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1. Let A = [aij] be an n× n matrix having a row of zeros or a column of zeros. Suppose
A is nonsingular with inverse B = [bij] such that AB = BA = In×n.

i. If the i-th row of A is a row of zeros, (aij = 0 for j = 1, . . . , n), then the i-
th row of AB must be a row of zeros, since the ik-entry of AB is given by∑n

j=1 aijbjk =
∑n

j=1 0 · bjk = 0, for k = 1, . . . , n.

ii. If the j-th column of A is a column of zeros, (aij = 0 for i = 1, . . . , n), then the
j-th column of BA must be a column of zeros, since the kj-entry of BA is given
by

∑n
i=1 bkiaij =

∑n
j=1 bki · 0 = 0, for k = 1, . . . , n.

Both cases contradict to AB = BA = I.

3. We have to find a nonsigular matrix P such that AP = P

[
6 0
0 −1

]
. Let P =[

a b
c d

]
. Then we have

[
1 2
5 4

] [
a b
c d

]
=

[
a b
c d

] [
6 0
0 −1

]
. Thus,

a + 2c = 6a, b + 2d = −b, 5a + 4c = 6c, 5b + 4d = −d.

⇒ 5a = 2c, b = −d. Choose a = 2, b = 1, c = 5, and d = −1, then ad− bc = −2− 5 =

−7 6= 0. Thus P =

[
2 1
5 −1

]
is nonsigular and hence it is a solution.

5. We prove it by induction.

(a) When n = 1, (A + I)1 = A + I = I + A = I + (21 − 1)A.

(b) For n = k, we assume (A + I)k = I + (2k − 1)A.

(c) When n = k + 1, we have

(A + I)k+1 = (A + I)(A + I)k

= (A + I)(I + (2k − 1)A)

= A + I + (2k − 1)A2 + (2k − 1)A

= I + 2(2k − 1)A + A

= I + (2k+1 − 1)A

6. By Definition, Lorentz transformation L(v) = c√
c2−v2

[
1 −v

−vc−2 1

]
and L(u) =

c√
c2−u2

[
1 −u

−uc−2 1

]
. We have



L(v)L(u) =
c√

c2 − v2

[
1 −v

−vc−2 1

]
c√

c2 − u2

[
1 −u

−uc−2 1

]
=

c√
c2 − v2

· c√
c2 − u2

[
1 −v

−vc−2 1

] [
1 −u

−uc−2 1

]
=

c2

√
c2 − v2

√
c2 − u2

[
1 + uvc−2 −v − u

−vc−2 − uc−2 1 + uvc−2

]
=

c2 · (1 + uvc−2)√
c2 − v2

√
c2 − u2

[
1 −v−u

1+uvc−2

−vc−2−uc−2

1+uvc−2 1

]
=

c2 + uv√
c2 − v2

√
c2 − u2

[
1 − (v+u)c2

c2+uv

− v+u
c2+uv

1

]

=
c2 + uv√

c2 − v2
√

c2 − u2

[
1 −w

−wc−2 1

]
.

We know that a of the L(w) must be

c√
c2 − w2

=
c√

c2 − (u+v)2c4

(c2+uv)2

=
c

c
√

(c2+uv)2−(u+v)2c2

(c2+uv)2

=
c2 + uv√

c4 + 2uvc2 + u2v2 − u2c2 − v2c2 − 2uvc2

=
c2 + uv√

c4 − v2c2 − u2c2 + u2v2

=
c2 + uv√

(c2 − v2)(c2 − u2)

=
c2 + uv√

c2 − v2
√

c2 − u2
.

Hence L(v)L(u) = L(w).

9. (a) Let A =

[
1 0
0 1

]
, B =

[
−1 0

0 −1

]
. A and B are orthogonal. Then A + B =[

0 0
0 0

]
, which is obviously non-orthogonal.

(b) First, we want to know what dose (AB)t look like. Let C = AB. Then cij =∑n
k=1 aikbkj. Then ct

ij = cji =
∑n

k=1 ajkbki =
∑n

k=1 bt
ika

t
kj. Thus we get (AB)t =

BtAt. Since A and B are orthogonal,
⇒ (AB)(AB)t = (AB)(BtAt) = A(BBt)At = AIAt = AAt = I.
Thus AB is orthogonal.

(c) (AB)(AB)t = I (since AB is orthogonal.)
⇒ ABBtAt = I
⇒ AtABBtAt = At
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⇒ BBtAt = At (since A is orthogonal)
⇒ BBt = I.
Thus B is orthogonal.

10. (a). Let A =

[
a11 a12

a21 a22

]
, where |aij| = 1, for i, j = 1, 2, and a11a21 + a12a22 = 0.

Multiplying a12 to both sides of a11a21 + a12a22 = 0, we have a11a12a21 + a22 = 0.

Thus,

a11 = 1, a12 = 1, a21 = 1 ⇒ a22 = −1.

a11 = 1, a12 = 1, a21 = −1 ⇒ a22 = 1.

a11 = 1, a12 = −1, a21 = 1 ⇒ a22 = 1.

a11 = 1, a12 = −1, a21 = −1 ⇒ a22 = −1.

a11 = −1, a12 = 1, a21 = 1 ⇒ a22 = 1.

a11 = −1, a12 = 1, a21 = −1 ⇒ a22 = −1.

a11 = −1, a12 = −1, a21 = 1 ⇒ a22 = −1.

a11 = −1, a12 = −1, a21 = −1 ⇒ a22 = 1.

(b). Proof of Lemma 4.22.

(X + Y ) · (X + Z) = X ·X + X · Z + Y ·X + Y · Z
= X ·X, (since dot product of any two of X, Y, Z is zero)

= ||X||2.

Proof of Lemma 4.23.

(xi + yi)(xi + zi) = x2
i + xizi + yixi + yizi = 1 + xizi + yixi + yizi = 1 + M, (1)

where M = (yizi + xiyi + xizi). Then

M2 = (xizi + yixi + yizi)
2

= x2
i z

2
i + y2

i x
2
i + y2

i z
2
i + 2x2

i yizi + 2xiyiz
2
i + 2xiy

2
i zi

= 3 + 2yizi + 2xiyi + 2xizi,

= 3 + 2M.

M2 − 2M − 3 = 0 implies M = 3 or M = −1. Substitute M to equation (1), we
have (xi + yi)(xi + zi) = 0 or 4.

Proof of the Theorem.

Let X, Y and Z be three distinct row vectors of an n × n Hadamard matrix A,
n ≥ 3. By II of the definition of Hadamard matrices and the Lemma 4.22,

(X + Y ) · (X + Z) = ||X||2

= (
√

n)2 = n.

By Lemma 4.23, (X + Y ) · (X + Z) =
∑n

i=1(xi + yi)(xi + zi) = 4m for some
m ≤ n,m ∈ Z+, thus n is a multiple of 4.
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