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3. (a) If ‖x + y‖ = ‖x− y‖, then

(x + y, x + y) = (x− y, x− y)

⇒ (x, x) + (x, y) + (y, x) + (y, y) = (x, x)− (x, y)− (y, x) + (y, y),

⇒ (x, x) + 2(x, y) + (y, y) = (x, x)− 2(x, y) + (y, y), (By Axiom 1)

⇒ 4(x, y) = 0,

⇒ (x, y) = 0.

(b) If (x, y) = 0, then

‖x + y‖ = (x + y, x + y)1/2

= {(x, x) + 2(x, y) + (y, y)}1/2

= {(x, x) + (y, y)}1/2

= {(x, x)− 2(x, y) + (y, y)}1/2

= (x− y, x− y)1/2

= ‖x− y‖ .

8. (b)

‖x + y‖2 − ‖x− y‖2 = (x + y, x + y)− (x− y, x− y)

= (x, x) + (x, y) + (y, x) + (y, y)− {(x, x)− (x, y)− (y, x) + (y, y)}
= 2(x, y) + 2(y, x).

(c)

‖x + y‖2 + ‖x− y‖2 = (x + y, x + y) + (x− y, x− y)

= (x, x) + (x, y) + (y, x) + (y, y) + (x, x)− (x, y)− (y, x) + (y, y)

= 2(x, x) + 2(y, y)

= 2 ‖x‖2 + 2 ‖y‖2 .

11. (a) Given (f, g) =
∫ e

1
(log(x))f(x)g(x)dx. If f(x) =

√
x, then

‖f‖ = (f, f)1/2

= (

∫ e

1

(log x)f(x)f(x)dx)1/2

= (

∫ e

1

(log x)xdx)1/2.



Let u = log x, then du = 1
x
dx. Let v = x2

2
, then dv = xdx. Thus

(

∫
(log x)xdx)1/2 = (

∫
udv)1/2

= (uv −
∫

vdu)1/2

= (log x
x2

2
−

∫
x2

2

1

x
dx)1/2.

So

(

∫ e

1

(log x)xdx)1/2 = (log x
x2

2
|e1 −

∫ e

1

x2

2

1

x
dx)1/2

= (
e2

2
− x2

4
|e1)1/2

= (
e2

2
− e2 − 1

4
)1/2

= (
e2 + 1

4
)1/2

=
1

2

√
e2 + 1.

(b) First we evaluate
∫ e

1
log xdx. Let u = x2 log x, then du = (2x log x + x)dx. Let

v = −x−1, then dv = 1
x2 dx. Thus∫

log xdx =

∫
(

1

x2
)x2 log xdx

=

∫
udv

= uv −
∫

vdu

= −x log x +

∫
1

x
(2x log x + x)dx.

So ∫ e

1

log xdx = −x log x|e1 +

∫ e

1

1

x
(2x log x + x)dx

= −e +

∫ e

1

2 log xdx +

∫ e

1

dx

= −e +

∫ e

1

2 log xdx + e− 1

=

∫ e

1

2 log xdx− 1.
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Thus,
∫ e

1
log xdx = 1. Now we want to find a linear polynomial g(x) = a + bx

nonzero and orthogonal to f(x) = 1, i.e., (f, g) = 0. Since

(f, g) =

∫ e

1

log x(a + bx)dx

= a

∫ e

1

log xdx + b

∫ e

1

x log xdx

= a + b(
e2 + 1

4
) (by (a)),

we have (f, g) = 0 when a = −b( e2+1
4

). So g(x) = b(x − e2+1
4

), b is an arbitrary
real number.

12. (f, g) =
∫ 1

−1
f(t)g(t) dt.

Since u1(t) = 1 and u2(t) = t, we have the following results:

(u1, u1) =

∫ 1

−1

1 · 1 dt = t |1−1 = 2,

(u2, u2) =

∫ 1

−1

t · t dt =
t3

3

∣∣∣∣1
−1

=
2

3
, and

(u1, u2) =

∫ 1

−1

1 · t dt =
t2

2

∣∣∣∣1
−1

=
1

2
− 1

2
= 0.

Then ‖u1‖ = (u1, u1)
1/2 =

√
2, ‖u2‖ = (u2, u2)

1/2 =
√

2
3
, and that u1 and u2 are

orthogonal.

By the fact that u3(t) = 1 + t = u1(t) + u2(t) and (u1, u2) = 0, we have

(u1, u3) = (u1, u1 + u2) = (u1, u1) + (u1, u2) = (u1, u1) = ‖u1‖2 ,

(u2, u3) = (u2, u1 + u2) = (u2, u1) + (u2, u2) = (u2, u2) = ‖u2‖2 ,

and

(u3, u3) = (u1 + u2, u1 + u2) = (u1, u1) + (u2, u1) + (u2, u1) + (u2, u2)

= 2 + 0 + 0 +
2

3
=

8

3
.

