

EE203001 Linear Algebra
 Solutions to Quiz #3 Spring Semester, 2003

1. If f is injective, then for each y in the image $f(X)$ of X under f there is a unique x in X with $f(x) = y$. Choose an arbitrary fixed x_0 in X and define a function $g : Y \rightarrow X$ as

$$g(y) = \begin{cases} x & , \text{ if } y \in f(X) \text{ and } f(x) = y, \\ x_0 & , \text{ if } y \notin f(X). \end{cases}$$

Then we have

$$(g \circ f)(x) = g(f(x)) = g(y) = x = 1_X(x), \forall x \in X,$$

i.e., $g \circ f = 1_X$. Conversely if $g \circ f = 1_X$, then for $x, x' \in X$ with $f(x) = f(x')$ we have

$$x = 1_X(x) = (g \circ f)(x) = g(f(x)) = g(f(x')) = (g \circ f)(x') = 1_X(x') = x',$$

i.e., f is injective.

2. Let V be the space of all polynomials. Suppose V is spanned by a finite set of polynomials, $S = \{f_1, f_2, \dots, f_n\}$. Let f_{k_0} be a polynomial in S such that $\deg f_{k_0} = M \geq \deg f_i$ for all $f_i \in S$. Then all the elements of $L(S)$ are polynomials of degree equal to or less than M . Choose a polynomial g in V such that $\deg g = M + 1$, then $g \notin L(S)$. Thus V is not spanned by S .

3. See solutions of Homework#3.