

Page 103.

23. Let P be the linear space of all real polynomials.

(a). Let $T = \{1, t^2, t^4\}$ and $S = \{a + bt^2 + ct^4 | a, b, c \in \mathbb{R}\}$. S is a subspace of P and $T \subset S$, so $L(T) \subset S$. On the other hand, by the definition of $L(T)$, $S \subset L(T)$. Thus $L(T) = S$.

If $a + bt^2 + ct^4 = 0$, let $t = 0$, we have $a = 0$. Then divide $bt^2 + ct^4 = 0$ by t^2 , and let $t = 0$, we have $b = 0$. Repeating this process we find that $c = 0$. Thus T is independent, hence $\dim L(T) = 3$.

(Another way to see that T is independent is by the definition of polynomials, $a + bt^2 + ct^4 = 0$ if and only if $a = b = c = 0$.)

(b). Let $T = \{t, t^3, t^5\}$ and $S = \{at + bt^3 + ct^5 | a, b, c \in \mathbb{R}\}$. S is a subspace of P and $T \subset S$, so $L(T) \subset S$. On the other hand, by the definition of $L(T)$, $S \subset L(T)$. Thus $L(T) = S$. If $at + bt^3 + ct^5 = 0$, divide $at + bt^3 + ct^5 = 0$ by t , then put $t = 0$, we have $a = 0$. Then divide $bt^3 + ct^5 = 0$ by t^3 , and let $t = 0$, we have $b = 0$. Repeating this process we find that $c = 0$. Thus T is independent, hence $\dim L(T) = 3$.

(Another way to see that T is independent is by the definition of polynomials, $a + bt^3 + ct^5 = 0$ if and only if $a = b = c = 0$.)

(c). Let $T = \{t, t^2\}$ and $S = \{at + bt^2 | a, b \in \mathbb{R}\}$. S is a subspace of P and $T \subset S$, so $L(T) \subset S$. On the other hand, by the definition of $L(T)$, $S \subset L(T)$. Thus $L(T) = S$. If $at + bt^2 = 0$, divide $at + bt^2 = 0$ by t , then let $t = 0$, we have $a = 0$. Then let $t = 1$, we have $b = 0$. Thus T is independent, hence $\dim L(T) = 2$.

(Another way to see that T is independent is by the definition of polynomials, $at + bt^2 = 0$ if and only if $a = b = 0$.)

(d). Let $T = \{1 + t, (1 + t)^2\}$ and $S = \{a(1 + t) + b(1 + t)^2 | a, b \in \mathbb{R}\}$. S is a subspace of P and $T \subset S$, so $L(T) \subset S$. On the other hand, by the definition of $L(T)$, $S \subset L(T)$. Thus $L(T) = S$. If $a(1 + t) + b(1 + t)^2 = 0$, divide $a(1 + t) + b(1 + t)^2 = 0$ by $1 + t$ then let $t = -1$, we have $a = 0$. Then let $t = 0$, we have $b = 0$. Thus T is independent, hence $\dim L(T) = 2$.

26. We use the notation $|T|$ to denote the number of elements in a set T .

(a). Let T be a basis for S , then T is a set of independent elements of T . Applying Theorem 3.7(a), we have that T is a subset of some basis T' for V . Then $|T| \leq |T'|$, that is, $\dim S \leq \dim V$ and S is finite dimensional.

(b). (\Rightarrow) Let T be a basis for S , if $\dim S = \dim V = n$, then $|T| = n$. By Theorem 3.7(b), T is a basis for V , Thus $S = L(T) = V$.

(\Leftarrow) If $S = V$, it is clear that $\dim S = \dim V$.

(c). If T is a basis for S , then T consists of independent elements in $S \subset V$. By Theorem 3.7(a), T is a part of a basis for V .

(d). Let $V = \mathbb{R}^2$, and $T = \{(1, 0), (0, 1)\}$ be a basis for V . Let $S = L(\{(1, 1)\})$ be the subspace spanned by $\{(1, 1)\}$. Then T does not contain $(1, 1)$.

Page 109.

1. (a) $(x, y) = \sum_{i=1}^n x_i |y_i|$.

i. Axiom 1 fails to hold.

