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1 Three Axioms for a Determinant Function

Let d be a scalar-valued function on the space M,,,, of all n x n matrices. Let Ay, A, ..., A,
be the n rows of an n x n matrix A. We will denote the value d(A) of A under the function d
as d(A) = d(Ay, As, ..., A,), indicating that d is a scalar-valued function of n n-dimensional
row vectors Ai, As, ..., A,. The scalar-valued function d is called a determinant function of
order n if it satisfies the following three axioms:

Axiom 1. Homogeneity in each row. If matrix B is obtained from matrix A by multiplying
one row, says the ith row, of A by a scalar «, then d(B) = a d(A), i.e.,

d(Al,...,OéAZ‘,...,An) :Oéd(Ah...,Ai,...,An).

Axiom 2. Invariance under row addition. If matrix B is obtained from matrix A by adding
one row, says the kth row, of A to another row, says the ith row, of A, then d(B) =
d(A), i.e.,

d(Ay, . A+ Ay A, AL =d(A A A, A,
Axiom 3. The determinant of the identity matriz is one.
d([an> = d(el, €2, ... ,€n) = 1.

The primary purpose of this supplement is to show that there exists such a determinant
function d of order n and it is unique. Before being able to do so, we will derive important
properties of such a determinant function d if exists.
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Theorem 1 If some row of matrix A is the zero vector, then d(A) = 0.
Proof. Without loss of generality, assume the ith row A; of A is the zero vector. Then
d(A) = d(...,A1,0,A41,...)=d(..., A1, (—1)0, Aj11, .. .)
= (1 A0, A, ) = (—1)d(A),
where Axiom 1 is applied to the third equality. Thus we must have d(A) = 0. O

Theorem 2 If matrix B is obtained from matrix A by adding a scalar multiple of one row,
says the kth row, of A to another row, says the ith row, of A, then d(B) = d(A), i.e.,

d(Al,...,Ai+OéAk,...,Ak,...,An):d(Al,...,Ai,...,Ak,...,An)
for any scalar «.

Proof. It is trivial if @« = 0. Assume that a # 0. Then we have

1
d(Al,...,Ai,...,Ak,...,An> = *d(Al,...,Ai,...,OéAk,...,An)
07
1
= ad(Ala---aAi+aAk7'--704Ak7---7An)

= (a)d(Ala"'aAi+aAk7""Ak""’An)’

«
where Axiom 1 is applied to the 1st and the 3rd equalities and Axiom 2 is applied to the
2nd equality. This completes the proof. O

Theorem 3 If matrix B is obtained from matrix A by interchanging two rows of A, says
the ith and the kth rows with i # k, then d(B) = (—1)d(A), i.e.,

d(Ay, .o Ag, AL AL = (D d(Ag, A Ay A,
Proof. We compute
d(Ay, .. AL A AL = d(Ag A Ay Ak A
(A, A+ Apy o A+ (F1D)(A + Ay, . AR)
= d(Ay, ..., A+ Agy ..., (mDA;, . A
(Ay, .. A+ A+ (DA, ... (=DA;, ... Ay
= d(Ay, ..., A ..., (=DA;, .. A
= (=Dd(Ay,..., Ak, ..., Aiy. . A,
where Axiom 1 is applied to the last equality, Axiom 2 is applied to the 1st and 4th
equality, and Theorem 2 is applied to the 2nd equality. O

Theorem 4 If two rows of matrix A are equal, then d(A) = 0.

Proof. Since if we switch the two equal rows of A, the resulted matrix remains the same

as A but the determinant value must change sign by the previous theorem, we must have
d(A) = 0. U

Note that Theorems 1-4 are consequences of Axioms 1 and 2 and are independent of Axiom
3.
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2 Gauss-Jordan Process and the Uniqueness of Deter-
minant Functions

In this section, we will show that a determinant function d of order n is unique if exists by
considering the effect of performing elementary row operations on an nxn matrix. Recall that
we perform three types of elementary row operations in Gauss-Jordan elimination process:

1. Interchanging two rows.
2. Multiplying a row by a nonzero scalar.

3. Adding to one row a scalar multiple of another.

By Theorem 3, a type 1 row operation will produce a sign change in the determinant of a
square matrix. By Axiom 1, a type 2 row operation will leave the determinant of a square
matrix unchanged and so does a type 3 row operation by Theorem 2.

