

EE203001 Linear Algebra
 Solutions for Quiz-Solution #11 Spring Semester, 2003

Chao-Chung Chang, Meng-Hua Chang, Chen-Wei Hsu, Wen-Yao Chen

1. (a) Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$. A and B are orthogonal. Then $A+B = \begin{bmatrix} 1+\cos\theta & -\sin\theta \\ \sin\theta & 1+\cos\theta \end{bmatrix}$.
 $\Rightarrow (A+B)(A+B)^t = \begin{bmatrix} 1+\cos\theta & -\sin\theta \\ \sin\theta & 1+\cos\theta \end{bmatrix} \begin{bmatrix} 1+\cos\theta & \sin\theta \\ -\sin\theta & 1+\cos\theta \end{bmatrix} = \begin{bmatrix} 2+2\cos\theta & 0 \\ 0 & 2+2\cos\theta \end{bmatrix}$. Since $(A+B)(A+B)^t \neq I$, $A+B$ is not orthogonal.

(b) First, we want to know what dose $(AB)^t$ look like. Let $C = AB$. Then $c_{ij} = \sum_{k=1}^n a_{ik}b_{kj}$. Then $c_{ij}^t = c_{ji} = \sum_{k=1}^n a_{jk}b_{ki} = \sum_{k=1}^n b_{ik}^t a_{kj}^t$. Thus we get $(AB)^t = B^t A^t$. Since A and B are orthogonal,
 $\Rightarrow (AB)(AB)^t = (AB)(B^t A^t) = A(BB^t)A^t = AIA^t = AA^t = I$.
 Thus AB is orthogonal.

(c) $\Rightarrow (AB)(AB)^t = I$. (Since AB is orthogonal.)
 $\Rightarrow ABB^t A^t = I$.
 $\Rightarrow A^t ABB^t A^t = A^t$.
 $\Rightarrow BB^t A^t = A^t$. (Since A is orthogonal.)
 $\Rightarrow BB^t = I$.
 Thus B is orthogonal.

2. We have to find a nonsingular matrix P such that $AP = P \begin{bmatrix} 6 & 0 \\ 0 & -1 \end{bmatrix}$. Let $P = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then we have $\begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 6 & 0 \\ 0 & -1 \end{bmatrix}$. Thus,
 $a + 2c = 6a, b + 2d = -b, 5a + 4c = 6c, 5b + 4d = -d$.
 $\Rightarrow 5a = 2c, b = -d$. Choose $a = 2, b = 1, c = 5$, and $d = -1$, then $ad - bc = -2 - 5 = -7 \neq 0$. Thus $P = \begin{bmatrix} 2 & 1 \\ 5 & -1 \end{bmatrix}$ is nonsingular and hence it is a solution.

3. We prove it by induction.

(a) When $n = 1$, $(A + I)^1 = A + I = I + A = I + (2^1 - 1)A$.
 (b) For $n = k$, we assume $(A + I)^k = I + (2^k - 1)A$.
 (c) When $n = k + 1$, we have

$$\begin{aligned}
 (A + I)^{k+1} &= (A + I)(A + I)^k \\
 &= (A + I)(I + (2^k - 1)A) \\
 &= A + I + (2^k - 1)A^2 + 2^k A - A \\
 &= I + (2^k - 1)A + 2^k A \\
 &= I + (2^{k+1} - 1)A
 \end{aligned}$$