrix}.$$

(d) Please find the square root and logarithm of the linear operator $\rho = 2|0\rangle\langle 0| + (1+i)|0\rangle\langle 1| + (1-i)|1\rangle\langle 0| + 2|1\rangle\langle 1|$ on \mathcal{H} .

7. Let $\sigma_1, \sigma_2, \sigma_3$ be Pauli operators on a two-dimensional Hilbert space \mathcal{H} with matrix representation with respect to an orthonormal basis $|0\rangle, |1\rangle\}$ of \mathcal{H} as follows:

$$\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

(a) Please show that for any real number θ , we have

$$\exp(i\theta\vec{v} \cdot \vec{\sigma}) = \cos\theta I + i\sin\theta\vec{v} \cdot \vec{\sigma},$$

where $\vec{v} \cdot \vec{\sigma} = v_1\sigma_1 + v_2\sigma_2 + v_3\sigma_3$.

(b) Please show that $\vec{v} \cdot \vec{\sigma}$ has eigenvalues ± 1 , and that the projectors onto the corresponding eigenspaces are given by $P_{\pm} = (I \pm \vec{v} \cdot \vec{\sigma})/2$.

(c) For the quantum measurement corresponding to the observable $\vec{v} \cdot \vec{\sigma}$, please calculate the probability of obtaining the result $+1$, given that the pre-measurement state is $|0\rangle$. What is the post-measurement state if $+1$ is obtained?

(d) Please show that the commutators are $[\sigma_j, \sigma_k] = 2i\sum_{l=1}^3 \epsilon_{jkl}\sigma_l$, where $\epsilon_{jkl} = 0$ except for $\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = 1$ and $\epsilon_{132} = \epsilon_{213} = \epsilon_{321} = -1$.

(e) Please show that the anti-commutators $\{\sigma_i, \sigma_j\} = 0$ for all $i \neq j$.

8. (a) Exercise 2.57 on Page 86 of the textbook.

(b) Exercise 2.58 on Page 88 of the textbook.

9. (a) Consider a two-qubit system AB with state

$$|\psi\rangle = \frac{|00\rangle + |10\rangle + |11\rangle}{\sqrt{3}}.$$

Please find the states ρ^A and ρ^B of qubits A and B , respectively.

(b) Consider a three-qubit system ABC with state

$$|\psi\rangle = \frac{|000\rangle + |111\rangle}{\sqrt{2}}.$$

Please find the states ρ^A , ρ^B and ρ^C of qubits A , B and C , respectively.

10. (a) Exercise 2.61 on Page 90 of the textbook.
(b) Exercise 2.63 on Page 92 of the textbook.