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6. T (x, y) = (ex, ey). For all (x′, y′) in R2, then

T ((x, y) + (x′, y′)) = T (x + x′, y + y′) = (ex+x′ , ey+y′)

T (x, y) + T (x′, y′) = (ex, ey) + (ex′ , ey′) = (ex + ex′ , ey + ey′)

Since (ex+x′ , ey+y′) 6= (ex+ex′ , ey+ey′) in general, T ((x, y)+(x′, y′)) 6= T (x, y)+T (x′, y′)
Thus T is nonlinear.

10. T (x, y) = (2x− y, x + y). For all (x′, y′) in R2 and all scalars a and b, then

T (a(x, y) + b(x′, y′)) = T (ax + bx′, ay + by′)

= (2(ax + bx′)− (ay + by′), (ax + bx′) + (ay + by′))

= (a(2x− y) + b(2x′ − y′), a(x + y) + b(x′ + y′))

= a(2x− y, x + y) + b(2x′ − y′, x′ + y′)

and

aT (x, y) + bT (x′, y′) = a(2x− y, x + y) + b(2x′ − y′, x′ + y′)

Since T (a(x, y) + b(x′, y′)) = aT (x, y) + bT (x′, y′), T is linear.
To find the null space, it’s equivalent to finding T (x, y) = O.
⇒ T (x, y) = (2x− y, x + y) = O
⇒ x = 0 and y = 0.
⇒ N(T ) = {O} and T (R2) = {(x, y) : (x, y) ∈ R2}
⇒ Its nullity = 0, and rank = 2.

12. Let ax + by = 0, a, b ∈ R and a2 + b2 6= 0 be a fixed line in R2 through the
origin. We know u = ( −b√

a2+b2
, a√

a2+b2
) is a point on line ax + by = 0 and v =

( a√
a2+b2

, b√
a2+b2

) is a unit vector orthogonal to ( −b√
a2+b2

, a√
a2+b2

). Thus the set B =

{( −b√
a2+b2

, a√
a2+b2

), ( a√
a2+b2

, b√
a2+b2

)} is an orthonormal basis for R2. To find the reflection

T (x, y) of (x, y) with respect to the line ax + by = 0, we consider (x, y) = (−bx+ay√
a2+b2

)u +

( ax+by√
a2+b2

)v. Thus T (x, y) = (−bx+ay√
a2+b2

)u − ( ax+by√
a2+b2

)v = ( (−b2+a2)x−2aby√
a2+b2

, (a2−b2)y−2abx√
a2+b2

).

Hence the transformation T is linear. Since for null space T (x, y) = O,

( (−b2+a2)x−2aby√
a2+b2

, (a2−b2)y−2abx√
a2+b2

) = O, (0, 0) is the only solution of (x, y). N(T ) = O and

nullity is 0. Range is all R2 and rank = 2.

15. We can take a counterexample to prove T is not linear. Let (1, 0) and (1, π) be points
in R2. For T (r, θ) = (r, 2θ), we have T ((1, 0) + (1, π

2
)) = T (

√
2, π

4
) = (

√
2, π

2
), and

T (1, 0) + T (1, π
2
) = (1, 0) + (1, π) = 0. Since T ((1, 0) + (1, π

2
)) 6= T (1, 0) + T (1, π

2
), T is

not linear.



20. T : R3 → R3, T (x, y, z) = (x + 1, y + 1, z − 1).

T is not linear, since T (2(0, 0, 0)) = T (0, 0, 0) = (0 + 1, 0 + 1, 0 − 1) = (1, 1,−1) but
2T ((0, 0, 0)) = 2T (0, 0, 0) = 2(0 + 1, 0 + 1, 0− 1) = (2, 2,−2).

