

EE203001 Linear Algebra
 Solutions to Homework #7 Spring Semester, 2003

Chao-Chung Chang, Meng-Hua Chang, Wen-Yao Chen, Chen-Wei Hsu

6. Let $g(x) = K$, where K is a constant. To find the $g(x)$ nearest to f is equal to find the minimum value of $\|g - f\|^2$.

$$\|g - f\|^2 = (K - \frac{1}{x}, K - \frac{1}{x}) = \int_1^3 (K^2 - 2K\frac{1}{x} + \frac{1}{x^2}) dx = (K^2 x - 2K \log x - \frac{1}{x})|_1^3 = 2K^2 - (2 \log 3)K + \frac{2}{3} = 2(K - \frac{\log 3}{2})^2 + \frac{2}{3} - \frac{1}{2} \log^2 3.$$

Since $(K - \frac{\log 3}{2})^2 \geq 0$, the minimum value of $\|g - f\|^2$ occurs at $(K - \frac{\log 3}{2})^2 = 0$. That is $K = \frac{1}{2} \log 3$. Thus $g(x) = \frac{1}{2} \log 3$ and $\|g - f\|^2 = \frac{2}{3} - \frac{1}{2} \log^2 3$.

7. Finding a constant polynomial $g(x) = c$ nearest to $f(x) = e^x$ is equivalent to finding an element g in the subspace $L(\{1\}) = \{a; a \in \mathbb{R}\}$ of $C(0, 2)$, such that g is nearest to f .

Normalizing the constant function 1, we obtain $e_1(x) = \frac{\sqrt{2}}{2}$. By the Approximation Theorem, the projection $g(x)$ of f on $L(\{e_1\})$ is nearest to f . Since

$$(f, e_1) = \int_0^2 \frac{\sqrt{2}}{2} e^x dx = \frac{\sqrt{2}}{2} e^x|_0^2 = \frac{\sqrt{2}}{2} e^2 - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} (e^2 - 1),$$

we have

$$g(x) = (f, e_1) e_1 = \frac{\sqrt{2}}{2} (e^2 - 1) \cdot \frac{\sqrt{2}}{2} = \frac{1}{2} (e^2 - 1).$$

Since $(f - g) \perp g$, we have

$$\begin{aligned} \|f - g\|^2 &= \|f\|^2 - \|g\|^2, \quad (\text{by Pythagorean Theorem}) \\ &= \|f\|^2 - \|(f, e_1) e_1\|^2 = \|f\|^2 - (f, e_1)^2 \\ &= \int_0^2 e^{2x} dx - \frac{1}{2} (e^2 - 1)^2 \\ &= \frac{e^4 - 1}{2} - \frac{1}{2} (e^4 - 2e^2 + 1) = e^2 - 1. \end{aligned}$$

8. Finding a linear polynomial $g(x) = ax + b$ nearest to $f(x) = e^x$ is equivalent to finding an element g in the subspace $L(\{1, x\}) = \{ax + b; a, b \in \mathbb{R}\}$, such that g is nearest to f .

Because $(1, x) = \int_{-1}^1 1 \cdot x dx = \frac{x^2}{2}|_{-1}^1 = 0$, $\{1, x\}$ is an orthogonal basis for $L(\{1, x\})$. We normalize $\{1, x\}$ to obtain an orthonormal basis $\{e_1, e_2\}$, where

$$e_1(x) = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \quad \text{and} \quad e_2(x) = \frac{\sqrt{6}x}{2},$$

since

$$\|1\| = \left(\int_{-1}^1 1 dx \right)^{1/2} = \sqrt{2},$$

$$\|x\| = \left(\int_{-1}^1 x^2 dx \right)^{1/2} = \left(\frac{x^3}{3} \Big|_{-1}^1 \right)^{1/2} = \sqrt{\frac{2}{3}}.$$

By the Approximation Theorem, $g(x) = \sum_{i=1}^2 (f, e_i) e_i$ is nearest to f .

Since

$$(f, e_1) = \frac{\sqrt{2}}{2} (f, 1) = \frac{\sqrt{2}}{2} \int_{-1}^1 e^x dx = \frac{\sqrt{2}}{2} (e - e^{-1})$$

and

$$\begin{aligned} (f, e_2) &= \frac{\sqrt{6}}{2} (f, x) = \frac{\sqrt{6}}{2} \int_{-1}^1 x e^x dx \\ &= \frac{\sqrt{6}}{2} (x e^x|_{-1}^1 - \int_{-1}^1 e^x dx), \quad (u = x, dv = e^x dx \Rightarrow v = e^x, du = dx) \\ &= \frac{\sqrt{6}}{2} (x - 1) e^x|_{-1}^1 \\ &= \frac{\sqrt{6}}{2} (-2e^{-1}) = -\sqrt{6}(e^{-1}), \end{aligned}$$

we have

$$\begin{aligned} g(x) &= \sum_{i=1}^2 (f, e_i) e_i \\ &= \frac{\sqrt{2}}{2} (e - e^{-1}) \frac{\sqrt{2}}{2} - \sqrt{6}(e^{-1}) \frac{\sqrt{6}x}{2} \\ &= \frac{e - e^{-1}}{2} - 3e^{-1}x. \end{aligned}$$

