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1 Three Axioms for a Determinant Function

Let d be a scalar-valued function on the space Mn×n of all n×n matrices. Let A1, A2, . . . , An

be the n rows of an n×n matrix A. We will denote the value d(A) of A under the function d
as d(A) = d(A1, A2, . . . , An), indicating that d is a scalar-valued function of n n-dimensional
row vectors A1, A2, . . . , An. The scalar-valued function d is called a determinant function of
order n if it satisfies the following three axioms:

Axiom 1. Homogeneity in each row . If matrix B is obtained from matrix A by multiplying
one row, says the ith row, of A by a scalar α, then d(B) = α d(A), i.e.,

d(A1, . . . , αAi, . . . , An) = α d(A1, . . . , Ai, . . . , An).

Axiom 2. Invariance under row addition. If matrix B is obtained from matrix A by adding
one row, says the kth row, of A to another row, says the ith row, of A, then d(B) =
d(A), i.e.,

d(A1, . . . , Ai + Ak, . . . , Ak, . . . , An) = d(A1, . . . , Ai, . . . , Ak, . . . , An).

Axiom 3. The determinant of the identity matrix is one.

d(In×n) = d(e1, e2, . . . , en) = 1.

The primary purpose of this supplement is to show that there exists such a determinant
function d of order n and it is unique. Before being able to do so, we will derive important
properties of such a determinant function d if exists.
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Theorem 1 If some row of matrix A is the zero vector, then d(A) = 0.

Proof. Without loss of generality, assume the ith row Ai of A is the zero vector. Then

d(A) = d(. . . , Ai−1, 0, Ai+1, . . .) = d(. . . , Ai−1, (−1)0, Ai+1, . . .)

= (−1)d(. . . , Ai−1, 0, Ai+1, . . .) = (−1)d(A),

where Axiom 1 is applied to the third equality. Thus we must have d(A) = 0. 2

Theorem 2 If matrix B is obtained from matrix A by adding a scalar multiple of one row,
says the kth row, of A to another row, says the ith row, of A, then d(B) = d(A), i.e.,

d(A1, . . . , Ai + αAk, . . . , Ak, . . . , An) = d(A1, . . . , Ai, . . . , Ak, . . . , An)

for any scalar α.

Proof. It is trivial if α = 0. Assume that α 6= 0. Then we have

d(A1, . . . , Ai, . . . , Ak, . . . , An) =
1

α
d(A1, . . . , Ai, . . . , αAk, . . . , An)

=
1

α
d(A1, . . . , Ai + αAk, . . . , αAk, . . . , An)

=
(

α

α

)
d(A1, . . . , Ai + αAk, . . . , Ak, . . . , An),

where Axiom 1 is applied to the 1st and the 3rd equalities and Axiom 2 is applied to the
2nd equality. This completes the proof. 2

Theorem 3 If matrix B is obtained from matrix A by interchanging two rows of A, says
the ith and the kth rows with i 6= k, then d(B) = (−1)d(A), i.e.,

d(A1, . . . , Ak, . . . , Ai, . . . , An) = (−1)d(A1, . . . , Ai, . . . , Ak, . . . , An).

Proof. We compute

d(A1, . . . , Ai, . . . , Ak, . . . , An) = d(A1, . . . , Ai + Ak, . . . , Ak, . . . , An)

= d(A1, . . . , Ai + Ak, . . . , Ak + (−1)(Ai + Ak), . . . , An)

= d(A1, . . . , Ai + Ak, . . . , (−1)Ai, . . . , An)

= d(A1, . . . , Ai + Ak + (−1)Ai, . . . , (−1)Ai, . . . , An)

= d(A1, . . . , Ak, . . . , (−1)Ai, . . . , An)

= (−1)d(A1, . . . , Ak, . . . , Ai, . . . , An),

where Axiom 1 is applied to the last equality, Axiom 2 is applied to the 1st and 4th
equality, and Theorem 2 is applied to the 2nd equality. 2

Theorem 4 If two rows of matrix A are equal, then d(A) = 0.