Consider an upper triangular matrix

Uyp Uz -+ Uin
0 uge -+ U,

U=
0 0 Unn,

If w,, is zero, then the last row of U is the zero vector and by Theorem 1, d(U) = 0 =
U U2 * * * Upp- I Uy, # 0, then by applying at most (n — 1) type 3 row operations, we have

uy; Uz - 0

0 wuy --- 0
aoy=d(| . . ]

0 0 Unn,

If w,—1,,—1 = 0, then again we have d(U) = 0 = ujqugg - - - Upy. If not, then again by applying
at most (n — 2) type 3 row operations, we have

U] Ui 0 0
0 w9 0 0
d(U) = d( : : :
0 0 Up—1p—1 O
0 0 0 Unn |

Continuing this process, we either have some u; = 0 such that d(U) = 0 = ujjuay - - - Uy, OF
have all u; # 0 such that

U1 0 e 0
0 U929 - 0
d(U) = d( . . ) = (u11u22 cee unn) d(Ian) (1)
0 0 Unn,
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In general, an n X n matrix A can be transformed to an upper triangular matrix U by
applying a sequence of elementary row operations. If there are p row exchanges and ¢ scalar
multiplications by nonzero scalars ¢y, cs, . .., ¢, included in the sequence, then we have

d(U) = (=1)(cica - - cg)d(A),
d(A) = (=1)P(c1¢a- - ¢g) Hd(U) = (=1)"(c1ca -+ - cq) (unrtiza -+ - ) d(Lnsn),  (2)

by (1). Since Theorems 2 and 3 depend only on Axioms 1 and 2 and are independent of
Axiom 3, (2) is obtained from Axioms 1 and 2 and is independent of Axiom 3. Thus we
conclude that if f is a scalar-valued function of n x n matrices satisfying Axioms 1 and 2,
then we must have

F(A) = af(Luxn), (3)
where the scalar o depends on the matrix A (and probably depends on the Gauss-Jordan
process proceeded as you might conceive). The following lemma gives a further characteri-
zation of (3) if there exists a determinant function d of order n (which in turn shows that
the scalar v in (3) depends only on the matrix A and is independent of the Gauss-Jordan
process proceeded).

Lemma 5 If f is another scalar-valued function on the space M, ., of all n x n matrices
satisfying Axioms 1 and 2, then we have

f(A) = d(A)f(Inxn)
for all A € M, .
Proof. Define a scalar-valued function on the space M, ,, as
9(A) = f(A) = d(A) f (Lnxn)-
It is easy to see that g satisfies both Axioms 1 and 2, but not Axiom 3. In fact, we have
9Unxn) = f(Inxn) = d(Insn) f (Inxn) = f (Inxn) = f(Inxn) = 0,
since d(I,x,) = 1 by Axiom 3. But from (3), we have
9(A) = ag(lnxn) = 0
for all A. This completes the proof. |
Now by (1) and Axiom 3, if d is a determinant function of order n, then
d(U) = unugy -+ * Unn

for any upper triangular matrix U with diagonal entries wqq, ug2,- -, Un,. Note that the
value d(U) is invariant for any determinant function d of order n. In fact, this is true for
any n X n matrix A, as stated in the following uniqueness theorem.
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Theorem 6 [Uniqueness Theorem] If f is another scalar-valued function on the space M, x,
of all n X n matrices satisfying all the three axioms, then we have

f(A)=d(A) Y A € Mun.
Proof. By the above lemma, we have

f(A) = d(A) f (Inxn)-
By Axiom 3, we have f([,x,) = 1 and thus f(A) = d(A). a

Although the above theorem states that a determinant function d is unique if exists, we
do not settle down the existence question yet. But for a 1 x 1 matrix A = [ay;], the mapping