The last equation implies

‖u3‖ = (u3, u3)
1/2 =

√
8

3
.

Let θij be the angle between ui and uj, for 1 ≤ i, j ≤ 3 and i 6= j. Then

cos θ12 =
(u1, u2)

‖u1‖ ‖u2‖
= 0,

cos θ13 =
(u1, u3)

‖u1‖ ‖u3‖
=

‖u1‖2

‖u1‖ ‖u3‖
=
‖u1‖
‖u3‖

=

√
2√
8
3

=

√
3

2
, and

cos θ23 =
(u2, u3)

‖u2‖ ‖u3‖
=

‖u2‖2

‖u2‖ ‖u3‖
=
‖u2‖
‖u3‖

=

√
2
3√
8
3

=
1

2
.
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Thus

θ12 = cos−1 0 =
π

2
, θ13 = cos−1

√
3

2
=

π

6
, and θ23 = cos−1 1

2
=

π

3
.

14. Let P be the linear space of all real polynomials and O be the zero element of P , that
is, O(t) = 0.

(a). (f, g) = f(1)g(1).

Let f(t) = t−1, then (f, f) = f(1)f(1) = 0·0 = 0. Since f 6= O, the nonnegativity
property is violated.

(b). (f, g) = |
∫ 1

0
f(t)g(t) dt|.

Let c < 0 and f(t) 6= O(t). Then c(f, f) = c|
∫ 1

0
f(t)f(t) dt| < 0, and (cf, f) =

|
∫ 1

0
cf(t)f(t) dt| > 0. Thus c(f, f) 6= (cf, f) and the linearity property is violated.

(c). (f, g) =
∫ 1

0
f ′(t)g′(t) dt.

Let f(t) be a nonzero polynomial of degree 0, say f(t) = 1. Then (f, f) =∫ 1

0
f ′(t)g′(t) dt =

∫ 1

0
0 · 0 dt = 0. Thus the nonnegativity property is violated.

(d). (f, g) = (
∫ 1

0
f(t) dt)(

∫ 1

0
g(t) dt).

Let f(t) = t− 1
2
. Then (f, f) = [

∫ 1

0
(t− 1

2
) dt]2 = ( t2

2
− t

2
)|10 = 0− 0 = 0. Thus the

nonnegativity property is violated.

15. (a) Let f and g be two elements of set V . Thus
∫∞

0
e−tf(t)2dt and

∫∞
0

e−tg(t)2dt
converge. Since

lim
M→∞

(

∫ M

0

e−t|f(t)g(t)|dt)2 = lim
M→∞

|
∫ M

0

e−t|f(t)||g(t)|dt|2

≤ lim
M→∞

(

∫ M

0

e−t|f(t)||f(t)|dt ·
∫ M

0

e−t|g(t)||g(t)|dt)

(by Cauchy-Schwarz inequality for functions |f | and |g|
over [0, M ] with inner product as in Example 4 in the

textbook with w(t) = e−t. )

= lim
M→∞

(

∫ M

0

e−tf(t)2dt ·
∫ M

0

e−tg(t)2dt),

lim
M→∞

∫ M

0
e−t|f(t)g(t)|dt converges. Thus (f, g) =

∫∞
0

e−tf(t)g(t)dt converges ab-

solutely.

(b) Since the set of all functions continuous on a given interval is a linear space and
V is a subset of it, we only need to check the closure axioms.

i Let f and g be two elements of set V . For f + g,∫ ∞

0

e−t(f(t) + g(t))2dt =

∫ ∞

0

e−t(f(t)2 + g(t)2 + 2f(t)g(t))dt

=

∫ ∞

0

e−tf(t)2dt +

∫ ∞

0

e−tg(t)2dt + 2

∫ ∞

0

e−tf(t)g(t)dt.
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Since
∫∞

0
e−tf(t)g(t)dt converges by(a), and

∫∞
0

e−tf(t)2dt and
∫∞

0
e−tg(t)2dt

converge,
∫∞

0
e−t(f(t) + g(t))2dt converges. Hence f + g is an element of V

and Axiom for closure under addition holds.

ii Let f be the element of set V such that
∫∞

0
e−tf(t)2dt converges, and c be

a real scalar. Since
∫∞

0
e−t(af(t))2dt =

∫∞
0

e−ta2f(t)2dt = a2
∫∞

0
e−tf(t)2dt

converges, af is an elements of V . Hence Axiom for closure under scalar
multiplication holds.