24. Assume dim N(T ) = k < ∞ and dim T (V ) = r < ∞. Let {e1, e2, . . . , ek} be a basis for
N(T ). Since V is infinite-dimensional, there exist infinitely many ek+1, ek+2, . . . , ek+n, . . .
in V such that e1, e2, . . . , ek, ek+1, . . . , ek+n, . . . are linearly independent. We choose
n > dim T (V ) = r, then the n vectors T (ek+1), T (ek+2), . . . , T (ek+n) are linearly de-
pendent. Thus, there are a1, a2, . . . , an not all zeros, such that a1T (ek+1)+a2T (ek+2)+
· · ·+ anT (ek+n) = 0. Since

0 = a1T (ek+1) + a2T (ek+2) + · · ·+ anT (ek+n)

= T (a1ek+1 + a2ek+2 + · · ·+ anek+n), (linearity of T )

a1ek+1 + a2ek+2 + · · ·+ anek+n is in N(T ). That is a1ek+1 + a2ek+2 + · · ·+ anek+n is a
linear combination of e1, e2, . . . , ek, a contradiction to that e1, e2, . . . , ek, . . . , ek+n are
linearly independent. Hence at least one of T (V ) or N(T ) is infinite-dimensional.

25. Let p(x) =
∑n

i=0 pix
i, r(x) =

∑n
i=0 rix

i be two real polynomials of degree ≤ n, and
a, b ∈ R. Since

T (ap(x) + br(x)) = T (a
n∑

i=0

pix
i + b

n∑
i=0

rix
i)

= T (
n∑

i=0

(api + bri)x
i)

=
n∑

i=0

(api + bri)(x + 1)i

= a
n∑

i=0

pi(x + 1)i + b
n∑

i=0

ri(x + 1)i

= aT (p) + bT (r),

T is a linear transformation.

If T (p(x)) = 0, then
∑n

i=0 pi(x + 1)i = 0. We know that {1, 1 + x, . . . , (1 + x)n} is
a basis for V (Section 3.6), hence pi = 0, for 1 ≤ i ≤ n. Thus N(T ) = {O} and
dim N(T ) = 0.

The dimension of V is n+1 which is finite. Thus by rank-nullity theorem, dim N(T )+
dim T (V ) = dim V , we have dim T (V ) = dim V = n + 1. But T (V ) ⊂ V , we have
T (V ) = V .

27. We find

T (ax + by) = (ax + by)′′ + A(ax + by)′ + B(ax + by)

= ax′′ + by′′ + Aax′ + Aby′ + Bax + Bby

= a(x′′ + Ax′ + Bx) + b(y′′ + Ay′ + By)

= aT (x) + bT (y),
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so T is linear. To derive its null space, we need T (y) = y′′+Ay′+By = 0. Let yh = eλx,
then λ2eλx + Aλeλx + Beλx = 0.⇒ eλx(λ2 + Aλ + B) = 0. ⇒ λ2 + Aλ + B = 0. Then

the solution is λ = −A±
√

A2−4B
2

.

(a) If A2 − 4B = 0, T (e−Ax/2) = 0 and T (xe−Ax/2) = 0. So the null space N(T ) =
L{e−Ax/2, xe−Ax/2} with nullity 2, and the range T (V ) = {y′′(t)+Ay′(t)+By(t) :
y(t) ∈ V } with rank infinity since dim V = ∞ and by Exercise 24.

(b) If A2 − 4B > 0, T (e
−A+

√
A2−4B
2

x) = 0 and T (e
−A−

√
A2−4B
2

x) = 0. So the null

space N(T ) = L{e
−A+

√
A2−4B
2

x, e
−A−

√
A2−4B
2

x} with nullity 2, and the range T (V ) =
{y′′(t) + Ay′(t) + By(t) : y(t) ∈ V } with rank infinity since dim V = ∞ and by
Exercise 24.

(c) If A2− 4B < 0,λ = −A±j
√

4B−A2

2
. So T (e

−A+j
√

4B−A2

2
x) = 0 and T (e

−A−j
√

4B−A2

2
x) =

0. This means if y = c1e
−A+j

√
4B−A2

2
x +c2e

−A−j
√

4B−A2

2
x for arbitrary c1 and c2, then

T (y) = 0. But in this example, y must be real, so we take c1 as a + b
j

and c2 as

a− b
j

where a, b are two arbitrary real numbers. Then

y = (a +
b

j
)e

−A+j
√

4B−A2

2
x + (a− b

j
)e

−A−j
√

4B−A2

2
x

= ae−A/2(e
j
√

4B−A2

2 + e
−j
√

4B−A2

2 ) + be−A/2(e
j
√

4B−A2

2 − e
−j
√

4B−A2

2 )/j

= 2ae−A/2 cos

√
4B − A2

2
+ 2be−A/2 sin

√
4B − A2

2

Hence N(T ) = L{cos
√

4B−A2

2
, sin

√
4B−A2

2
} with nullity 2 and the range T (V ) =

{y′′(t) + Ay′(t) + By(t) : y(t) ∈ V } with rank infinity since dim V = ∞ and by
Exercese 24.

