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2. (a) Given (f,g) = [; (log(x))f(x)g(x)dx. If f(x) = \/z, then

Let u = log x, then du = %dm. Let v = %, then dv = xdx. Thus
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(b) Let uw = z?logx, then du = (2zlogz + x)dz. Let v = —z~!, then dv =

Thus
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= / 2log xdx — 1.
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Thus, fle log xdr =1
(¢c) Now we want to find a linear polynomial g(z) = a + bx nonzero and orthogonal
to f(z) =1, ie., (f,g) = 0. Since
(f,9) = / log z(a + bx)dx
1

= a/ log:)sdx+b/ x log xdx
1 1

= ar(Ch (hy (),

we have (f,g9) = 0 when a = —b(e%l). So g(x) = b(x — 6211),1) is an arbitrary
real number.



