

EE203001 Linear Algebra

Solutions to Homework #5 Spring Semester, 2003

Meng-Hua Chang, Chao-Chung Chang, Chen-Wei Hsu, Wen-Yao Chen

3. (a) If $\|x + y\| = \|x - y\|$, then

$$\begin{aligned}
 (x + y, x + y) &= (x - y, x - y) \\
 \Rightarrow (x, x) + (x, y) + (y, x) + (y, y) &= (x, x) - (x, y) - (y, x) + (y, y), \\
 \Rightarrow (x, x) + 2(x, y) + (y, y) &= (x, x) - 2(x, y) + (y, y), \quad (\text{By Axiom 1}) \\
 \Rightarrow 4(x, y) &= 0, \\
 \Rightarrow (x, y) &= 0.
 \end{aligned}$$

(b) If $(x, y) = 0$, then

$$\begin{aligned}
 \|x + y\| &= (x + y, x + y)^{1/2} \\
 &= \{(x, x) + 2(x, y) + (y, y)\}^{1/2} \\
 &= \{(x, x) + (y, y)\}^{1/2} \\
 &= \{(x, x) - 2(x, y) + (y, y)\}^{1/2} \\
 &= (x - y, x - y)^{1/2} \\
 &= \|x - y\|.
 \end{aligned}$$

8. (b)

$$\begin{aligned}
 \|x + y\|^2 - \|x - y\|^2 &= (x + y, x + y) - (x - y, x - y) \\
 &= (x, x) + (x, y) + (y, x) + (y, y) - \{(x, x) - (x, y) - (y, x) + (y, y)\} \\
 &= 2(x, y) + 2(y, x).
 \end{aligned}$$

(c)

$$\begin{aligned}
 \|x + y\|^2 + \|x - y\|^2 &= (x + y, x + y) + (x - y, x - y) \\
 &= (x, x) + (x, y) + (y, x) + (y, y) + (x, x) - (x, y) - (y, x) + (y, y) \\
 &= 2(x, x) + 2(y, y) \\
 &= 2\|x\|^2 + 2\|y\|^2.
 \end{aligned}$$

11. (a) Given $(f, g) = \int_1^e (\log(x))f(x)g(x)dx$. If $f(x) = \sqrt{x}$, then

$$\begin{aligned}
 \|f\| &= (f, f)^{1/2} \\
 &= \left(\int_1^e (\log x)f(x)f(x)dx \right)^{1/2} \\
 &= \left(\int_1^e (\log x)x dx \right)^{1/2}.
 \end{aligned}$$

Let $u = \log x$, then $du = \frac{1}{x}dx$. Let $v = \frac{x^2}{2}$, then $dv = xdx$. Thus

$$\begin{aligned} \left(\int (\log x) x dx \right)^{1/2} &= \left(\int u dv \right)^{1/2} \\ &= (uv - \int v du)^{1/2} \\ &= \left(\log x \frac{x^2}{2} - \int \frac{x^2}{2} \frac{1}{x} dx \right)^{1/2}. \end{aligned}$$

So

$$\begin{aligned} \left(\int_1^e (\log x) x dx \right)^{1/2} &= \left(\log x \frac{x^2}{2} \Big|_1^e - \int_1^e \frac{x^2}{2} \frac{1}{x} dx \right)^{1/2} \\ &= \left(\frac{e^2}{2} - \frac{x^2}{4} \Big|_1^e \right)^{1/2} \\ &= \left(\frac{e^2}{2} - \frac{e^2 - 1}{4} \right)^{1/2} \\ &= \left(\frac{e^2 + 1}{4} \right)^{1/2} \\ &= \frac{1}{2} \sqrt{e^2 + 1}. \end{aligned}$$

(b) First we evaluate $\int_1^e \log x dx$. Let $u = x^2 \log x$, then $du = (2x \log x + x)dx$. Let $v = -x^{-1}$, then $dv = \frac{1}{x^2}dx$. Thus

$$\begin{aligned} \int \log x dx &= \int \left(\frac{1}{x^2} \right) x^2 \log x dx \\ &= \int u dv \\ &= uv - \int v du \\ &= -x \log x + \int \frac{1}{x} (2x \log x + x) dx. \end{aligned}$$