d(A) = ayy

satisfies the three axioms and is the unique determinant function of order 1. It is clear that
ann a2 ]

d is a linear function of the single row vector of A. And for a 2 x 2 matrix A = [ o a
21 (22

it is easy to check that the following definition
d(A) = Q11022 — Q12021

satisfies the three axioms and thus gives the unique determinant function of order 2. When
we regard the determinant function d of order 2 as a scalar function of two 2-dimensional
row vectors, we have the following additive property in each row:

d(Ay + A, As) = (ann + dly)az — (a12 + alp)as = (a11a29 — a12a91) + (a},a22 — alsa91)
= d(Ay, Ay) +d(A}, Ay)
d(Ar, As + Alz) = ap(an+ Glzg) — aya(ag + al21) = (ay1a29 — aroa9 ) + (Gnalzg - &126/21)

= d(Ay, Ay) +d(Ay, A)).
Together with the homogeneity axiom in each row, we have

d(aAl + ﬁA/h A2) = ad(Ab A2) + ﬁd(A/D AZ)
d(Ay, ads + BAY) = ad(Ar, As) + Bd(Ar, AL),

for any scalars «, 3, which says that d is a linear function of one row when the other row is
held fixed. We call d to be 2-linear. In the next section, we will show that if a determinant
function d of order (n — 1) exists and is (n — 1)-linear, then a determinant function d' of
order n also exists and is n-linear. Thus by induction, there is a unique determinant function
d of order n for every n and d is n-linear.

"'While we have a little bit abused the notation, we are able to distinguish different determinant function
d for different order n in the context.
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3 Multilinearity and the Existence of a Determinant
Function of Order n

Assume that d is a determinant function of order n — 1 and is (n — 1)-linear. Let A;; be the
(n—1) x (n—1) matrix obtained from an n x n matrix A by deleting the ith row and the jth
column of A. This submatrix A;; of A is called the ¢, 7 minor of A. For each 7,1 < j <n,
consider the following scalar-valued function E; as

](A) = Z(—l)”jaijd(Aij), A A € Man.

=1

Let B be the matrix obtained from matrix A by multiplying the kth row A, of A by a
scalar . Then we have

EJ(B) = Ej(Al, . ,OéAk, e ,An> = Z(—l)z—mbmd(B”)

=1
= (=DM T(ovag;)d(Ags) + Z 1) a;;(ad(Aiy))
z;ék
= aZ(—l)”jaijd(Aij) = OéEj(Al, Ce ,Ak, Ce 7An> = OéEj(A),

i=1

where (1) the k,j minor By; of B is the same as the k,j minor A;; of A and (2) for all
1 <i<mn,i#k, the i,j minor B;; of B is obtained by multiplying the kth row or (k — 1)th
row (¢ > k or i < k) of the 4,5 minor A;; of A by scalar a. Thus the function E; satisfies
Axiom 1.

Now let B be the matrix obtained from matrix A by adding the [th row to the kth row
of A. Then we have

EJ(B) = Ej(Ab e ,Ak + Al; N 7Ala N 7An) — Z(—l)z—i_]bwd(BU)

n

= (=) (ay; + ayy)d(Axj) + (=1)Hay(d(Ay) + d(Ayy)) Z 1) a;;d(Ay)

= (=) ayd(Ag) + (=) ayd(Ay) + Z(—l)”jaz‘jd(Aij)
=1

= Ej(Al,...,Ak,...,Al,...,An) :EJ(A),

where (1) the k,j minor By; of B is the same as the k, j minor Ay; of A, (2) the [, j minor

By; of B is obtained by adding the shortened (n — 1)-dimensional row vector A9 (obtained
from the Ith row vector A; of A by removing its jth component) to the shortened (n — 1)-
dimensional row vector A,(f ) of the [, j minor Ajj of A and then from the (n — 1)-linearity
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of d, d(By;) = d(A;;) + d(A;;) with Aj; being the matrix obtalned from A;; by replacing the
shortened row vector A]) with the shortened row vector Al ,and (3) for all 1 < z < n,
© # k,l, the 4, j minor B;; of B is obtained by adding the shortened row vector A of the
i,7 minor A;; of A to the shortened row Ak, of A;;. Note that matrix Al] can be obtained
from the k,j minor Ay; of A by exchanging the shortened row vector Al(j ) of Ay, with the
adjacent row vector |k —I| — 1 times and then d(A;;) = (—1)*~!=1d(Ay;). Thus the function
E; satisfies Axiom 2.
For A = I,,«,, we have