Hence V is a linear space. Then we need to check if (f, g) is an inner product for
V . Let x, y, and z be elements of V , and c be a real scalar.

i Since (x, y) =
∫∞

0
e−tx(t)y(t)dt =

∫∞
0

e−ty(t)x(t)dt = (y, x), axiom for com-
mutativity holds.

ii Since

(αx + βy, z) =

∫ ∞

0

e−t(αx + βy)(t)z(t)dt

=

∫ ∞

0

e−t(αx(t)z(t) + βy(t)z(t))dt

= α

∫ ∞

0

e−tx(t)z(t)dt + β

∫ ∞

0

e−ty(t)z(t)dt

= α(x, z) + β(y, z),

axiom for linearity holds.

iii We note that zero function 0(t) is the zero element O in V since x(t) +
0(t) = x(t) for all x. Then for all x 6= O, (x, x) =

∫∞
0

e−tx(t)x(t)dt =∫∞
0

e−tx(t)2dt > 0 since
∫∞

0
e−tx(t)2dt converges. Hence axiom for positivity

holds.

(c) We prove (f, g) = n!
2n+1 for f = e−t and g = tn, where n = 0, 1, 2, ... by induction.

When n = 0,

(f, g) =

∫ ∞

0

e−t · e−t · 1dt

=

∫ ∞

0

e−2tdt

=
−1

2
e−2t|∞0

=
1

2
=

0!

2(0+1)
.

Let (f, g) = k!
2k+1 when n = k.

When n = k + 1,

(f, g) =

∫ ∞

0

e−t · e−t · tk+1dt

=

∫ ∞

0

tk+1 · e−2tdt

=
−1

2
tk+1e−2t|∞0 +

k + 1

2

∫ ∞

0

e−2ttkdt

= 0 +
k + 1

2
· k!

2k+1
=

(k + 1)!

2k+2
.
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Hence (f, g) = n!
2n+1 where g(t) = tn and f(t) = e−t by induction.

16. (a)
∑∞

n=1 xnyn converges absolutely ⇔
∑∞

n=1 |xnyn| converges.
Consider two new sequences x′ = {|xn|} and y′ = {|yn|} both in V.∑∞

n=1 |xnyn| = (x′, y′) since
∑∞

n=1 |xnyn| =
∑∞

n=1 |xn||yn|.
Then using Cauchy-Schwarz inequality for the inner product space RM with stan-
dard inner product,
(
∑M

n=1 |xnyn|)2 ≤ (
∑M

n=1 |xn|2)(
∑M

n=1 |yn|2) ≤ (
∑∞

n=1 x2
n)(

∑∞
n=1 y2

n), ∀ M .
By taking M →∞, we have (

∑∞
n=1 |xnyn|)2 ≤ (

∑∞
n=1 x2

n)(
∑∞

n=1 y2
n) < ∞.

Thus (
∑∞

n=1 |xnyn|)2 converges and
∑∞

n=1 xnyn converges absolutely.

(b) Since the set of all sequences of real numbers is a linear space and V is a subset
of it, we only need to check the closure axioms.

i. Let x = {xn} and y = {yn} be two sequences in V . Consider x+y = {xn+yn},

M∑
n=1

(xn + yn)2 =
M∑

n=1

(x2
n + 2xnyn + y2

n)

=
M∑

n=1

x2
n + 2

M∑
n=1

xnyn +
M∑

n=1

y2
n

From (a) we know that
∑M

n=1 xnyn converges absolutely as M → ∞ In ad-
dition,

∑∞
n=1 x2

n and
∑∞

n=1 y2
n converge. Thus

∑∞
n=1(xn + yn)2 converges and

x + y is in V .

ii. Let x = {xn} in V , and y = cx = {cxn} where c is a real scalar.
Then

∑∞
n=1(cxn)2 = c2

∑∞
n=1 x2

n converges.
Thus cx is in V .

Hence V is a linear space. Next, we test if V is a linear space with (x, y) as an
inner procuet. Consider all choices of x, y, z in V and all real scalars c:

i. (x, y) =
∑∞

n=1 xnyn =
∑∞

n=1 ynxn = (y, x).

ii. (x, y+z) =
∑∞

n=1 xn(yn+zn) =
∑∞

n=1(xnyn+xnzn) =
∑∞

n=1 xnyn+
∑∞

n=1 xnzn =
(x, y) + (x, z).

iii. c(x, y) = c
∑∞

n=1 xnyn =
∑∞

n=1(cxn)yn = (cx, y).

iv. Since (x, x) =
∑∞

n=1 x2
n, (x, x) ≥ 0 and (x, x) = 0 iff x = O.

Thus (x, x) > 0 if x 6= O.

Hence the four axioms all hold, V is a linear space with (x, y) as an inner product.

(c) (x, y) =
∑∞

n=1
1
n

1
n+1

=
∑∞

n=1(
1
n
− 1

n+1
) = (1− 1

2
+ 1

2
− 1

3
+ 1

3
− · · · )

= (1 + (1
2
− 1

2
) + (1

3
− 1

3
)− · · · ) = 1.

(d) Recall that ex = 1 + x
1!

+ x2

2!
+ x3

3!
+ · · ·

Then (x, y) =
∑∞

n=1(2
−n)( 1

n!
) =

∑∞
n=1

2−n

n!
= −1 + (1 + 2−1

1!
+ 2−2

2!
+ · · · )

= −1 + e2−1
= e

1
2 − 1.
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