Let $n = 1$, $x = 1$ and $y = -1$.

$$(x, y) = 1 \cdot |-1| = 1, \text{ but } (y, x) = (-1) \cdot 1 = -1.$$

Thus $(x, y) \neq (y, x)$.

ii. Axiom 2 fails to hold.

Let $n = 1$, $x = 1$, $y = 1$ and $z = -1$.

$$(x, y + z) = 1 \cdot |1 + (-1)| = 1 \cdot 0 = 0, \text{ but } (x, y) + (x, z) = 1 \cdot |1| + 1 \cdot |-1| = 2.$$

Thus $(x, y + z) \neq (x, y) + (x, z)$.

iii. Axiom 3 fails to hold.

Let $n = 2$, $x = (1, -1)$. Then $x \neq O$.

$$(x, x) = \sum_{n=1}^2 x_n = 1 \cdot |1| + (-1) \cdot |-1| = 1 - 1 = 0.$$

Hence, (x, y) is not an inner product for \mathbb{R}^n .

(b) $(x, y) = |\sum_{i=1}^n x_i y_i|$

i. Axiom 2 fails to hold.

Let $n = 1$, $x = 1$, $y = 1$ and $z = -1$.

$$(x, y + z) = |1 \cdot (1 + (-1))| = |1 \cdot 0| = 0, \text{ but } (x, y) + (x, z) = |1 \cdot 1| + |1 \cdot (-1)| = 2.$$

Thus $(x, y + z) \neq (x, y) + (x, z)$.

ii. Axiom 3 fails to hold.

Let $n = 1$, $x = 1$, $y = 1$ and $c = -1$.

$$c(x, y) = (-1) |1 \cdot 1| = -1, \text{ but } (cx, y) = |(-1) \cdot 1 \cdot 1| = 1.$$

Thus $c(x, y) \neq (cx, y)$.

Hence, (x, y) is not an inner product for \mathbb{R}^n .

(c) $(x, y) = \sum_{i=1}^n x_i \sum_{j=1}^n y_j$

Let $n = 2$, $x = (1, -1)$. Then $x \neq O$.

$$(x, x) = (1 + (-1))(1 + (-1)) = 0.$$

\Rightarrow Axiom 4 fails to hold.

(d) $(x, y) = (\sum_{i=1}^n x_i^2 y_i^2)^{\frac{1}{2}}$.

i. Let $x = (1, 1)$, $y = (3, 4)$, $z = (4, 3)$ be elements in \mathbb{R}^2 . We have

$$(x, y + z) = (1^2 \cdot (3 + 4)^2 + 1^2 \cdot (4 + 3)^2)^{\frac{1}{2}} = (49 + 49)^{\frac{1}{2}} = 7\sqrt{2},$$

$$(x, y) = (1^2 \cdot 3^2 + 1^2 \cdot 4^2)^{\frac{1}{2}} = (9 + 16)^{\frac{1}{2}} = 5, \text{ and}$$

$$(x, z) = (1^2 \cdot 4^2 + 1^2 \cdot 3^2)^{\frac{1}{2}} = (16 + 9)^{\frac{1}{2}} = 5.$$

Thus $(x, y + z) = 7\sqrt{2} \neq 10 = 5 + 5 = (x, y) + (x, z)$. Hence Axiom for distributivity fails to hold.

ii. Let $x = (1, 1)$, $y = (3, 4)$ be elements in \mathbb{R}^2 and $c = -2$ be a scalar. We have

$$c(x, y) = -2(1^2 \cdot 3^2 + 1^2 \cdot 4^2)^{\frac{1}{2}} = -2(9 + 16)^{\frac{1}{2}} = -10, \text{ and}$$

$$(cx, y) = ((-2)^2 \cdot 3^2 + (-2)^2 \cdot 4^2)^{\frac{1}{2}} = (4 \cdot 9 + 4 \cdot 16)^{\frac{1}{2}} = 100^{\frac{1}{2}} = 10.$$

Thus $c(x, y) \neq (cx, y)$. Hence Axiom for associativity fails to hold.

