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1. (a) x1 = (0, 0, 1, 1), x2 = (0, 1, 1, 0), x3 = (0,−1, 0, 1), x4 = (1, 0, 0, 1). We find an
orthogonal basis {y′1, y′2, y′3, y′4} first. Let y′1 = (0, 0, 1, 1) and then we can start by
the Gram-Schmidt process.
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(0, 0, 1, 1) = (0, 0, 0, 0).
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We normalize y′1, y′2 and y′3 next. Thus we get an orthonormal basis:
y1 = 1√

2
(0, 0, 1, 1), y2 = 1√

6
(0, 2, 1,−1), y3 = 1

2
√

3
(3, 1,−1, 1).

(b) x1 = (1, 2,−2, 1), x2 = (1, 0, 2, 1), x3 = (1, 1, 0, 1). We find an orthogonal basis
{y′1, y′2, y′3} first. Let y′1 = (1, 2,−2, 1) and then we can start by the Gram-Schmidt
process.

y′2 = x2 − (x2,y′
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(3, 1, 4, 3).

y′3 = x3− (x3,y′
2)
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y′1 = (1, 1, 0, 1)− 1

5
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(1, 2,−2, 1) = (0, 0, 0, 0).

We normalize y′1, y′2 and y′3 next. Thus we get an orthonormal basis:
y1 = 1√

10
(1, 2,−2, 1), y2 = 1√

35
(3, 1, 4, 3).

2. Since x1, x2 · · · , xi are independent, 0 ≤ i ≤ k, dim(L(x1, x2, · · · , xi)) = i.
Since y1, y2 · · · , yj are orthogonal, 0 ≤ j ≤ k, dim(L(y1, y2, · · · , yj)) = j.
(⇒)
If y1, y2 · · · , yk are nonzero, then dim(L(y1, y2, · · · , yk)) = k. Since L(x1, x2, · · · , xk) =
L(y1, y2, · · · , yk), dim(L(x1, x2, · · · , xk)) = k. Thus x1, x2, · · · , xk are independent.
(⇐)
If x1, x2 · · · , xk are independent, then dim(L(x1, x2, · · · , xk)) = k. Since L(x1, x2, · · · , xk) =
L(y1, y2, · · · , yk), dim(L(y1, y2, · · · , yk)) = k. Thus y1, y2, · · · , yk are nonzero.

3. In the linear space of all real polynomials, let {z0, z1, z2} be the orthogonal basis for
the subspace L({x0, x1, x2}), obtained by the Gram-Schmidt process. Then

z0(t) = x0(t) = 1.
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we find that
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z0(t) = x1(t)−

1

2
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2
.

Next, we use the relations
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to obtain
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Since
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we normalize z0, z1 and z2 to obtain an orthonormal basis {y0, y1, y2}, where

y0(t) =
z0(t)

||z0||
= 1,

y1(t) =
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