Ej([nxn) = ( )]—Hd(( nxn)]j) = d([(nfl)x(nfl)) =1,

which says that F; satisfies Axiom 3. Then by Theorem 6, £ is the unique determinant
function of order n, also denoted as d, and

i=1
for any j,1 < j < n. Now, for each k, 1 < k < n, we have from in (4)
d(Ay, ..., Ag+ AL, ... AY)

= <_1)k+j<akj + a;c])d( Al(c] 1) k]—&)—la e + Z H—]a d A(J + Al(] e )
z;ﬁk

= | (=) agd(..., AP AV ) +Z D) agd(..., AP )
z;ék

| ()M ad(. ., AP AT +Z D agd(..., AP, )

= d(Ar,. . A A Hd(Ar AL A,

which shows that the determinant function d of order n is n-linear.

Now we have proved that if a determinant function d of order (n—1) exists and is (n—1)-
linear, then a determinant function d of order n exists and is n-linear. Since a determinant
function d of order 2 exists and is 2-linear, we conclude by induction that for every n, there
exists a unique determinant function of order n and it is n-linear, as stated in the following
theorem.

Theorem 7 [Existence Theorem]| For every positive integer n, there is a unique determinant
function of order n. Furthermore, this function is n-linear.
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This unique function is frequently denoted as det. The expansion formula in (4) is called
the expansion of the determinant det(A) of A by the jth column minors, rewritten here as

n

det(A) = Z(—l)ﬂ_j(lij det(AU)

=1

(5)

We next show that the determinant det(A) of matrix A can be expanded by minors in a row.

For each i, 1 < i < n, consider the ith row A; of an n x n matrix A,
Ai

where I, = (1,0,...,0),...,I, =

by the n-linearity of d, where

A=

)

=apnli + ails + - + aply,

(0,...,0,1) are standard row vectors. Then we have

d(Ab oy A, Zaz’j]jaAi+17 s
j=1

NE

.
Il
_

-

Qi det (A;])

<
Il
—

aip v Qyy
Q;—11 * Ai—15

= 0 1
Ai+1,1 " Aiyl

i L Gn1 Tt 6Lnj

aijd(Ala S 7Ai—1a]j>Ai+1a e

Q1n

Qi—1,.n

Qit1n

ann

By adding a multiple —ag;[; of the ith row I; of A}; to the kth row Ay of Aj; for each £,
1 <k <n and k # 7, we obtain the matrix

[

and by Theorem 2,

all e O ) aln
ai—l,l e O e ai—l,n
0 e 1. 1
11 o0 0 o i
L anl .. O “ .. ann

det(A7;) = det(A4;;).
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With the expansion of the determinant d(Aj;) by the jth column minors in (5), we have
det(A7;) = (—=1)"*7 det(Ajj) (8)
since the 7, j minor of Af; is equal to the the i, j minor A;; of A. By (6)—(8), we have

det(A) = Zn:(—l)”jaij det(A;;), (9)

7j=1
which is called the expansion of the determinant det(A) of A by the ith row minors.

The next theorem is an application of the multilinearity of the determinant function det.
Theorem 8 If the rows of an n X n matrix A are linearly dependent, then det(A) = 0.

Proof. Suppose there exist scalars ¢y, cs, ..., ¢,, not all zeros and says ¢ # 0, such that
iz1 ciA; = 0. Then we have Ay =371, ., 1;A;, where 1; = —c;/cx. Thus

det(A) = d(..., A1, Y tiA, Apr, ..
izk
= D td(..., A1, Ai, A, ).
iz
But for each i # k, row A; is equal to at least one of the rows Ay, ..., Ag_1, Ags1,..., An
and hence

d(..., Ag-1, Ajy Agr,..) =0
by Theorem 4. Thus det(A) = 0. O
The next theorem is an application of the expansion formulas in (5) and (9).