Proof. Since if we switch the two equal rows of A, the resulted matrix remains the same
as A but the determinant value must change sign by the previous theorem, we must have
d(A) = 0. 2

Note that Theorems 1–4 are consequences of Axioms 1 and 2 and are independent of Axiom
3.
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2 Gauss-Jordan Process and the Uniqueness of Deter-

minant Functions

In this section, we will show that a determinant function d of order n is unique if exists by
considering the effect of performing elementary row operations on an n×n matrix. Recall that
we perform three types of elementary row operations in Gauss-Jordan elimination process:

1. Interchanging two rows.

2. Multiplying a row by a nonzero scalar.

3. Adding to one row a scalar multiple of another.

By Theorem 3, a type 1 row operation will produce a sign change in the determinant of a
square matrix. By Axiom 1, a type 2 row operation will leave the determinant of a square
matrix unchanged and so does a type 3 row operation by Theorem 2.

Consider an upper triangular matrix

U =


u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn

 .

If unn is zero, then the last row of U is the zero vector and by Theorem 1, d(U) = 0 =
u11u22 · · ·unn. If unn 6= 0, then by applying at most (n− 1) type 3 row operations, we have

d(U) = d(


u11 u12 · · · 0
0 u22 · · · 0
...

...
. . .

...
0 0 · · · unn

).

If un−1,n−1 = 0, then again we have d(U) = 0 = u11u22 · · ·unn. If not, then again by applying
at most (n− 2) type 3 row operations, we have

d(U) = d(



u11 u12 · · · 0 0
0 u22 · · · 0 0
...

...
. . .

...
...

0 0 · · · un−1,n−1 0
0 0 · · · 0 unn

).

Continuing this process, we either have some uii = 0 such that d(U) = 0 = u11u22 · · ·unn or
have all uii 6= 0 such that

d(U) = d(


u11 0 · · · 0
0 u22 · · · 0
...

...
. . .

...
0 0 · · · unn

) = (u11u22 · · ·unn) d(In×n). (1)
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In general, an n × n matrix A can be transformed to an upper triangular matrix U by
applying a sequence of elementary row operations. If there are p row exchanges and q scalar
multiplications by nonzero scalars c1, c2, . . . , cq included in the sequence, then we have

d(U) = (−1)p(c1c2 · · · cq)d(A),

i.e.,

d(A) = (−1)p(c1c2 · · · cq)
−1d(U) = (−1)p(c1c2 · · · cq)

−1(u11u22 · · ·unn) d(In×n), (2)

by (1). Since Theorems 2 and 3 depend only on Axioms 1 and 2 and are independent of
Axiom 3, (2) is obtained from Axioms 1 and 2 and is independent of Axiom 3. Thus we
conclude that if f is a scalar-valued function of n × n matrices satisfying Axioms 1 and 2,
then we must have

f(A) = αf(In×n), (3)

where the scalar α depends on the matrix A (and probably depends on the Gauss-Jordan
process proceeded as you might conceive). The following lemma gives a further characteri-
zation of (3) if there exists a determinant function d of order n (which in turn shows that
the scalar α in (3) depends only on the matrix A and is independent of the Gauss-Jordan
process proceeded).

Lemma 5 If f is another scalar-valued function on the space Mn×n of all n × n matrices
satisfying Axioms 1 and 2, then we have

f(A) = d(A)f(In×n)

for all A ∈ Mn×n.

Proof. Define a scalar-valued function on the space Mn×n as

g(A) = f(A)− d(A)f(In×n).

