

EE203001 Linear Algebra

Quiz #4 03/17/2003

Quiz Problems:

1. (10 pts.) In the linear space of all real polynomials, the subspace spanned by $\{1, t, t^2\}$ can be described as the subspace of all polynomials of degree ≤ 2 . Please describe the subspace spanned by $\{1 + t, (1 + t)^2, (1 + t)^3\}$ similarly, and determine the dimension of the subspace.
2. (20 pts.) In the linear space P_1 of all real polynomials of degree ≤ 1 , define

$$(f, g) = f(0)g(0) + f(1)g(1).$$

- (a) Prove that (f, g) is an inner product for P_1 .
- (b) Compute (f, g) when $f(t) = t$ and $g(t) = at + b$.
- (c) If $f(t) = t$, find all linear polynomials g such that $(f, g) = 0$. Denote the set of all such g 's as f^\perp , i.e. $f^\perp = \{g \in P_1 | (f, g) = 0\}$. Is f^\perp a subspace of P_1 ? If f^\perp is a subspace of P_1 , compute its dimension.

3. (10 pts.) Let $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ be vectors in \mathbb{R}^n , determine whether (x, y) is an inner product for \mathbb{R}^n if (x, y) is defined by the formula given. In case (x, y) is not an inner product, tell which axioms are not satisfied.
 - (a). $(x, y) = \sum_{i=1}^n (x_i + y_i)^2 - \sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2$.
 - (b). $(x, y) = \sum_{i=1}^n (x_i + y_i)^2 - \sum_{i=1}^n x_i y_i$.