

EE203001 Linear Algebra

Quiz #6 04/01/2003

Quiz Problems:

1. (10 pts). In each case find an orthonormal basis for the subspace of R^4 spanned by the given vectors.
 - (a) $x_1 = (0, 0, 1, 1)$, $x_2 = (0, 1, 1, 0)$, $x_3 = (0, -1, 0, 1)$, $x_4 = (1, 0, 0, 1)$.
 - (b) $x_1 = (1, 2, -2, 1)$, $x_2 = (1, 0, 2, 1)$, $x_3 = (1, 1, 0, 1)$.
2. (10pts). Let x_1, x_2, \dots, x_k be a finite sequence of elements in an Euclidean space V . Then we can find a corresponding sequence of elements y_1, y_2, \dots, y_k in V by the Gram-Schmidt process such that for each i , $1 \leq i \leq k$ (a) y_i is orthogonal to every element in $(y_1, y_2, \dots, y_{i-1})$, (b) $L(y_1, y_2, \dots, y_i) = L(x_1, x_2, \dots, x_i)$. Prove that these corresponding elements y_1, \dots, y_k are nonzero if and only if the k elements x_1, \dots, x_k are independent.
3. (10pts). In the linear space of all real polynomials, with inner product $(x, y) = \int_0^1 x(t)y(t)dt$, let $x_n(t) = t^n + 1$ for $n = 0, 1, 2, \dots$ Prove that the functions

$$y_0(t) = 1, y_1(t) = \sqrt{3}(2t - 1), y_2(t) = \sqrt{5}(6t^2 - 6t + 1),$$

form an orthonormal set spanning the same subspace as $\{x_0, x_1, x_2\}$.

Teaching Assistants: EECS 608, ext. 4032

- Meng-Hua Chang, mhchang@abel.ee.nthu.edu.tw
- Chao-Chung Chang, ccchang@abel.ee.nthu.edu.tw
- Chen-Wei Hsu, cwhsu@abel.ee.nthu.edu.tw
- Wen-Yao Chen, wychen@abel.ee.nthu.edu.tw

A Note on the Pythagorean Theorem

A counterexample (given by Chao-Chung Chang) that in a **complex** Euclidean space, two elements x and y satisfying the Pythagorean identity $\|x + y\| = \|x\|^2 + \|y\|^2$, but x and y are not orthogonal.

In \mathbb{C}^2 , with the usual inner product $(x, y) = x_1\bar{y}_1 + x_2\bar{y}_2$. Let $x = (1, 0)$ and $y = (i, 0)$, then $(x, y) = 1 \cdot \bar{i} + 0 \cdot \bar{0} = -i \neq 0$. But x and y satisfy the Pythagorean identity, since

$$\begin{aligned} \|x\|^2 &= (x, x) = 1 \cdot \bar{1} + 0 \cdot \bar{0} = 1, \\ \|y\|^2 &= (y, y) = i \cdot \bar{i} + 0 \cdot \bar{0} = 1, \end{aligned}$$

and

$$\|x + y\|^2 = (1 + i)\overline{(1 + i)} + 0 \cdot \bar{0} = (1 + i)(1 - i) = 1 + 1 = 2.$$