Finally,

$$\begin{aligned} \|f - g\| &= \|f\|^2 - \|g\|^2 = \int_{-1}^1 e^{2x} dx - [(f, e_1)^2 + (f, e_2)^2] \\ &= \frac{e^{2x}}{2} \Big|_{-1}^1 - \left[\frac{1}{2}(e - e^{-1})^2 + 6(e^{-1})^2 \right] \\ &= \frac{e^2}{2} - \frac{e^{-2}}{2} - \frac{1}{2}e^2 + 1 - \frac{1}{2}e^{-2} - 6e^{-2} \\ &= 1 - 7e^{-2}. \end{aligned}$$

9. As in Example 1 of Section 3.12, $\{u_0(x), u_1(x), u_2(x)\}$ is an orthogonal set. We normalize these basis vectors $u_0(x) = 1$, $u_1(x) = \cos x$ and $u_2(x) = \sin x$ as $\|u_0\| = \sqrt{\int_0^{2\pi} dx} = \sqrt{2\pi}$.

$$\|u_1\| = \sqrt{\int_0^{2\pi} \cos^2 x dx} = \sqrt{\int_0^{2\pi} \frac{1+\sin 2x}{2} dx} = \sqrt{\frac{2\pi}{2}} = \sqrt{\pi}.$$

$$\|u_2\| = \sqrt{\int_0^{2\pi} \sin^2 x dx} = \sqrt{\int_0^{2\pi} \frac{1-\cos 2x}{2} dx} = \sqrt{\frac{2\pi}{2}} = \sqrt{\pi}.$$

So the orthonormal basis are $u'_0(x) = \frac{1}{\sqrt{2\pi}}$, $u'_1(x) = \frac{\cos x}{\sqrt{\pi}}$ and $u'_2(x) = \frac{\sin x}{\sqrt{\pi}}$. Now we compute (f, u'_0) , (f, u'_1) and (f, u'_2) where $f(x) = x$.

$$(f, u'_0) = \int_0^{2\pi} \frac{x}{\sqrt{2\pi}} dx = \frac{x^2}{2\sqrt{2\pi}}|_0^{2\pi} = \frac{4\pi^2}{2\sqrt{2\pi}} = \sqrt{2\pi}^{3/2}.$$

$$(f, u'_1) = \frac{1}{\sqrt{\pi}} \int_0^{2\pi} x \cos x dx = \frac{1}{\sqrt{\pi}} (x \sin x|_0^{2\pi} - \int_0^{2\pi} \sin x dx) = \frac{1}{\sqrt{\pi}} (0 - 0) = 0.$$

$$(f, u'_2) = \frac{1}{\sqrt{\pi}} \int_0^{2\pi} x \sin x dx = \frac{1}{\sqrt{\pi}} (-x \cos x|_0^{2\pi} + \int_0^{2\pi} \cos x dx) = \frac{-2\pi+0}{\sqrt{\pi}} = -2\sqrt{\pi}.$$

Hence the trigonometric polynomial nearest to f is $\frac{\sqrt{2\pi}^{3/2}}{\sqrt{2\pi}} - 2\sqrt{\pi} \frac{\sin x}{\sqrt{\pi}} = \pi - 2 \sin x$.

10. In the linear space V of Exercise 5, we know that the set of all linear polynomials is a subspace of V spanned by orthonormal basis $\{y_0, y_1\}$, where $y_0 = 1$, $y_1 = t - 1$. By THEOREM 3.16., $p(x)$, the projection of $f(x) = e^{-x}$ on the subspace of all linear polynomials, is nearest to f . By the definition of inner product $(f, g) = \int_0^\infty e^{-t} f(t)g(t) dt$, we have

$$\begin{aligned}
 (f, y_0) &= \int_0^\infty e^{-t} e^{-t} \cdot 1 \, dt \\
 &= \int_0^\infty e^{-2t} \, dt \\
 &= \frac{-1}{2} e^{-2t} \Big|_0^\infty \\
 &= \frac{1}{2}, \text{ and}
 \end{aligned}$$

$$\begin{aligned}
 (f, y_1) &= \int_0^\infty e^{-t} e^{-t} \cdot (t - 1) \, dt \\
 &= \int_0^\infty e^{-2t} \cdot t \, dt - \int_0^\infty e^{-2t} \cdot 1 \, dt \\
 &= \frac{-1}{2} e^{-2t} \cdot t \Big|_0^\infty + \frac{1}{2} \int_0^\infty e^{-2t} \, dt - \int_0^\infty e^{-2t} \, dt \\
 &= 0 + \frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} \\
 &= -\frac{1}{4}.
 \end{aligned}$$

Hence $p(x) = (f, y_0)y_0 + (f, y_1)y_1 = \frac{1}{2} \cdot 1 - \frac{1}{4}(x - 1) = -\frac{1}{4}x + \frac{3}{4}$.