So

$$\begin{aligned} \int_1^e \log x dx &= -x \log x \Big|_1^e + \int_1^e \frac{1}{x} (2x \log x + x) dx \\ &= -e + \int_1^e 2 \log x dx + \int_1^e dx \\ &= -e + \int_1^e 2 \log x dx + e - 1 \\ &= \int_1^e 2 \log x dx - 1. \end{aligned}$$

Thus, $\int_1^e \log x dx = 1$. Now we want to find a linear polynomial $g(x) = a + bx$ nonzero and orthogonal to $f(x) = 1$, i.e., $(f, g) = 0$. Since

$$\begin{aligned}(f, g) &= \int_1^e \log x(a + bx) dx \\ &= a \int_1^e \log x dx + b \int_1^e x \log x dx \\ &= a + b\left(\frac{e^2 + 1}{4}\right) \quad (\text{by (a)}),\end{aligned}$$

we have $(f, g) = 0$ when $a = -b\left(\frac{e^2 + 1}{4}\right)$. So $g(x) = b(x - \frac{e^2 + 1}{4})$, b is an arbitrary real number.

12. $(f, g) = \int_{-1}^1 f(t)g(t) dt$.

Since $u_1(t) = 1$ and $u_2(t) = t$, we have the following results:

$$\begin{aligned}(u_1, u_1) &= \int_{-1}^1 1 \cdot 1 dt = t \Big|_{-1}^1 = 2, \\ (u_2, u_2) &= \int_{-1}^1 t \cdot t dt = \frac{t^3}{3} \Big|_{-1}^1 = \frac{2}{3}, \quad \text{and} \\ (u_1, u_2) &= \int_{-1}^1 1 \cdot t dt = \frac{t^2}{2} \Big|_{-1}^1 = \frac{1}{2} - \frac{1}{2} = 0.\end{aligned}$$

Then $\|u_1\| = (u_1, u_1)^{1/2} = \sqrt{2}$, $\|u_2\| = (u_2, u_2)^{1/2} = \sqrt{\frac{2}{3}}$, and that u_1 and u_2 are orthogonal.

By the fact that $u_3(t) = 1 + t = u_1(t) + u_2(t)$ and $(u_1, u_2) = 0$, we have

$$\begin{aligned}(u_1, u_3) &= (u_1, u_1 + u_2) = (u_1, u_1) + (u_1, u_2) = (u_1, u_1) = \|u_1\|^2, \\ (u_2, u_3) &= (u_2, u_1 + u_2) = (u_2, u_1) + (u_2, u_2) = (u_2, u_2) = \|u_2\|^2,\end{aligned}$$

and

$$\begin{aligned}(u_3, u_3) &= (u_1 + u_2, u_1 + u_2) = (u_1, u_1) + (u_2, u_1) + (u_2, u_1) + (u_2, u_2) \\ &= 2 + 0 + 0 + \frac{8}{3} = \frac{8}{3}.\end{aligned}$$

The last equation implies

$$\|u_3\| = (u_3, u_3)^{1/2} = \sqrt{\frac{8}{3}}.$$

Let θ_{ij} be the angle between u_i and u_j , for $1 \leq i, j \leq 3$ and $i \neq j$. Then

$$\begin{aligned}\cos \theta_{12} &= \frac{(u_1, u_2)}{\|u_1\| \|u_2\|} = 0, \\ \cos \theta_{13} &= \frac{(u_1, u_3)}{\|u_1\| \|u_3\|} = \frac{\|u_1\|^2}{\|u_1\| \|u_3\|} = \frac{\|u_1\|}{\|u_3\|} = \frac{\sqrt{2}}{\sqrt{\frac{8}{3}}} = \frac{\sqrt{3}}{2}, \quad \text{and} \\ \cos \theta_{23} &= \frac{(u_2, u_3)}{\|u_2\| \|u_3\|} = \frac{\|u_2\|^2}{\|u_2\| \|u_3\|} = \frac{\|u_2\|}{\|u_3\|} = \frac{\sqrt{\frac{2}{3}}}{\sqrt{\frac{8}{3}}} = \frac{1}{2}.\end{aligned}$$