Hence, (x, y) is not an inner product for \mathbb{R}^n .

$$(e) (x, y) = \sum_{i=1}^n (x_i + y_i)^2 - \sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2.$$

i. Since $(x, y) = \sum_{i=1}^n (x_i + y_i)^2 - \sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2 = \sum_{i=1}^n (x_i + y_i)^2 - \sum_{i=1}^n y_i^2 - \sum_{i=1}^n x_i^2 = (y, x)$, Axiom 1 holds.

ii. Since

$$\begin{aligned} (x, y) &= \sum_{i=1}^n (x_i + y_i)^2 - \sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2 \\ &= \sum_{i=1}^n (x_i^2 + 2x_i y_i + y_i^2) - \sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2 \\ &= \sum_{i=1}^n (x_i^2 + 2x_i y_i + y_i^2 - x_i^2 - y_i^2) \\ &= \sum_{i=1}^n (2x_i y_i), \end{aligned}$$

we have

$$\begin{aligned} (x, y + z) &= \sum_{i=1}^n [2x_i(y_i + z_i)] \\ &= \sum_{i=1}^n [(2x_i y_i) + 2(x_i z_i)] \\ &= \sum_{i=1}^n (2x_i y_i) + \sum_{i=1}^n (2x_i z_i) \\ &= (x, y) + (x, z). \end{aligned}$$

Thus Axiom 2 holds.

iii. Since $(x, y) = \sum_{i=1}^n (2x_i y_i)$ (by ii.), we have

$(cx, y) = \sum_{i=1}^n (2cx_i y_i) = c[\sum_{i=1}^n (2x_i y_i)] = c(x, y)$. Thus Axiom 3 holds.

iv. First, we note that $(0, 0, \dots, 0)$ is the zero element O in \mathbb{R}^n since $x + (0, 0, \dots, 0) = x$ for all x . Then

$$\begin{aligned} (x, x) &= \sum_{i=1}^n (x_i + x_i)^2 - \sum_{i=1}^n x_i^2 - \sum_{i=1}^n x_i^2 \\ &= \sum_{i=1}^n (4x_i^2 - x_i^2 - x_i^2) \\ &= \sum_{i=1}^n 2x_i^2 > 0, \text{ if } x \neq O. \end{aligned}$$

Thus Axiom 4 holds.

Hence, (x, y) is an inner product for \mathbb{R}^n .

2. Let V be a real linear space and have a real inner product with the axiom 4'. Suppose there are two non-zero elements x and y in V such that $(x, x) > 0$ and $(y, y) < 0$.

Let $z = ax + by$, where a and b are real scalars and neither of them is zero. Then $(cx, cx) = c^2(x, x) > 0$ for all real $c \neq 0$ since $(x, x) > 0$. Hence y is independent of x and $z = ax + by \neq 0$ for all $a \neq 0$ and $b \neq 0$. Let $b = 1$. Then we have

$$\begin{aligned}(z, z) &= (ax + y, ax + y) \\&= (ax, ax) + (ax, y) + (y, ax) + (y, y) \quad (\text{by Axioms 1 and 2}) \\&= a^2(x, x) + a(x, y) + a(y, x) + (y, y) \quad (\text{by Axioms 1 and 3, and } a \text{ is a real number}) \\&= a^2(x, x) + 2a(x, y) + (y, y) \quad (\text{by Axiom 1}).\end{aligned}$$

Since $(y, y) < 0$ and $(x, x) > 0$, we have $4(x, y)^2 - 4(y, y)(x, x) > 0$. Then we can choose a such that $a = \frac{-(x, y) \pm \sqrt{(x, y)^2 - (y, y)(x, x)}}{(x, x)}$ such that $(z, z) = 0$. But in this case z is not O , a contradiction to the axiom 4'. Then we must have either $(x, x) > 0$ for all $x \neq O$ or $(x, x) < 0$ for all $x \neq O$.

