

EE203001 Linear Algebra
Solutions to Quiz #9 04/29/2003

Wen-Yao Chen, Chao-Chung Chang, Meng-Hua Chang, Chen-Wei Hsu.

1. (a).

$$\begin{cases} T(\mathbf{i} + 2\mathbf{j}) = 4\mathbf{i} + \mathbf{j} \\ T(\mathbf{j}) = \mathbf{i} + \mathbf{j} \end{cases} \Rightarrow \begin{cases} T(\mathbf{i}) + 2T(\mathbf{j}) = 4\mathbf{i} + \mathbf{j} \\ T(\mathbf{j}) = \mathbf{i} + \mathbf{j} \end{cases} \Rightarrow \begin{cases} T(\mathbf{i}) = 2\mathbf{i} - \mathbf{j} \\ T(\mathbf{j}) = \mathbf{i} + \mathbf{j} \end{cases}$$

$$T(4\mathbf{i} - 3\mathbf{j}) = 4T(\mathbf{i}) - 3T(\mathbf{j}) = 4(2\mathbf{i} - \mathbf{j}) - 3(\mathbf{i} + \mathbf{j}) = 5\mathbf{i} - 7\mathbf{j} \text{ and} \\ T^2(4\mathbf{i} - 3\mathbf{j}) = T(5\mathbf{i} - 7\mathbf{j}) = 5T(\mathbf{i}) - 7T(\mathbf{j}) = 5(2\mathbf{i} - \mathbf{j}) - 7(\mathbf{i} + \mathbf{j}) = 3\mathbf{i} - 12\mathbf{j}.$$

(b). The matrix of T is $\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$.

2. We first show that $N(T)$ is trivial.

$$\begin{aligned} v = \alpha\mathbf{i} + \beta\mathbf{j} \in N(T) &\Leftrightarrow T(v) = T(\alpha\mathbf{i} + \beta\mathbf{j}) = (0, 0, 0) \\ &\Leftrightarrow \alpha(1, 1, 0) + \beta(-1, 0, 1) = (0, 0, 0) \\ &\Leftrightarrow (\alpha - \beta, \alpha, \beta) = (0, 0, 0) \\ &\Leftrightarrow \alpha = \beta = 0, \end{aligned}$$

so $N(T) = \{O\}$.

Thus we choose $v_1 = \mathbf{i}$ and $v_2 = \mathbf{j}$ to form a basis (v_1, v_2) for \mathbb{R}^2 . Then $w_1 = T(v_1) = T(\mathbf{i}) = (1, 1, 0)$ and $w_2 = T(v_2) = T(\mathbf{j}) = (-1, 0, 1)$ are linearly independent in \mathbb{R}^3 . We add $w_3 = (0, 0, 1)$. Then $\{w_1, w_2, w_3\}$ is a basis for \mathbb{R}^3 . Since $T(v_1) = w_1$ and $T(v_2) = w_2$, the matrix representation relative to these two new bases is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$.

3. $D(e^x) = e^x = 1 \cdot e^x + 0 \cdot xe^x$,

$$D(xe^x) = e^x + xe^x = 1 \cdot e^x + 1 \cdot xe^x,$$

$$D^2(e^x) = D(e^x) = 1 \cdot e^x + 0 \cdot xe^x,$$

$$D^2(xe^x) = D(e^x + xe^x) = 1 \cdot e^x + e^x + xe^x = 2 \cdot e^x + 1 \cdot xe^x.$$

Thus the matrix representations of D and D^2 relative to $\{e^x, xe^x\}$ are

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \quad \text{respectively.}$$

4. Please refer to the solutions of Homework 10.