Thus

$$\theta_{12} = \cos^{-1} 0 = \frac{\pi}{2}, \quad \theta_{13} = \cos^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{6}, \quad \text{and} \quad \theta_{23} = \cos^{-1} \frac{1}{2} = \frac{\pi}{3}.$$

14. Let P be the linear space of all real polynomials and O be the zero element of P , that is, $O(t) = 0$.

(a). $(f, g) = f(1)g(1)$.

Let $f(t) = t-1$, then $(f, f) = f(1)f(1) = 0 \cdot 0 = 0$. Since $f \neq O$, the nonnegativity property is violated.

(b). $(f, g) = |\int_0^1 f(t)g(t) dt|$.

Let $c < 0$ and $f(t) \neq O(t)$. Then $c(f, f) = c|\int_0^1 f(t)f(t) dt| < 0$, and $(cf, f) = |\int_0^1 cf(t)f(t) dt| > 0$. Thus $c(f, f) \neq (cf, f)$ and the linearity property is violated.

(c). $(f, g) = \int_0^1 f'(t)g'(t) dt$.

Let $f(t)$ be a nonzero polynomial of degree 0, say $f(t) = 1$. Then $(f, f) = \int_0^1 f'(t)g'(t) dt = \int_0^1 0 \cdot 0 dt = 0$. Thus the nonnegativity property is violated.

(d). $(f, g) = (\int_0^1 f(t) dt)(\int_0^1 g(t) dt)$.

Let $f(t) = t - \frac{1}{2}$. Then $(f, f) = [\int_0^1 (t - \frac{1}{2}) dt]^2 = (\frac{t^2}{2} - \frac{t}{2})|_0^1 = 0 - 0 = 0$. Thus the nonnegativity property is violated.

15. (a) Let f and g be two elements of set V . Thus $\int_0^\infty e^{-t}f(t)^2 dt$ and $\int_0^\infty e^{-t}g(t)^2 dt$ converge. Since

$$\begin{aligned} \lim_{M \rightarrow \infty} \left(\int_0^M e^{-t}|f(t)g(t)|dt \right)^2 &= \lim_{M \rightarrow \infty} \left| \int_0^M e^{-t}|f(t)||g(t)|dt \right|^2 \\ &\leq \lim_{M \rightarrow \infty} \left(\int_0^M e^{-t}|f(t)||f(t)|dt \cdot \int_0^M e^{-t}|g(t)||g(t)|dt \right) \\ &\quad (\text{by Cauchy-Schwarz inequality for functions } |f| \text{ and } |g| \\ &\quad \text{over } [0, M] \text{ with inner product as in Example 4 in the} \\ &\quad \text{textbook with } w(t) = e^{-t}.) \\ &= \lim_{M \rightarrow \infty} \left(\int_0^M e^{-t}f(t)^2 dt \cdot \int_0^M e^{-t}g(t)^2 dt \right), \end{aligned}$$

$\lim_{M \rightarrow \infty} \int_0^M e^{-t}|f(t)g(t)|dt$ converges. Thus $(f, g) = \int_0^\infty e^{-t}f(t)g(t)dt$ converges absolutely.