9. (a)

$$\begin{aligned}(ax, by) &= a(x, by) \quad (\text{by Axiom 3}) \\&= a\overline{(by, x)} \quad (\text{by Axiom 1}) \\&= a\overline{b}\overline{(y, x)} \\&= a\overline{b}(x, y). \quad (\text{by Axiom 1}).\end{aligned}$$

(b)

$$\begin{aligned}(x, ay + bz) &= (x, ay) + (x, bz) \quad (\text{by Axiom 2}) \\&= \overline{(ay, x)} + \overline{(bz, x)} \quad (\text{by Axiom 1}) \\&= \overline{a}\overline{(y, x)} + \overline{b}\overline{(z, x)} \\&= \overline{a}(x, y) + \overline{b}(x, z). \quad (\text{by Axiom 1})\end{aligned}$$

10 (a) i. $(f, g) = \sum_{k=0}^n f(\frac{k}{n})g(\frac{k}{n}) = \sum_{k=0}^n g(\frac{k}{n})f(\frac{k}{n}) = (g, f)$. So Axiom 1 holds.
ii.

$$\begin{aligned}(f, g + h) &= \sum_{k=0}^n f(\frac{k}{n})(g + h)(\frac{k}{n}) \\&= \sum_{k=0}^n f(\frac{k}{n})(g(\frac{k}{n}) + h(\frac{k}{n})) \\&= \sum_{k=0}^n f(\frac{k}{n})g(\frac{k}{n}) + \sum_{k=0}^n f(\frac{k}{n})h(\frac{k}{n}) \\&= (f, g) + (f, h).\end{aligned}$$

So Axiom 2 holds.

iii.

$$\begin{aligned}
c(f, g) &= c \sum_{k=0}^n f\left(\frac{k}{n}\right) g\left(\frac{k}{n}\right) \\
&= \sum_{k=0}^n (cf\left(\frac{k}{n}\right)) g\left(\frac{k}{n}\right) \\
&= \sum_{k=0}^n (cf)\left(\frac{k}{n}\right) g\left(\frac{k}{n}\right) \\
&= (cf, g).
\end{aligned}$$

So Axiom 3 holds.

iv. First, we note that the zero function $0(x)$ is a zero element in P_n because $f(x) + 0(x) = f(x)$ for any $f(x)$ in P_n . Now, for a non-zero polynomial $f(x)$ of degree $\leq n$ in P_n , there exist at most n real roots. Thus at least one of the $n + 1$ numbers $f\left(\frac{k}{n}\right)$, $0 \leq k \leq n$, is non-zero. Thus,

$$\begin{aligned}
(f, f) &= \sum_{k=0}^n f\left(\frac{k}{n}\right) f\left(\frac{k}{n}\right) \\
&= \sum_{k=0}^n f\left(\frac{k}{n}\right)^2 \\
&> 0.
\end{aligned}$$

So Axiom 4 holds.

(b) Given $f(t) = t$ and $g(t) = at + b$,

$$\begin{aligned}
(f, g) &= \sum_{k=0}^n f\left(\frac{k}{n}\right) g\left(\frac{k}{n}\right) \\
&= \sum_{k=0}^n \frac{k}{n} \left(a \frac{k}{n} + b\right) \\
&= \frac{a}{n^2} \sum_{k=0}^n k^2 + \frac{b}{n} \sum_{k=0}^n k \\
&= \frac{a}{n^2} \frac{n(n+1)(2n+1)}{6} + \frac{b}{n} \frac{n(n+1)}{2} \\
&= \frac{a(n+1)(2n+1)}{6n} + \frac{b(n+1)}{2}.
\end{aligned}$$

(c) We find that $g(t) = at + b$ in (b) is a linear polynomial, so by (b) we have the

coefficients a, b of $g(t)$ such that

$$\begin{aligned} & \frac{a(n+1)(2n+1)}{6n} + \frac{b(n+1)}{2} = 0, \\ \Rightarrow & \frac{a(2n+1)}{6n} + \frac{b}{2} = 0, \quad \text{because } n \geq 1 \\ \Rightarrow & \frac{a(2n+1)}{6n} = -\frac{b}{2}, \\ \Rightarrow & b = \frac{-a(2n+1)}{3n}. \end{aligned}$$

So $g(t) = a(t - \frac{2n+1}{3n})$, for arbitrary a .