28. Since

T (αf1 + βf2) =

∫ b

a

(αf1(t) + βf2(t)) sin(x− t)dt

= α

∫ b

a

f1(t) sin(x− t)dt + β

∫ b

a

f2(t) sin(x− t)dt

= αT (f1)(x) + βT (f2)(x),

T is linear. Note that

T (f) =

∫ b

a

f(t) sin (x− t)dt

= sin x

∫ b

a

f(t) cos tdt− cos x

∫ b

a

f(t) sin tdt

3



Thus T (f) ∈ L(sin x, cos x). Consider the equation
∫ b

a
cos (t + k) sin tdt = 0. We have∫ b

a

(cos t cos k − sin t sin k) sin tdt = 0

⇒ cos k

∫ b

a

cos t sin tdt− sin k

∫ b

a

sin2 tdt = 0

⇒ cos k

∫ b

a

1

2
sin 2tdt− sin k

∫ b

a

1− cos 2t

2
dt = 0

⇒ 1

2
cos k

cos 2t

−2
|ba −

1

2
sin k(t− sin 2t

2
)|ba = 0

⇒ −1

4
cos k(cos 2b− cos 2a)− 1

2
sin k(b− a− sin 2b− sin 2a

2
) = 0

⇒ − cos k(cos 2b− cos 2a) = 2 sin k(b− a− sin 2b− sin 2a

2
)

⇒ tan k =
sin k

cos k
=

cos 2a− cos 2b

2(b− a)− (sin 2b− sin 2a)
if 2(b− a) 6= (sin 2b− sin 2a)

We have to examine when 2b − sin 2b = 2a − sin 2a. Let f(b) = 2b − sin 2b, we have
f ′(b) = 2− 2 cos 2b ≥ 0 with equality iff b = nπ where n is an integer. Thus, f(b) is a
nondecreasing function and f ′(b) = 0 when b = nπ where n is an integer. Therefore,
2b− sin 2b = 2a− sin 2a only when a = b.

Next, we consider the equation
∫ b

a
cos (t + k) cos tdt = 0. Similarly, we have tan k =

2(b−a)+sin 2b−sin 2a
cos 2a−cos 2b

if cos 2b 6= cos 2a. Note that cos 2b = cos 2a when b = ±a + nπ

where n is an integer. We next show that we cannot have
∫ b

a
cos(t + k) sin tdt = 0 and∫ b

a
cos(t + k) cos tdt = 0 simultaneously for any k when b 6= ±a + nπ where n is an

integer. Otherwise, we could have

⇒ cos 2a− cos 2b

2(b− a)− (sin 2b− sin 2a)
=

2(b− a) + sin 2b− sin 2a

cos 2a− cos 2b

⇒ (cos 2a− cos 2b)2 = 4(b− a)2 − (sin 2b− sin 2a)2

⇒ cos2 2a− 2 cos 2a cos 2b + cos2 2b = 4(b− a)2 − sin2 2b + 2 sin 2b sin 2a− sin2 2a

⇒ 4(b− a)2 = −2 cos(2a− 2b)

⇒ 2(b− a)2 = − cos(2(b− a))

Let x = b − a, then we have 2x2 + cos 2x = 0. Define f(x) = 2x2 + cos 2x. Then
f ′(x) = 4x − 2 sin 2x and f ′′(x) = 4(1 − cos 2x). Note that f ′′(x) ≥ 0 for all x
and therefore, f(x) is a convex function. So the local minimum of f(x) is the global
minimum of it. Since f ′(x) = 0 ⇔ x = 0, the global minimum happens when x = 0.
But f(0) = 1, so 2(b−a)2 6= − cos(2(b−a)), a contradiction, when b 6= ±a+nπ where
n is an integer.