It is easy to see that g satisfies both Axioms 1 and 2, but not Axiom 3. In fact, we have

g(In×n) = f(In×n)− d(In×n)f(In×n) = f(In×n)− f(In×n) = 0,

since d(In×n) = 1 by Axiom 3. But from (3), we have

g(A) = αg(In×n) = 0

for all A. This completes the proof. 2

Now by (1) and Axiom 3, if d is a determinant function of order n, then

d(U) = u11u22 · · ·unn

for any upper triangular matrix U with diagonal entries u11, u22, · · · , unn. Note that the
value d(U) is invariant for any determinant function d of order n. In fact, this is true for
any n× n matrix A, as stated in the following uniqueness theorem.
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Theorem 6 [Uniqueness Theorem] If f is another scalar-valued function on the space Mn×n

of all n× n matrices satisfying all the three axioms, then we have

f(A) = d(A) ∀ A ∈ Mn×n.

Proof. By the above lemma, we have

f(A) = d(A)f(In×n).

By Axiom 3, we have f(In×n) = 1 and thus f(A) = d(A). 2

Although the above theorem states that a determinant function d is unique if exists, we
do not settle down the existence question yet. But for a 1×1 matrix A = [a11], the mapping

d(A) = a11

satisfies the three axioms and is the unique determinant function of order 1. It is clear that

d is a linear function of the single row vector of A. And for a 2× 2 matrix A =

[
a11 a12

a21 a22

]
,

it is easy to check that the following definition

d(A) = a11a22 − a12a21

satisfies the three axioms and thus gives the unique determinant function of order 2. When
we regard the determinant function d of order 2 as a scalar function of two 2-dimensional
row vectors, we have the following additive property in each row:

d(A1 + A′
1, A2) = (a11 + a′11)a22 − (a12 + a′12)a21 = (a11a22 − a12a21) + (a′11a22 − a′12a21)

= d(A1, A2) + d(A′
1, A2)

d(A1, A2 + A′
2) = a11(a22 + a′22)− a12(a21 + a′21) = (a11a22 − a12a21) + (a11a

′
22 − a12a

′
21)

= d(A1, A2) + d(A1, A
′
2).

Together with the homogeneity axiom in each row, we have

d(αA1 + βA′
1, A2) = αd(A1, A2) + βd(A′

1, A2)

d(A1, αA2 + βA′
2) = αd(A1, A2) + βd(A1, A

′
2),

for any scalars α, β, which says that d is a linear function of one row when the other row is
held fixed. We call d to be 2-linear. In the next section, we will show that if a determinant
function d of order (n − 1) exists and is (n − 1)-linear, then a determinant function d1 of
order n also exists and is n-linear. Thus by induction, there is a unique determinant function
d of order n for every n and d is n-linear.

1While we have a little bit abused the notation, we are able to distinguish different determinant function
d for different order n in the context.
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3 Multilinearity and the Existence of a Determinant

Function of Order n

Assume that d is a determinant function of order n− 1 and is (n− 1)-linear. Let Aij be the
(n−1)× (n−1) matrix obtained from an n×n matrix A by deleting the ith row and the jth
column of A. This submatrix Aij of A is called the i, j minor of A. For each j, 1 ≤ j ≤ n,
consider the following scalar-valued function Ej as

Ej(A) =
n∑

i=1

(−1)i+jaijd(Aij), ∀ A ∈ Mn×n.

Let B be the matrix obtained from matrix A by multiplying the kth row Ak of A by a
scalar α. Then we have

Ej(B) = Ej(A1, . . . , αAk, . . . , An) =
n∑

i=1

(−1)i+jbijd(Bij)

= (−1)k+j(αakj)d(Akj) +
n∑

i=1

i6=k

(−1)i+jaij(αd(Aij))

= α
n∑

i=1

(−1)i+jaijd(Aij) = αEj(A1, . . . , Ak, . . . , An) = αEj(A),

where (1) the k, j minor Bkj of B is the same as the k, j minor Akj of A and (2) for all
1 ≤ i ≤ n, i 6= k, the i, j minor Bij of B is obtained by multiplying the kth row or (k− 1)th
row (i > k or i < k) of the i, j minor Aij of A by scalar α. Thus the function Ej satisfies
Axiom 1.

