

EE203001 Linear Algebra
 Quiz #10 05/06/2003

Quiz Problems:

1. (a) (5 pts.) Prove that a 2×2 matrix A commutes with every 2×2 matrix if and only if A commutes with each of the four matrices

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

(b) (5 pts.) Find all such matrices A .

2. Prove each of the following statements about $n \times n$ matrices, or exhibit a counter example.

(a) (2 pts.) If $(A - B)^2 = (A + B)^2$, then $A^2B = BA^2$.

(b) (2 pts.) If $A^2 = I$, then either $A = I$ or $A = -I$.

(c) (2 pts.) If $AB + BA = O$, then $A^2B^3 = B^3A^2$.

(d) (2 pts.) If A and B are nonsingular, then $A + B$ is nonsingular.

(e) (2 pts.) If A and B are nonsingular, then AB is nonsingular.

(f) (2 pts.) If the product AB is nonsingular, then both A and B are nonsingular.

(g) (2 pts.) If A, B , and $A + B$ are nonsingular, then $A - B$ is nonsingular.

(h) (2 pts.) If $A^2 = O$, then $A = O$.

(i) (2 pts.) If $A^2 = O$, then $A + I$ is nonsingular.

(j) (2 pts.) If $(A + 2I)^2 = O$, then A is nonsingular.

3. Determine the inverse of each of the following matrices.

(a) (5 pts.) $\begin{bmatrix} 0 & 5 & 8 \\ 2 & 1 & 1 \\ -1 & 1 & 2 \end{bmatrix}.$

(b) (5 pts.) $\begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 4 \end{bmatrix}.$