

EE203001 Linear Algebra

Quiz #9 04/29/2003

1. (10 pts) Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a linear transformation such that

$$T(\mathbf{i} + 2\mathbf{j}) = 4\mathbf{i} + \mathbf{j}, \quad T(\mathbf{j}) = \mathbf{i} + \mathbf{j}.$$

(a) Compute $T(4\mathbf{i} - 3\mathbf{j})$ and $T^2(4\mathbf{i} - 3\mathbf{j})$ in terms of \mathbf{i} and \mathbf{j} .
 (b) Determine the matrix of T .

2. (10 pts) Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be a linear transformation such that

$$T(\mathbf{i}) = (1, 1, 0), \quad T(\mathbf{j}) = (-1, 0, 1).$$

Find bases (v_1, v_2) for \mathbb{R}^2 and (w_1, w_2, w_3) for \mathbb{R}^3 relative to which the matrix of T will be in diagonal form.

3. (10 pts) In the space of all real-valued functions, let V be the subspace spanned by $\{e^x, xe^x\}$. Let D be the differentiation operation on V . Find the matrix representations of D and D^2 relative to the given basis.

4. (10 pts) Let $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Prove or disprove that $A^n = \begin{pmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{pmatrix}$.