Now let B be the matrix obtained from matrix A by adding the lth row to the kth row
of A. Then we have

Ej(B) = Ej(A1, . . . , Ak + Al, . . . , Al, . . . , An) =
n∑

i=1

(−1)i+jbijd(Bij)

= (−1)k+j(akj + alj)d(Akj) + (−1)l+jalj(d(Alj) + d(Âlj)) +
n∑

i=1

i6=k,l

(−1)i+jaijd(Aij)

= (−1)k+jaljd(Akj) + (−1)l+j+|k−l|−1aljd(Akj) +
n∑

i=1

(−1)i+jaijd(Aij)

= Ej(A1, . . . , Ak, . . . , Al, . . . , An) = Ej(A),

where (1) the k, j minor Bkj of B is the same as the k, j minor Akj of A, (2) the l, j minor

Blj of B is obtained by adding the shortened (n− 1)-dimensional row vector A
(j)
l (obtained

from the lth row vector Al of A by removing its jth component) to the shortened (n − 1)-

dimensional row vector A
(j)
k of the l, j minor Alj of A and then from the (n − 1)-linearity
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of d, d(Blj) = d(Alj) + d(Âlj) with Âlj being the matrix obtained from Alj by replacing the

shortened row vector A
(j)
k with the shortened row vector A

(j)
l , and (3) for all 1 ≤ i ≤ n,

i 6= k, l, the i, j minor Bij of B is obtained by adding the shortened row vector A
(j)
l of the

i, j minor Aij of A to the shortened row A
(j)
k of Aij. Note that matrix Âlj can be obtained

from the k, j minor Akj of A by exchanging the shortened row vector A
(j)
l of Akj with the

adjacent row vector |k− l|− 1 times and then d(Âlj) = (−1)|k−l|−1d(Akj). Thus the function
Ej satisfies Axiom 2.

For A = In×n, we have

Ej(In×n) = (−1)j+jd((In×n)jj) = d(I(n−1)×(n−1)) = 1,

which says that Ej satisfies Axiom 3. Then by Theorem 6, Ej is the unique determinant
function of order n, also denoted as d, and

d(A) =
n∑

i=1

(−1)i+jaijd(Aij), ∀ A ∈ Mn×n, (4)

for any j, 1 ≤ j ≤ n. Now, for each k, 1 ≤ k ≤ n, we have from in (4)

d(A1, . . . , Ak + A′
k, . . . , An)

= (−1)k+j(akj + a′kj)d(. . . , A
(j)
k−1, A

(j)
k+1, . . .) +

n∑
i=1

i6=k

(−1)i+jaijd(. . . , A
(j)
k + A

′(j)
k , . . .)

=

(−1)k+jakjd(. . . , A
(j)
k−1, A

(j)
k+1, . . .) +

n∑
i=1

i6=k

(−1)i+jaijd(. . . , A
(j)
k , . . .)



+

(−1)k+ja′kjd(. . . , A
(j)
k−1, A

(j)
k+1, . . .) +

n∑
i=1

i6=k

(−1)i+jaijd(. . . , A
′(j)
k , . . .)


= d(A1, . . . , Ak, . . . , An) + d(A1, . . . , A

′
k, . . . , An),

which shows that the determinant function d of order n is n-linear.
Now we have proved that if a determinant function d of order (n−1) exists and is (n−1)-

linear, then a determinant function d of order n exists and is n-linear. Since a determinant
function d of order 2 exists and is 2-linear, we conclude by induction that for every n, there
exists a unique determinant function of order n and it is n-linear, as stated in the following
theorem.

