

EE203001 Linear Algebra
 Solutions to Quiz #4 Spring Semester, 2003

Wen-Yao Chen, Chao-Chung Chang, Meng-Hua Chang, Chen-Wei Hsu

1. Let $T = \{1 + t, (1 + t)^2, (1 + t)^3\}$ and $S = \{a(1 + t) + b(1 + t)^2 + c(1 + t)^3 | a, b, c \in \mathbb{R}\}$. S is a subspace of the linear space of all real polynomials and $T \subset S$, so $L(T) \subset S$, by Exercise 25(b). On the other hand, by the definition of $L(T)$, $S \subset L(T)$. Thus $L(T) = S$.

If $a(1 + t) + b(1 + t)^2 + c(1 + t)^3 = 0$, divide $a(1 + t) + b(1 + t)^2 + c(1 + t)^3 = 0$ by $1 + t$, then put $t = -1$, we have $a = 0$. Applying the same process, we find $b = c = 0$. Thus T is independent, hence $\dim L(T) = 3$.

2. (a). (i). For $f, g \in P_1$,

$$(f, g) = f(0)g(0) + f(1)g(1) = g(0)f(0) + g(1)f(1) = (g, f),$$

thus the symmetry axiom holds.

(ii). For f, g and $h \in P_1$,

$$\begin{aligned} (f, g + h) &= f(0)(g + h)(0) + f(1)(g + h)(1) \\ &= f(0)(g(0) + h(0)) + f(1)(g(1) + h(1)) \\ &= f(0)g(0) + f(0)h(0) + f(1)g(1) + f(1)h(1) \\ &= f(0)g(0) + f(1)g(1) + f(0)h(0) + f(1)h(1) \\ &= (f, g) + (f, h), \end{aligned}$$

thus the linearity axiom holds.

(iii). For $f, g \in P_1$, and $c \in \mathbb{R}$,

$$\begin{aligned} c(f, g) &= c[f(0)g(0) + f(1)h(1)] \\ &= cf(0)g(0) + cf(1)g(1) \\ &= [cf(0)]g(0) + [cf(1)]g(1) \\ &= (cf, g), \end{aligned}$$

thus the homogeneity axiom holds.

(iv). If f is a non-zero polynomial of degree 1 in P_1 , then f has at most one real root. Thus at least one of $f(0)$ and $f(1)$ is non-zero. Thus we have

$$(f, f) = [f(0)f(0) + f(1)f(1)] = f(0)^2 + f(1)^2 > 0.$$

Thus the positivity axiom holds.

(b). If $f(t) = t$ and $g(t) = at + b$, then

$$(f, g) = f(0)g(0) + f(1)g(1) = 0 \cdot b + 1 \cdot (a + b) = a + b.$$

(c). By (b), $f^\perp = \{at + b | a + b = 0; a, b \in \mathbb{R}\}$.

(i). Given $a_1t + b_1$ and $a_2t + b_2$ in f^\perp , then

$$(a_1t + b_1) + (a_2t + b_2) = (a_1 + a_2)t + (b_1 + b_2).$$

Since

$$(a_1 + a_2) + (b_1 + b_2) = (a_1 + b_1) + (a_2 + b_2) = 0 + 0 = 0,$$

$$(a_1t + b_1) + (a_2t + b_2) \in f^\perp.$$

(ii). If $c \in \mathbb{R}$ and $at + b \in f^\perp$, then $c(at + b) = (ca)t + cb$ and $ca + cb = c(a + b) = c \cdot 0 = 0$. Thus $c(at + b) \in f^\perp$.

By (i) and (ii), f^\perp satisfies the closure axioms, thus f^\perp is a subspace of P_1 .

Since the linear polynomial $at + b$ such that $a + b = 0$ can be written as $at + (-a) = a(t - 1)$, we have $f^\perp = \{a(t - 1) | a \in \mathbb{R}\}$. It is clear that $\{t - 1\}$ is a basis for f^\perp , hence $\dim f^\perp = 1$.

3. (a). Firstly, we simplify this product:

$$\begin{aligned} (x, y) &= \sum_{i=1}^n (x_i + y_i)^2 - \sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2 \\ &= \sum_{i=1}^n [(y_i + x_i)^2 - x_i^2 - y_i^2] \\ &= \sum_{i=1}^n 2x_i y_i. \end{aligned}$$

Then, for all choices of x, y, z in \mathbb{R}^n and all real scalars c :

(i).

$$(x, y) = \sum_{i=1}^n 2x_i y_i = \sum_{i=1}^n 2y_i x_i = (y, x).$$

(ii).

$$\begin{aligned} (x, y + z) &= \sum_{i=1}^n 2x_i(y_i + z_i) \\ &= \sum_{i=1}^n (2x_i y_i) + (2x_i z_i) \\ &= \sum_{i=1}^n 2x_i y_i + \sum_{i=1}^n 2x_i z_i \\ &= (x, y) + (x, z). \end{aligned}$$

(iii).

$$c(x, y) = c \sum_{i=1}^n 2x_i y_i = \sum_{i=1}^n 2(cx_i) y_i = (cx, y).$$

(iv). If $x \neq O$, then

$$(x, x) = \sum_{i=1}^n 2x_i x_i = \sum_{i=1}^n 2x_i^2 > 0.$$

By (i), (ii), (iii) and (iv), (x, y) is an inner product.

(b). $(x, y) = \sum_{i=1}^n (x_i + y_i)^2 - \sum_{i=1}^n x_i y_i = \sum_{i=1}^n (x_i^2 + y_i^2 + x_i y_i)$.

(i). Let $x = (1, 1, \dots, 1)$, $y = z = O = (0, 0, \dots, 0)$ be elements in \mathbb{R}^n . $(x, y+z) = (x, O+O) = (x, O) = \sum_{i=1}^n (1^2 + 0^2 + 1 \cdot 0) = n$, but $(x, y) + (x, z) = (x, O) + (x, O) = 2 \sum_{i=1}^n 1 = 2n$. Thus the linearity axiom fails to hold.

(ii). If $x = (1, 1, \dots, 1)$ and $c = 2$, then $c(x, x) = c \sum_{i=1}^n (1^2 + 1^2 + 1 \cdot 1) = 2 \cdot 3n$. But $(cx, x) = \sum_{i=1}^n (2^2 + 1^2 + 2 \cdot 1) = 7n$, the homogeneity axiom fails to hold.