Let us consider two different cases:

(a) b 6= ±a + nπ where n is an integer.
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Let k1 and k2 satisfy the following equations∫ b

a

cos(t + k1) sin tdt = 0 and

∫ b

a

cos(t + k2) cos tdt = 0

respectively. Then by the previous result, we have
∫ b

a
cos(t + k1) cos tdt = C1 6= 0

and
∫ b

a
cos(t + k2) sin tdt = C2 6= 0 respectively. Thus, T ( cos (t+k1)

C1
) = sin x with

k1 = tan−1( cos 2a−cos 2b
2(b−a)−(sin 2b−sin 2a)

) and T ( cos (t+k2)
−C2

) = cos x with k2 = tan−1(2(b−a)+sin 2b−sin 2a
cos 2a−cos 2b

).

Hence L(cos x, sin x) ⊆ T (V ). We conclude that T (V ) = L(cos x, sin x) and
{cos x, sin x} is a basis of T (V ) since it is a linearly independent set. Therefore, the

rank=2. The null space N(T ) = {f ∈ V |
∫ b

a
f(x) cos xdx =

∫ b

a
f(x) sin xdx = 0}.

Since L{cos 2x, sin 2x, cos 3x, sin 3x, . . .} ⊆ N(T ), and the nullity is infinity.

(b) b = ±a + nπ but b 6= a where n is an integer. In this case, we have∫ b

a

cos t cos tdt =

∫ b

a

cos2 tdt

=

∫ b

a

(
1 + cos 2t

2

)
dt

=

(
t

2
+

sin 2t

4

)
|ba

=
b− a

2
+

sin 2b− sin 2a

4

=
1

4
(2b− 2a + sin 2b− sin 2a)

= C1 6= 0 (The reason is similar to that of 2b− 2a− sin 2b + sin 2a)

and ∫ b

a

cos t sin tdt =
1

2

∫ b

a

sin 2tdt

= −1

4
cos 2t|ba

= −1

4
(cos 2b− cos 2a)

= 0.

So

T

(
cos t

C1

)
= sin x.

In a similar way, we have ∫ b

a

sin t cos tdt = 0

and ∫ b

a

sin t sin tdt =
1

4
(2b− 2a− sin 2b + sin 2a) = C2 6= 0.

Hence

T

(
sin t

C2

)
= cos x.
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Therefore, L(cos x, sin x) ⊆ T (V ). We conclude that T (V ) = L(cos x, sin x) and
{cos x, sin x} is a basis of T (f) since it is a linearly independent set. Therefore, the
rank=2. Since L{cos 2x, sin 2x, cos 3x, sin 3x, . . .} ⊆ N(T ), the nullity is infinity.

30. (a) To prove S is a subspace of V , we only need to check closure axioms because S
is a subset of V .

i. If f1 and f2 are two elements of S, then∫ π

−π
(f1(t) + f2(t))dt =

∫ π

−π
f1(t)dt +

∫ π

−π
f2(t)dt = 0 + 0 = 0.∫ π

−π
(f1(t) + f2(t)) cos tdt =

∫ π

−π
f1(t) cos tdt +

∫ π

−π
f2(t) cos tdt = 0 + 0 = 0.∫ π

−π
(f1(t) + f2(t)) sin tdt =

∫ π

−π
f1(t) sin tdt +

∫ π

−π
f2(t) sin tdt = 0 + 0 = 0.

ii. If f are a elements of S, then∫ π

−π
cf(t)dt = c

∫ π

−π
f(t)dt = c · 0 = 0.∫ π

−π
cf(t) cos tdt = c

∫ π

−π
f(t) cos tdt = c · 0 = 0.∫ π

−π
cf(t) sin tdt = c

∫ π

−π
f(t) sin tdt = c · 0 = 0.

Thus, S is a subspace of V .

(b) i. If f(x) = cos nx where n = 2, 3, . . ., then∫ π

−π
f(t)dt =

∫ π

−π
cos ntdt = sin nt

n
|π−π = sin nπ−sin (−nπ)

n
= 0+0

n
= 0.∫ π

−π
f(t) cos tdt =

∫ π

−π
cos nt cos tdt = 1

2
(
∫ π

−π
cos (n + 1)tdt+

∫ π

−π
cos (n− 1)tdt) =

1
2
(0 + 0) = 0.∫ π

−π
f(t) sin tdt =

∫ π

−π
cos nt sin tdt = 1

2
(
∫ π

−π
sin (n + 1)tdt−

∫ π

−π
sin (n− 1)tdt) =

1
2
(0 + 0) = 0.