Theorem 7 [Existence Theorem] For every positive integer n, there is a unique determinant
function of order n. Furthermore, this function is n-linear.
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This unique function is frequently denoted as det. The expansion formula in (4) is called
the expansion of the determinant det(A) of A by the jth column minors, rewritten here as

det(A) =
n∑

i=1

(−1)i+jaij det(Aij). (5)

We next show that the determinant det(A) of matrix A can be expanded by minors in a row.
For each i, 1 ≤ i ≤ n, consider the ith row Ai of an n× n matrix A,

Ai = ai1I1 + ai2I2 + · · ·+ ainIn,

where I1 = (1, 0, . . . , 0), . . . , In = (0, . . . , 0, 1) are standard row vectors. Then we have

det(A) = d(A1, . . . , Ai−1,
n∑

j=1

aijIj, Ai+1, . . . , An)

=
n∑

j=1

aijd(A1, . . . , Ai−1, Ij, Ai+1, . . . , An)

=
n∑

j=1

aij det(A′
ij) (6)

by the n-linearity of d, where

A′
ij =



A1
...

Ai−1

Ij

Ai+1
...

An


=



a11 · · · a1j · · · a1n
...

. . .
...

. . .
...

ai−1,1 · · · ai−1,j · · · ai−1,n

0 · · · 1 · · · 1
ai+1,1 · · · ai+1,j · · · ai+1,n

...
. . .

...
. . .

...
an1 · · · anj · · · ann


.

By adding a multiple −akjIj of the ith row Ij of A′
ij to the kth row Ak of A′

ij for each k,
1 ≤ k ≤ n and k 6= i, we obtain the matrix

A′′
ij =



a11 · · · 0 · · · a1n
...

. . .
...

. . .
...

ai−1,1 · · · 0 · · · ai−1,n

0 · · · 1 · · · 1
ai+1,1 · · · 0 · · · ai+1,n

...
. . .

...
. . .

...
an1 · · · 0 · · · ann


and by Theorem 2,

det(A′′
ij) = det(A′

ij). (7)
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With the expansion of the determinant d(A′′
ij) by the jth column minors in (5), we have

det(A′′
ij) = (−1)i+j det(Aij) (8)

since the i, j minor of A′′
ij is equal to the the i, j minor Aij of A. By (6)–(8), we have

det(A) =
n∑

j=1

(−1)i+jaij det(Aij), (9)

which is called the expansion of the determinant det(A) of A by the ith row minors.
The next theorem is an application of the multilinearity of the determinant function det.

Theorem 8 If the rows of an n× n matrix A are linearly dependent, then det(A) = 0.

Proof. Suppose there exist scalars c1, c2, . . . , cn, not all zeros and says ck 6= 0, such that∑n
i=1 ciAi = 0. Then we have Ak =

∑n
i=1,i6=k tiAi, where ti = −ci/ck. Thus

det(A) = d(. . . , Ak−1,
n∑

i=1

i6=k

tiAi, Ak+1, . . .)

=
n∑

i=1

i6=k

tid(. . . , Ak−1, Ai, Ak+1, . . .).

But for each i 6= k, row Ai is equal to at least one of the rows A1, . . . , Ak−1, Ak+1, . . . , An

and hence
d(. . . , Ak−1, Ai, Ak+1, . . .) = 0

by Theorem 4. Thus det(A) = 0. 2

The next theorem is an application of the expansion formulas in (5) and (9).

Theorem 9 An n × n matrix A and its transpose At have the same determinants, i.e.,
det(A) = det(At).

Proof. The proof is by induction on n, the size of the matrix A. For n = 1, we have
A = At = [a11] and det(A) = det(At) = a11 trivially. Assume that the theorem is true for
(n− 1). Let A = [aij] be an n× n matrix and B = At = [bij]. Then bij = aji. By expanding
det(B) by the ith row minors, we have

det(B) =
n∑

j=1

(−1)i+jbij det(Bij).

The i, j minor Bij of B is equal to the transpose of the j, i minor Aji of A, i.e., Bij = At
ji.