Theorem 9 An n x n matrix A and its transpose A' have the same determinants, i.e.,
det(A) = det(A").

Proof. The proof is by induction on n, the size of the matrix A. For n = 1, we have
A = A" = [a1;1] and det(A) = det(A") = aq; trivially. Assume that the theorem is true for
(n—1). Let A = [a;;] be an n X n matrix and B = A" = [b;;]. Then b;; = a;;. By expanding
det(B) by the ith row minors, we have

det(B) = Z(—1>1+Jsz det(BU)

j=1

The 7, j minor B;; of B is equal to the transpose of the j,7 minor Aj;; of A, i.e., B;; = AEZ
And by the induction step, det(A;;) = det(A’;). Hence we have

det(B) = Z(—l)j“aﬁ det(Aﬂ) = det(A)
j=1
from the expansion of det(A) by the ith column minors. We conclude that
det(A) = det(A"). O
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Since the row vectors (A'); of A' is just the transpose (a;)" of the column vectors a; of
A, we have

det(A) = det(A") = d((A)y,..., (A, ..., (AD),) =d((a)', ..., (@), ..., (an)") = d(ar,. .., a;,...

which implies that we can regard the determinant function det as a scalar function of n n-
dimensional column vectors aq, as, . ..a,. Thus by Theorem 9, all the row properties of the
determinant function in Theorems 1-4 and 7-8 have the corresponding versions for columns
as stated in the following corollary.

Corollary 10 The determinant function det(A) = d(ay,...,a;,...,a,) of an n X n matrix
A = [aas .. .ay)|, where ay,aq,...a, are n column vectors of A, has the following column
properties:

1. It is n-linear with respect to column vectors, i.e., for each i, 1 <1 < n,
d(ay,...,qa; + fa., ... a,) = ad(ay,...,a;...,a,) + fd(ay,...,da., ..., a,),
for any scalars «, 3.

2. It is invariant under the addition of a multiple of a column of A to another column of
A, i.e., for any scalar «,

d(ay, ..., a; +QQp, ... Gy ooy Qp) = dA(A1y ey iy ey Ay e ey ).

3. It changes its sign under the exchange of two columns of A, i.e.,
dlay,...,ag, ... 6. .. 6,) = (=D)d(ay,...,a¢;... ¢k ..., a¢).

And det(A) = 0 if A has linearly dependent columns. a

4 The Cofactor Matrix and Cramer’s Rule

The scalar (—1)"*7 det(A4;;) corresponding to the ¢, j minor A;; of an n X n matrix A is called
the cofactor of the 7, j entry a,;; of A, denoted as cof a;, i.e.,

cof Q5 = (—1>i+j det(A”)

The n x n matrix
cof A = [cof ayl},;—
is called the cofactor matrix of A.
Consider the product A(cof A)' of A and the transpose of the cofactor matrix of A. The

1,7 entry of the product is

n

(A(COf A)t)i]’ = Z aikcof Ajp = Z(—l)ﬁkaik det(Ajk) = d( .. ,Ajfl, Ai7 AjJrl’ .. )

k=1 k=1

7an>
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by the expansion formula along the jth row and is

(teot ayyy = { A 12

by Theorem 4. Thus we have
A(cof A) = det(A)Lxp.
Next Consider the product (cof A)'A. The 4, j entry of this product is

n

((cof A)'A)y; =3 cof agiar; = > (—1)ay; det(Ap) = d(. .., ai—1,aj, a1, . ..)

k=1 k=1

by the expansion formula along the ith column and is

by Corollary 10. Thus we have
(cof A)'A = det(A)Lxn.
We conclude in the following theorem.
Theorem 11 For any n x n matrix A with n > 2, we have
A(cof A)! = (cof A)'A = det(A) I, xn.