(b) Since the set of all functions continuous on a given interval is a linear space and V is a subset of it, we only need to check the closure axioms.

i Let f and g be two elements of set V . For $f + g$,

$$\begin{aligned} \int_0^\infty e^{-t}(f(t) + g(t))^2 dt &= \int_0^\infty e^{-t}(f(t)^2 + g(t)^2 + 2f(t)g(t))dt \\ &= \int_0^\infty e^{-t}f(t)^2 dt + \int_0^\infty e^{-t}g(t)^2 dt + 2 \int_0^\infty e^{-t}f(t)g(t)dt. \end{aligned}$$

Since $\int_0^\infty e^{-t} f(t)g(t)dt$ converges by (a), and $\int_0^\infty e^{-t} f(t)^2 dt$ and $\int_0^\infty e^{-t} g(t)^2 dt$ converge, $\int_0^\infty e^{-t} (f(t) + g(t))^2 dt$ converges. Hence $f + g$ is an element of V and Axiom for closure under addition holds.

ii Let f be the element of set V such that $\int_0^\infty e^{-t} f(t)^2 dt$ converges, and c be a real scalar. Since $\int_0^\infty e^{-t} (af(t))^2 dt = \int_0^\infty e^{-t} a^2 f(t)^2 dt = a^2 \int_0^\infty e^{-t} f(t)^2 dt$ converges, af is an element of V . Hence Axiom for closure under scalar multiplication holds.

Hence V is a linear space. Then we need to check if (f, g) is an inner product for V . Let x, y , and z be elements of V , and c be a real scalar.

i Since $(x, y) = \int_0^\infty e^{-t} x(t)y(t)dt = \int_0^\infty e^{-t} y(t)x(t)dt = (y, x)$, axiom for commutativity holds.

ii Since

$$\begin{aligned} (\alpha x + \beta y, z) &= \int_0^\infty e^{-t} (\alpha x + \beta y)(t)z(t)dt \\ &= \int_0^\infty e^{-t} (\alpha x(t)z(t) + \beta y(t)z(t))dt \\ &= \alpha \int_0^\infty e^{-t} x(t)z(t)dt + \beta \int_0^\infty e^{-t} y(t)z(t)dt \\ &= \alpha(x, z) + \beta(y, z), \end{aligned}$$

axiom for linearity holds.

iii We note that zero function $0(t)$ is the zero element O in V since $x(t) + 0(t) = x(t)$ for all x . Then for all $x \neq O$, $(x, x) = \int_0^\infty e^{-t} x(t)x(t)dt = \int_0^\infty e^{-t} x(t)^2 dt > 0$ since $\int_0^\infty e^{-t} x(t)^2 dt$ converges. Hence axiom for positivity holds.

(c) We prove $(f, g) = \frac{n!}{2^{n+1}}$ for $f = e^{-t}$ and $g = t^n$, where $n = 0, 1, 2, \dots$ by induction. When $n = 0$,

$$\begin{aligned} (f, g) &= \int_0^\infty e^{-t} \cdot e^{-t} \cdot 1 dt \\ &= \int_0^\infty e^{-2t} dt \\ &= \frac{-1}{2} e^{-2t} \Big|_0^\infty \\ &= \frac{1}{2} = \frac{0!}{2^{(0+1)}}. \end{aligned}$$

Let $(f, g) = \frac{k!}{2^{k+1}}$ when $n = k$.

When $n = k + 1$,

$$\begin{aligned} (f, g) &= \int_0^\infty e^{-t} \cdot e^{-t} \cdot t^{k+1} dt \\ &= \int_0^\infty t^{k+1} \cdot e^{-2t} dt \\ &= \frac{-1}{2} t^{k+1} e^{-2t} \Big|_0^\infty + \frac{k+1}{2} \int_0^\infty e^{-2t} t^k dt \\ &= 0 + \frac{k+1}{2} \cdot \frac{k!}{2^{k+1}} = \frac{(k+1)!}{2^{k+2}}. \end{aligned}$$

Hence $(f, g) = \frac{n!}{2^{n+1}}$ where $g(t) = t^n$ and $f(t) = e^{-t}$ by induction.

16. (a) $\sum_{n=1}^{\infty} x_n y_n$ converges absolutely $\Leftrightarrow \sum_{n=1}^{\infty} |x_n y_n|$ converges.