And by the induction step, det(Aji) = det(At
ji). Hence we have

det(B) =
n∑

j=1

(−1)j+iaji det(Aji) = det(A)

from the expansion of det(A) by the ith column minors. We conclude that
det(A) = det(At). 2
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Since the row vectors (At)i of At is just the transpose (ai)
t of the column vectors ai of

A, we have

det(A) = det(At) = d((At)1, . . . , (A
t)i, . . . , (A

t)n) = d((a1)
t, . . . , (ai)

t, . . . , (an)t) = d(a1, . . . , ai, . . . , an)

which implies that we can regard the determinant function det as a scalar function of n n-
dimensional column vectors a1, a2, . . . an. Thus by Theorem 9, all the row properties of the
determinant function in Theorems 1–4 and 7–8 have the corresponding versions for columns
as stated in the following corollary.

Corollary 10 The determinant function det(A) = d(a1, . . . , ai, . . . , an) of an n × n matrix
A = [a1a2 . . . an], where a1, a2, . . . an are n column vectors of A, has the following column
properties:

1. It is n-linear with respect to column vectors, i.e., for each i, 1 ≤ i ≤ n,

d(a1, . . . , αai + βa′i, . . . , an) = αd(a1, . . . , ai, . . . , an) + βd(a1, . . . , a
′
i, . . . , an),

for any scalars α, β.

2. It is invariant under the addition of a multiple of a column of A to another column of
A, i.e., for any scalar α,

d(a1, . . . , ai + αak, . . . , ak, . . . , an) = d(a1, . . . , ai, . . . , ak, . . . , an).

3. It changes its sign under the exchange of two columns of A, i.e.,

d(a1, . . . , ak, . . . , ai, . . . , an) = (−1)d(a1, . . . , ai, . . . , ak, . . . , an).

And det(A) = 0 if A has linearly dependent columns. 2

4 The Cofactor Matrix and Cramer’s Rule

The scalar (−1)i+j det(Aij) corresponding to the i, j minor Aij of an n×n matrix A is called
the cofactor of the i, j entry aij of A, denoted as cof aij, i.e.,

cof aij = (−1)i+j det(Aij).

The n× n matrix
cof A = [cof aij]

n
i,j=1

is called the cofactor matrix of A.
Consider the product A(cof A)t of A and the transpose of the cofactor matrix of A. The

i, j entry of the product is

(A(cof A)t)ij =
n∑

k=1

aikcof ajk =
n∑

k=1

(−1)j+kaik det(Ajk) = d(. . . , Aj−1, Ai, Aj+1, . . .)
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by the expansion formula along the jth row and is

(A(cof A)t)ij =

{
det(A), if i = j,
0, if i 6= j,

by Theorem 4. Thus we have

A(cof A)t = det(A)In×n.

Next Consider the product (cof A)tA. The i, j entry of this product is

((cof A)tA)ij =
n∑

k=1

cof akiakj =
n∑

k=1

(−1)k+iakj det(Aki) = d(. . . , ai−1, aj, ai+1, . . .)

by the expansion formula along the ith column and is

((cof A)tA)ij =

{
det(A), if i = j,
0, if i 6= j,

by Corollary 10. Thus we have

(cof A)tA = det(A)In×n.

We conclude in the following theorem.

Theorem 11 For any n× n matrix A with n ≥ 2, we have

A(cof A)t = (cof A)tA = det(A)In×n.

In particular, if det(A) 6= 0, then A is invertible and its inverse is

A−1 =
1

det(A)
(cof A)t.