ii. If f(x) = sin nx where n = 2, 3, . . ., then∫ π

−π
f(t)dt =

∫ π

−π
sin ntdt = − cos nt

n
|π−π = − cos nπ−cos (−nπ)

n
= − cos nπ−cos nπ

n
= 0.∫ π

−π
f(t) cos tdt =

∫ π

−π
sin nt cos tdt = 1

2
(
∫ π

−π
sin (n + 1)tdt+

∫ π

−π
sin (n− 1)tdt) =

1
2
(0 + 0) = 0.∫ π

−π
f(t) sin tdt =

∫ π

−π
sin nt sin tdt = −1

2
(
∫ π

−π
cos (n + 1)tdt−

∫ π

−π
cos (n− 1)tdt) =

−1
2
(0− 0) = 0.

so S contains the functions f(x) = cos nx and f(x) = sin nx for each n =
2, 3, . . ..

(c) We note that
∫ π

−π
cos mx sin nxdx = 1

2
(
∫ π

−π
sin (m + n)x−sin (m− n)x)dx = 0−0

2
=

0∀m, n. Also
∫ π

−π
cos mxcosnxdx =

∫ π

−π
sin mx sin nxdx = 0∀m 6= n.Hence cos mx

and sin nx are linearly indepedent. It is clear that
W = L{cos 2x, sin 2x, cos 3x, sin 3x, . . .} ⊆ S and dim W = +∞. Thus dim
S = +∞.

(d) For any f(x) ∈ V , the image g(x) = T (f) of f is

g(x) =

∫ π

−π

{1 + cos(x− t)}f(t)dt

=

∫ π

−π

f(t)dt + cos x

∫ π

−π

cos tf(t)dt + sin x

∫ π

−π

sin tf(t)dt

∈ L(1, cos x, sin x).

Thus T (V ) ⊆ L(1, cos x, sin x).
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Consider f(t) = 1
2π

, cos t
π

, sin t
π

, we have∫ π

−π

1

2π
dt = 1,

∫ π

−π

1

2π
cos tdt = 0,

∫ π

−π

1

2π
sin tdt = 0,

∫ π

−π

cos t

π
dt = 0,

∫ π

−π

cos t

π
cos tdt = 1,

∫ π

−π

cos t

π
sin tdt = 0,∫ π

−π

sin t

π
dt = 0,

∫ π

−π

sin t

π
cos tdt = 0,

∫ π

−π

sin t

π
sin tdt = 1.

Thus, we have T ( 1
2π

) = 1, T ( cos x
π

) = cos x, T ( sin x
π

) = sin x, which implies that
L(1, cos x, sin x) ⊆ T (V ). We conclude that T (V ) = L(1, cos x, sin x) and {1, cos x, sin x}
is a basis of T (V ) since it is a linearly independent set.

(e) f(x) ∈ N(T ) if and only if
∫ π

−π
f(t)dt+cos x

∫ π

−π
cos tf(t)dt+sin x

∫ π

−π
sin tf(t)dt =

0. Since 1, cos x and sin x are linearly independent in V , we have
∫ π

−π
f(t)dt =

0,
∫ π

−π
cos tf(t)dt = 0 and

∫ π

−π
sin tf(t)dt = 0. Thus N(T ) = S.

(f) If T (f) = cf , c 6= 0, f 6= 0, then cf is in T (V ). Hence f = c1 + c2 cos x + c3 sin x.
so

T (f) = 2πc1T (
1

2π
) + πc2T (

cos x

π
) + πc3T (

sin x

π
)

= 2πc1 + πc2 cos x + πc3 sin x.

Thus, 2πc1 + πc2 cos x + πc3 sin x = c(c1 + c2 cos x + c3 sin x). ⇒ (2π− c)c1 + (π−
c)c2 cos x + (π − c)c3 sin x = 0. ⇒ (2π − c)c1 = (π − c)c2 = (π − c)c3 = 0.
If c1 6= 0, then c = 2π, c2 = c3 = 0, and f(x) = c1 where c1 6= 0 but otherwise
arbitrary.If one of c2 and c3 is non-zero, then c = π, c1 = 0 and f(x) = c2 cos x +
c3 sin x where c2, c3 are not both 0 but otherwise arbitrary.
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