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. To find the projection of x on S, we have to find an orthonormal basis for S, firstly.
Applying the Gram-Schmidt process, we have
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Thus {y1,y2} is an orthogonal basis for S.

We normalize y; and y, to obtain an orthonormal basis {ej, ez}, where
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Thus, the projection of x on S is
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. In Homework #7, Exercise 9, we know that the vectors

1 COS ¥ sinx

60($)2E7 er(x :7, and es(x) = N

forms an orthonormal basis for the subspace S spanned by {1,sinz,cosz}. And the
projection po(x) of = on the subspace is m — 2sin .

Since 1 € S, the projection py(x) of 1 on S is just 1 itself.

Thus the projection p(z) of 2z 4+ 1 on S, i.e., the trigometric polynomial nearest to
flx)=2x+11is
2po(z) + p1(x) = 2(m — 2sinzx) + 1.

Note. In a Euclidean space V, let S be a subspace with an orthonormal basis

{e1,....en}. If 2,y € V, p, and p, are the projections of = and y on a subspace
S of V, respectively, then the projection of ax +y on S is ap, + p,, since
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3. Firstly, we need some integral results.
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Hence the quadratic polynomial nearest to f(z) = sinwx is
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