Consider two new sequences $x' = \{|x_n|\}$ and $y' = \{|y_n|\}$ both in V .

$$\sum_{n=1}^{\infty} |x_n y_n| = (x', y')$$

Then using Cauchy-Schwarz inequality for the inner product space R^M with standard inner product,

$$(\sum_{n=1}^M |x_n y_n|)^2 \leq (\sum_{n=1}^M |x_n|^2)(\sum_{n=1}^M |y_n|^2) \leq (\sum_{n=1}^{\infty} x_n^2)(\sum_{n=1}^{\infty} y_n^2), \forall M.$$

By taking $M \rightarrow \infty$, we have $(\sum_{n=1}^{\infty} |x_n y_n|)^2 \leq (\sum_{n=1}^{\infty} x_n^2)(\sum_{n=1}^{\infty} y_n^2) < \infty$.

Thus $(\sum_{n=1}^{\infty} |x_n y_n|)^2$ converges and $\sum_{n=1}^{\infty} x_n y_n$ converges absolutely.

(b) Since the set of all sequences of real numbers is a linear space and V is a subset of it, we only need to check the closure axioms.

i. Let $x = \{x_n\}$ and $y = \{y_n\}$ be two sequences in V . Consider $x+y = \{x_n+y_n\}$,

$$\begin{aligned} \sum_{n=1}^M (x_n + y_n)^2 &= \sum_{n=1}^M (x_n^2 + 2x_n y_n + y_n^2) \\ &= \sum_{n=1}^M x_n^2 + 2 \sum_{n=1}^M x_n y_n + \sum_{n=1}^M y_n^2 \end{aligned}$$

From (a) we know that $\sum_{n=1}^M x_n y_n$ converges absolutely as $M \rightarrow \infty$. In addition, $\sum_{n=1}^{\infty} x_n^2$ and $\sum_{n=1}^{\infty} y_n^2$ converge. Thus $\sum_{n=1}^{\infty} (x_n + y_n)^2$ converges and $x+y$ is in V .

ii. Let $x = \{x_n\}$ in V , and $y = cx = \{cx_n\}$ where c is a real scalar.

Then $\sum_{n=1}^{\infty} (cx_n)^2 = c^2 \sum_{n=1}^{\infty} x_n^2$ converges.

Thus cx is in V .

Hence V is a linear space. Next, we test if V is a linear space with (x, y) as an inner product. Consider all choices of x, y, z in V and all real scalars c :

i. $(x, y) = \sum_{n=1}^{\infty} x_n y_n = \sum_{n=1}^{\infty} y_n x_n = (y, x)$.

ii. $(x, y+z) = \sum_{n=1}^{\infty} x_n (y_n + z_n) = \sum_{n=1}^{\infty} (x_n y_n + x_n z_n) = \sum_{n=1}^{\infty} x_n y_n + \sum_{n=1}^{\infty} x_n z_n = (x, y) + (x, z)$.

iii. $c(x, y) = c \sum_{n=1}^{\infty} x_n y_n = \sum_{n=1}^{\infty} (cx_n) y_n = (cx, y)$.

iv. Since $(x, x) = \sum_{n=1}^{\infty} x_n^2$, $(x, x) \geq 0$ and $(x, x) = 0$ iff $x = O$.

Thus $(x, x) > 0$ if $x \neq O$.

Hence the four axioms all hold, V is a linear space with (x, y) as an inner product.

(c) $(x, y) = \sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{n+1} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots \right)$
 $= \left(1 + \left(\frac{1}{2} - \frac{1}{2} \right) + \left(\frac{1}{3} - \frac{1}{3} \right) - \dots \right) = 1$.

(d) Recall that $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$

Then $(x, y) = \sum_{n=1}^{\infty} (2^{-n}) \left(\frac{1}{n!} \right) = \sum_{n=1}^{\infty} \frac{2^{-n}}{n!} = -1 + \left(1 + \frac{2^{-1}}{1!} + \frac{2^{-2}}{2!} + \dots \right)$
 $= -1 + e^{2^{-1}} = e^{\frac{1}{2}} - 1$.