2

As an application of the above theorem, we consider a system of n linear equations in n
unknowns x1, x2, . . . , xn,

Ax =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




x1

x2
...

xn

 =


b1

b2
...
bn

 = b

If det(A) 6= 0, then A is invertible and the above system of linear equations has a unique
solution

x = A−1b =
1

det(A)
(cof A)tb,

where

xi =
1

det(A)

n∑
j=1

cof ajibj =
1

det(A)

n∑
j=1

(−1)j+ibj det(Aji) =
d(a1, . . . , ai−1, b, ai+1, . . . , an)

d(a1, . . . , ai−1, ai, ai+1, . . . , an)

(10)
for each i, 1 ≤ i ≤ n. Equation (10) is called Cramer’s rule.
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5 The Product Formula for Determinants

Consider the product AB of two n× n matrices A and B. It is easy to see that the ith row
(AB)i of AB is just the ith row Ai of A times B, i.e.,

(AB)i = AiB, ∀i.

Thus we have
det(AB) = d(A1B, A2B, . . . , AnB)

And by keeping B fixed, we can define a scalar-valued function f(A) = det(AB) of matrix
A and

f(A1, A2, . . . , An) = d(A1B, A2B, . . . , AnB).

Since for each i,

f(A1, . . . , αAi, . . . , An) = d(A1B, . . . , αAiB, . . . , AnB)

= αd(A1B, . . . , AiB, . . . , AnB)

= αf(A1, . . . , αAi, . . . , An),

and for i 6= k,

f(A1, . . . , Ai + Ak, . . . , Ak, . . . , An) = d(A1B, . . . , (Ai + Ak)B, . . . , AkB, . . . , AnB)

= d(A1B, . . . , AiB, . . . , AkB, . . . , AnB)

= f(A1, . . . , Ai, . . . , Ak, . . . , An),

function f satisfies Axioms 1 and 2 for a determinant function and by Lemma 5,

f(A) = det(A)f(In×n).

Since
f(In×n) = det(In×nB) = det(B),

we have the following theorem.

Theorem 12 [Product Formula] For any two square matrices A and B of the same size, we
have

det(AB) = det(A) det(B).

2

As an application of the above theorem, consider an invertible n× n matrix A, i.e.,

AA−1 = In×n.

By the product formula, we have

det(A) det(A−1) = det(In×n) = 1.

Together with Theorem 11, we have the following theorem.
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Theorem 13 A square matrix A is invertible if and only if det(A) 6= 0. In this case, we
have

det(A−1) = det(A)−1.

2

Another application of the product formula is to prove the converse of Theorem 8 and
the last sentence of Corollary 10.

Theorem 14 If an n×n matrix A has n linearly independent rows (columns), then det(A) 6=
0.

Proof. Firstly assume that the n columns a1, a2, . . . , an of A are linearly independent in
the linear space V of all n-dimensional column vectors. Since V is n-dimensional,
{a1, a2, . . . , an} is a basis of V and every n-dimensional column vector in V can be
expressed uniquely as a linear combination of a1, a2, . . . , an. In particular, for standard unit
column vectors ei, we have

e1 = β11a1 + β21a2 + · · ·+ βn1an

e2 = β12a1 + β22a2 + · · ·+ βn2an

...
...

...

en = β1na1 + β2na2 + · · ·+ βnnan,

i.e.,

[e1e2 · · · en] = [a1a2 · · · an]


β11 β12 · · · β1n

β21 β22 · · · β2n
...

...
. . .

...
βn1 βn2 . . . βnn

 ,

i.e.,
In×n = AB.

By the product formula, we have det(A) det(B) = det(In×n) = 1 and then det(A) 6= 0.
Secondly assume that A has n linearly independent row vectors. Then At has n linearly
independent column vectors. As proved in above, det(At) 6= 0. Thus we have det(A) 6= 0
since det(A) = det(At). 2

Corollary 15 An n× n matrix A has n linearly independent rows (columns) if and only if
det(A) 6= 0. 2

Combined with Theorem 13 and Corollary 15, we have the following corollary.

Corollary 16 An n × n matrix A is invertible if and only if A has n linearly independent
rows (columns). 2

Note that Corollary 16 can be proved directly without the concept of determinants.