In particular, if det(A) # 0, then A is invertible and its inverse is

Al = (cof A)E.

det(A)
O

As an application of the above theorem, we consider a system of n linear equations in n
unknowns i, T, ..., Ty,

@11 a2 -+ Qip xq by
Q21 Qg2 -+ QA2p T2 bo

Az = | . . . =1 . |=0
Ap1 Ap2 - Qpn Tn bn

If det(A) # 0, then A is invertible and the above system of linear equations has a unique
solution

1
=A% = f A)'b
‘ derA) (ot AP
where
1 L n : d(a1 PP 0 7o | b Ait1y - - - CLn)
e f "y ]+Zb'th'i — I I » Yy ) 1)
o det(A)jz_zlco a;ib; det z:: j det(A;i) d(ay,...,a;—1,0;, 041, ..., a0,)

for each i, 1 <i < n. Equation (10) is called Cramer’s rule.
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5 The Product Formula for Determinants

Consider the product AB of two n x n matrices A and B. It is easy to see that the ¢th row
(AB); of AB is just the ith row A; of A times B, i.e.,

Thus we have
det(AB) = d(AlB, AQB, N 7AnB)

And by keeping B fixed, we can define a scalar-valued function f(A) = det(AB) of matrix
A and
F(An, Ay, .. A) = d(ALB, AsB, ..., A,B).

Since for each 1,

f(Ala c. ,OJAZ', c 7An) = d(AlB, .. .,CVAZ‘B, ce ,AnB)
Oéd(AlB, ce ,AZ‘B, PN ,AnB)
= Oéf(Al, ‘e ,OéAi, RN ,An),

and for ¢ # k,

F(AL A+ Ay A A = d(AB, . (Ai+ ARB, ..., AuB, ..., A,B)
- d(AlB,,AzB,,AkB,,AnB)
= f(An,.. A, A A,

function f satisfies Axioms 1 and 2 for a determinant function and by Lemma 5,
J(A) = det(A) f (Lnxn)-

Since

f(Inxn) = det(I,x, B) = det(B),
we have the following theorem.

Theorem 12 [Product Formula] For any two square matrices A and B of the same size, we
have

det(AB) = det(A) det(B).

As an application of the above theorem, consider an invertible n x n matrix A, i.e.,
AAT = L.
By the product formula, we have
det(A) det(A™) = det(fxn) = 1.

Together with Theorem 11, we have the following theorem.
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Theorem 13 A square matrix A is invertible if and only if det(A) # 0. In this case, we
have
det(A™1) = det(A4) .

g

Another application of the product formula is to prove the converse of Theorem 8 and
the last sentence of Corollary 10.

Theorem 14 If an nxn matrix A hasn linearly independent rows (columns), then det(A) #
0.

Proof. Firstly assume that the n columns aq,as, ..., a, of A are linearly independent in
the linear space V' of all n-dimensional column vectors. Since V' is n-dimensional,
{ai,aq,...,a,} is a basis of V' and every n-dimensional column vector in V' can be
expressed uniquely as a linear combination of ay, as, ..., a,. In particular, for standard unit
column vectors e;, we have

er = fPua + Bauas+ -+ Baay,
ea = [ioay + Pagas + - + Braay

€n = ﬁlngl + ﬂ2na2 + -+ ﬁnnana

ie.,
ﬁll ﬁ12 e ﬁln
621 522 e 6271
[erea - €] = [araz - - - an] . — : )
ﬁnl Bn2 e ﬁ’rm
ie.,
L, = AB.

By the product formula, we have det(A)det(B) = det([,x,) = 1 and then det(A) # 0.
Secondly assume that A has n linearly independent row vectors. Then A’ has n linearly
independent column vectors. As proved in above, det(A") # 0. Thus we have det(A) # 0
since det(A) = det(A"). O

Corollary 15 Ann x n matrix A has n linearly independent rows (columns) if and only if
det(A) # 0. O

Combined with Theorem 13 and Corollary 15, we have the following corollary.

Corollary 16 An n x n matrix A is invertible if and only if A has n linearly independent
rows (columns). O

Note that Corollary 16 can be proved directly without the concept of determinants.



